

Order o f Optimizations
This flowchart represents a recommended order for performing optimizations in an aggres
sive optimizing compiler. Other orders are possible, and the examples of real-world compilers
in Chapter 21 present several alternatives, though none of them includes all of the optimiza
tions in this diagram. The letters at the left in the diagram correspond to the levels of code
appropriate for the corresponding optimizations. The correspondence between letters and
code levels is as follows:

A These optimizations typically are applied either to source code or to a high-level intermediate
code that preserves loop structure and the sequence in which operations are performed and
that has array accesses in essentially their source-code form. Usually, these optimizations are
done very early in the compilation process, since compilation tends to lower the level of the
code as it proceeds from one phase to the next.

(to constant folding, algebraic
simplifications, and reassociation)

A

D

In-line expansion
Leaf-routine optimization
Shrink wrapping
Machine idioms
Tail merging
Branch optimizations and conditional

moves
Dead-code elimination
Software pipelining, with loop

unrolling, variable expansion, register
renaming, and hierarchical reduction

Basic-block and branch scheduling 1
Register allocation by graph coloring
Basic-block and branch scheduling 2
Intraprocedural I-cache optimization
Instruction prefetching
Data prefetching
Branch prediction

E
Interprocedural register allocation
Aggregation of global references
Interprocedural I-cache optimization

B, C These optimizations are typically performed on medium- or low-level intermediate code,
depending on the overall organization of the compiler. If code selection is done before all
optimizations other than those in box A (known as the “ low-level” model of optimizer struc
ture), then these optimizations are performed on low-level code. If, on the other hand, some
optimizations are performed on a medium-level, relatively machine-independent intermedi
ate code and others are performed on low-level code after code generation (known as the
“mixed” model), then these optimizations are generally done on the medium-level interme
diate code.

The branches from C l to C2 and C3 represent a choice of the method used to perform
essentially the same optimization (namely, moving computations to places where they are per
formed less frequently without changing the semantics of the program). They also represent
a choice of the data-flow analyses used to perform the optimization.

D These optimizations are almost always done on a low-level form of code—one that may
be quite machine-dependent (e.g., a structured assembly language) or that may be somewhat
more general, such as the low-level intermediate code used in this book—because they require
that addresses have been turned into the form required by the target processor and because
several of them require low-level control-flow code.

E These optimizations are performed at link time, so they operate on relocatable object code.

Three optimizations, namely, constant folding, algebraic simplification, and reassociation,
are in boxes connected to the other phases of the optimization process by dotted lines because
they are best structured as subroutines that can be invoked whenever they are needed.

A version of this diagram appears in Chapters 1 and 11 through 20 to guide the reader
in ordering optimizer components in a compiler.

Advanced Compiler Design
and Implementation

Steven S. Muchnick

Senior Editor Denise E. M. Penrose
Director o f Production and Manufacturing Yonie Overton
Senior Production Editor Cheri Palmer
Editorial Coordinator Jane Elliott
Cover Design Ross Carron Design
Text Design, Composition, and Illustration Windfall Software
Copyeditor Jeff Van Bueren
Proofreader Jennifer McClain
Indexer Ty Koontz
Printer Courier Corporation

ACADEMIC PRESS
A Harcourt Science and Technology Company
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA
http:/lwww.academicpress.com

Academic Press
Harcourt Place, 32 Jamestown Road, London, NW1 7BY, United Kingdom
http:llwww.academicpress.com

Morgan Kaufmann Publishers
340 Pine Street, Sixth Floor, San Francisco, CA 94104-3205, USA
http://www.mkp.com

© 1997 by Academic Press
All rights reserved
Printed in the United States of America

04 03 6

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means—electronic, mechanical, photocopying, recording, or
otherwise—without the prior written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Muchnick, Steven S., date.

Advanced compiler design and implementation / Steve Muchnick.
p. cm.

Includes bibliographical references and index.
ISBN 1-55860-320-4
1. Compilers (Computer programs) 2. Systems programming (Computer

science). I. Title.
QA76.76.C65M8 1997
005.4'53—dc21 97-13063

CIP

http://www.academicpress.com
http://www.academicpress.com
http://www.mkp.com

To Eric, nihil sine quo

Foreword

C ompiler design has been an active topic of research and development since
the mid-1950s. Fortran, the first widely used higher-level language, suc
ceeded, in large part, because of the high quality of its early compilers. John
Backus and his colleagues at IBM recognized that programmers would not give up

the detailed design control they had with assembly language unless the performance
of compiled code was sufficiently close to the performance of handwritten machine
code. Backus’s group invented several key concepts that underlie the topics in this
book. Among them are the treatment of array indexes in loop optimization and
methods for local register allocation. Since that time, both researchers and practi
tioners have improved and supplanted them (repeatedly) with more effective ones.

In light of the long history of compiler design, and its standing as a relatively
mature computing technology, why, one might ask, should there be a new book in
the field? The answer is clear. Compilers are tools that generate efficient mappings
from programs to machines. The language designs continue to change, the target
architectures continue to change, and the programs become ever more ambitious
in their scale and complexity. Thus, while the compiler design problem remains
the same at a high level, as we zoom in, it is continually changing. Furthermore,
the computational resources we can bring to bear in the compilers themselves are
increasing. Consequently, modern compilers use more time- and space-intensive
algorithms than were possible before. And, of course, researchers continue to invent
new and better techniques for solving conventional compiler design problems. In
fact, an entire collection of topics in this book are direct consequences of changes in
computer architecture.

This book takes on the challenges of contemporary languages and architectures
and prepares the reader for the new compiling problems that will inevitably arise
in the future. For example, in Chapter 3 the book builds on the reader’s knowledge
of symbol tables and local scope structure to describe how to deal with imported
and exported scopes as found in Ada, Modula-2, and other modern languages. And,
since run-time environments model the dynamic semantics of source languages, the
discussion of advanced issues in run-time support in Chapter 5, such as compiling
shared objects, is particularly valuable. That chapter also addresses the rich type
systems found in some modern languages and the diverse strategies for parameter
passing dictated by modern architectures.

vii

Forewordviii

No compiler book would be complete without a chapter on code generation.
The early work in code generation provided approaches to designing handcrafted
instruction-selection routines and intermixing instruction selection with register
management. The treatment of code generation in Chapter 6 describes automated
techniques based on pattern matching, made possible not only by compiler research
but also by simpler and more orthogonal instruction sets and by the feasibility of
constructing and traversing intermediate-code trees in a compiler.

Optimization is the heart of advanced compiler design and the core of this
book. Much theoretical work has gone into program analysis, both for the sake
of optimization and for other purposes. Chapters 7 through 10 revisit what are,
by now, the classic analysis methods, along with newer and more efficient ones
previously described only in research papers. These chapters take a collection of
diverse techniques and organize them into a unified whole. This synthesis is, in itself,
a significant contribution to compiler design. Most of the chapters that follow use
the analyses to perform optimizing transformations.

The large register sets in recent systems motivate the material on register allo
cation in Chapter 16, which synthesizes over a decade of advances in algorithms
and heuristics for this problem. Also, an important source of increased speed is
concurrency—the ability to do several things at once. In order to translate a sequen
tial program into one that can exploit hardware concurrency, the compiler may need
to rearrange parts of the computation in a way that preserves correctness and in
creases parallelism. Although a full treatment of concurrency is beyond the scope of
this book, it does focus on instruction-level parallelism, which motivates the discus
sion of dependence analysis in Chapter 9 and the vital topic of code scheduling in
Chapter 17.

Chapter 20, on optimization for the memory hierarchy, is also motivated by
modern target machines, which introduce a diversity of relative speeds of data access
in order to cope with the increasing gap between processor and memory speeds.
An additional chapter available from the publisher’s World Wide Web site discusses
object-code translation, which builds on compiler technology to translate programs
for new architectures, even when the source programs are unavailable.

The importance of interprocedural analysis and optimization has increased as
new language designs have encouraged programmers to use more sophisticated
methods for structuring large programs. Its feasibility has increased as the analysis
methods have been refined and tuned and as faster computers have made the requi
site analyses acceptably fast. Chapter 19 is devoted to the determination and use of
interprocedural information.

Compiler design is, in its essence, an engineering activity. The methods that are
used must be ones that provide good solutions to the translation situations that
arise in practice—namely, real programs written in real languages executing on real
machines. Most of the time, the compiler writer must take the languages and the
machines as they come. Rarely is it possible to influence or improve the design of
either. It is the engineering choices of what analyses and transformations to perform
and when to perform them that determine the speed and quality of an optimizing
compiler. Both in the treatment of the optimization material throughout the book
and in the case studies in Chapter 21, these design choices are paramount.

Foreword IX

One of the great strengths of the author, Steve Muchnick, is the wealth and di
versity of his experience. After an early career as a professor of computer science,
Dr. Muchnick applied his knowledge of compilers as a vital member of the teams
that developed two important computer architectures, namely, pa-risc at Hewlett-
Packard and sparc at Sun Microsystems. After the initial work on each architecture
was completed, he served as the leader of the advanced compiler design and im
plementation groups for these systems. Those credentials stand him in good stead
in deciding what the reader needs to know about advanced compiler design. His
research experience, coupled with his hands-on development experience, are invalu
able in guiding the reader through the many design decisions that a compiler designer
must make.

Susan Graham
University of California, Berkeley

Contents

Foreword by Susan Graham vii

Preface xxi

1 Introduction to Advanced Topics 1
1.1 Review of Compiler Structure 1
1.2 Advanced Issues in Elementary Topics 3
1.3 The Importance of Code Optimization 6
1.4 Structure of Optimizing Compilers 7
1.5 Placement of Optimizations in Aggressive

Optimizing Compilers 11
1.6 Reading Flow Among the Chapters 14
1.7 Related Topics Not Covered in This Text 16
1.8 Target Machines Used in Examples 16
1.9 Number Notations and Data Sizes 16
1.10 Wrap-Up 17
1.11 Further Reading 18
1.12 Exercises 18

2 Informal Compiler Algorithm Notation (ICAN) 19
2.1 Extended Backus-Naur Form Syntax Notation 19
2.2 Introduction to ICAN 20
2.3 A Quick Overview of ICAN 23
2.4 Whole Programs 25
2.5 Type Definitions 25
2.6 Declarations 26

xi

xii Contents

2.7 Data Types and Expressions 27
2.8 Statements 36
2.9 Wrap-Up 41
2.10 Further Reading 41
2.11 Exercises 41

3 Symbol-Table Structure 43
3.1 Storage Classes, Visibility, and Lifetimes 43
3.2 Symbol Attributes and Symbol-Table Entries 45
3.3 Local Symbol-Table Management 47
3.4 Global Symbol-Table Structure 49
3.5 Storage Binding and Symbolic Registers 54
3.6 Approaches to Generating Loads and Stores 59
3.7 Wrap-Up 64
3.8 Further Reading 64
3.9 Exercises 64

4 Intermediate Representations 67
4.1 Issues in Designing an Intermediate Language 67
4.2 High-Level Intermediate Languages 69
4.3 Medium-Level Intermediate Languages 71
4.4 Low-Level Intermediate Languages 71
4.5 Multi-Level Intermediate Languages 72
4.6 Our Intermediate Languages: MIR, HIR, and LIR 73
4.7 Representing MIR, HIR, and LIR in ICAN 81
4.8 ICAN Naming of Data Structures and Routines that Manipulate

Intermediate Code 92
4.9 Other Intermediate-Language Forms 96
4.10 Wrap-Up 101
4.11 Further Reading 102
4.12 Exercises 102

5 Run-Time Support 105
5.1 Data Representations and Instructions 106
5.2 Register Usage 109

Contents xiii

5.3 The Local Stack Frame 111
5.4 The Run-Time Stack 114
5.5 Parameter-Passing Disciplines 116
5.6 Procedure Prologues, Epilogues, Calls, and Returns
5.7 Code Sharing and Position-Independent Code 127

5.8 Symbolic and Polymorphic Language Support 131
5.9 Wrap-Up 133
5.10 Further Reading 134
5.11 Exercises 135

6 Producing Code Generators Automatically 137
6.1 Introduction to Automatic Generation of Code Generators 138
6.2 A Syntax-Directed Technique 139
6.3 Introduction to Semantics-Directed Parsing 159
6.4 Tree Pattern Matching and Dynamic Programming 160
6.5 Wrap-Up 165
6.6 Further Reading 166
6.7 Exercises 166

7 Control-Flow Analysis 169
7.1 Approaches to Control-Flow Analysis 172
7.2 Depth-First Search, Preorder Traversal, Postorder Traversal, and

Breadth-First Search 177
7.3 Dominators and Postdominators 181
7.4 Loops and Strongly Connected Components 191
7.5 Reducibility 196
7.6 Interval Analysis and Control Trees 197
7.7 Structural Analysis 202
7.8 Wrap-Up 214
7.9 Further Reading 214
7.10 Exercises 215

8 Data-Flow Analysis 217
8.1 An Example: Reaching Definitions 218
8.2 Basic Concepts: Lattices, Flow Functions, and Fixed Points 223

xiv Contents

8.3 Taxonomy of Data-Flow Problems and Solution Methods 228
8.4 Iterative Data-Flow Analysis 231
8.5 Lattices of Flow Functions 235
8.6 Control-Tree-Based Data-Flow Analysis 236
8.7 Structural Analysis 236
8.8 Interval Analysis 249
8.9 Other Approaches 250
8.10 Du-Chains, Ud-Chains, and Webs 251
8.11 Static Single-Assignment (SSA) Form 252
8.12 Dealing with Arrays, Structures, and Pointers 258
8.13 Automating Construction of Data-Flow Analyzers 259
8.14 More Ambitious Analyses 261
8.15 Wrap-Up 263
8.16 Further Reading 264
8.17 Exercises 265

9 Dependence Analysis and Dependence Graphs 267
9.1 Dependence Relations 267
9.2 Basic-Block Dependence DAGs 269
9.3 Dependences in Loops 274
9.4 Dependence Testing 279
9.5 Program-Dependence Graphs 284
9.6 Dependences Between Dynamically Allocated Objects 286
9.7 Wrap-Up 288
9.8 Further Reading 289
9.9 Exercises 290

10 Alias Analysis 293
10.1 Aliases in Various Real Programming Languages 297
10.2 The Alias Gatherer 302
10.3 The Alias Propagator 307
10.4 Wrap-Up 314
10.5 Further Reading 315
10.6 Exercises 316

Contents XV

11 Introduction to Optimization 319
11.1 Global Optimizations Discussed in Chapters 12 Through 18 321
11.2 Flow Sensitivity and May vs. Must Information 323
11.3 Importance of Individual Optimizations 323
11.4 Order and Repetition of Optimizations 325
11.5 Further Reading 328
11.6 Exercises 328

12 Early Optimizations 329
12.1 Constant-Expression Evaluation (Constant Folding) 329
12.2 Scalar Replacement of Aggregates 331
12.3 Algebraic Simplifications and Reassociation 333
12.4 Value Numbering 343
12.5 Copy Propagation 356
12.6 Sparse Conditional Constant Propagation 362
12.7 Wrap-Up 371
12.8 Further Reading 373
12.9 Exercises 374

13 Redundancy Elimination 377
13.1 Common-Subexpression Elimination 378
13.2 Loop-Invariant Code Motion 397
13.3 Partial-Redundancy Elimination 407
13.4 Redundancy Elimination and Reassociation 415
13.5 Code Hoisting 417
13.6 Wrap-Up 420
13.7 Further Reading 422
13.8 Exercises 422

14 Loop Optimizations 425
14.1 Induction-Variable Optimizations 425
14.2 Unnecessary Bounds-Checking Elimination 454
14.3 Wrap-Up 457
14.4 Further Reading 459
14.5 Exercises 460

XVI Contents

15 Procedure Optimizations 461
15.1 Tail-Call Optimization and Tail-Recursion Elimination 461
15.2 Procedure Integration 465
15.3 In-Line Expansion 470
15.4 Leaf-Routine Optimization and Shrink Wrapping 472
15.5 Wrap-Up 476
15.6 Further Reading 478
15.7 Exercises 478

16 Register Allocation 481
16.1 Register Allocation and Assignment 482
16.2 Local Methods 483
16.3 Graph Coloring 485
16.4 Priority-Based Graph Coloring 524
16.5 Other Approaches to Register Allocation 525
16.6 Wrap-Up 526
16.7 Further Reading 528
16.8 Exercises 529

17 Code Scheduling 531
17.1 Instruction Scheduling 532
17.2 Speculative Loads and Boosting 547
17.3 Speculative Scheduling 548
17.4 Software Pipelining 548
17.5 Trace Scheduling 569
17.6 Percolation Scheduling 571
17.7 Wrap-Up 573
17.8 Further Reading 575
17.9 Exercises 576

18 Control-Flow and Low-Level Optimizations 579
18.1 Unreachable-Code Elimination 580
18.2 Straightening 583
18.3 If Simplifications 585
18.4 Loop Simplifications 586

Contents XVII

18.5 Loop Inversion 587
18.6 Unswitching 588
18.7 Branch Optimizations 589
18.8 Tail Merging or Cross Jumping 590
18.9 Conditional Moves 591
18.10 Dead-Code Elimination 592
18.11 Branch Prediction 597
18.12 Machine Idioms and Instruction Combining 599
18.13 Wrap-Up 602
18.14 Further Reading 604
18.15 Exercises 605

19 Interprocedural Analysis and Optimization 607
19.1 Interprocedural Control-Flow Analysis: The Call Graph 609
19.2 Interprocedural Data-Flow Analysis 619
19.3 Interprocedural Constant Propagation 637
19.4 Interprocedural Alias Analysis 641
19.5 Interprocedural Optimizations 656
19.6 Interprocedural Register Allocation 659
19.7 Aggregation of Global References 663
19.8 Other Issues in Interprocedural Program Management 663
19.9 Wrap-Up 664
19.10 Further Reading 666
19.11 Exercises 667

20 Optimization for the Memory Hierarchy 669
20.1 Impact of Data and Instruction Caches 670
20.2 Instruction-Cache Optimization 672
20.3 Scalar Replacement of Array Elements 682
20.4 Data-Cache Optimization 687
20.5 Scalar vs. Memory-Oriented Optimizations 700
20.6 Wrap-Up 700
20.7 Further Reading 703
20.8 Exercises 704

xviii Contents

21 Case Studies of Compilers and Future Trends 705
21.1 The Sun Compilers for SPARC 707
21.2 The IBM XL Compilers for the POWER and PowerPC

Architectures 716
21.3 Digital Equipment’s Compilers for Alpha 726
21.4 The Intel Reference Compilers for the Intel 386 Architecture

Family 734
21.5 Wrap-Up 744
21.6 Future Trends in Compiler Design and Implementation 745
21.7 Further Reading 746

App. A Guide to Assembly Languages Used in This Book 747
A. 1 Sun SPARC Versions 8 and 9 Assembly Language 747
A.2 IBM POWER and PowerPC Assembly Language 749
A.3 DEC Alpha Assembly Language 750
A.4 Intel 386 Architecture Assembly Language 752
A. 5 Hewlett-Packard’s PA-RISC Assembly Language 753

App. B Representation of Sets, Sequences, Trees, DAGs, and
Functions 757
B. l Representation of Sets 759
B.2 Representation of Sequences 763
B.3 Representation of Trees and DAGs 763
B.4 Representation of Functions 764
B. 5 Further Reading 765

App. C Software Resources 767
C . l Finding and Accessing Software on the Internet 767
C.2 Machine Simulators 767
C.3 Compilers 768
C.4 Code-Generator Generators: BURG and IBURG 769
C.5 Profiling Tools 770

List of Illustrations 773

Contents

List of Tables 797

Bibliography 801

Technical Index of Mathematical Formulas and ican Procedures
and Major Data Structures 821

Subject Index 827

Preface

T his book concerns advanced issues in the design and implementation of
compilers, for uniprocessors, with its major emphasis (over 60% of the
text) on optimization. While it does consider machines with instruction-level
parallelism, we ignore almost completely the issues of large-scale parallelization and

vectorization.
It begins with material on compiler structure, symbol-table management (includ

ing languages that allow scopes to be imported and exported), intermediate code
structure, run-time support issues (including shared objects that can be linked to
at run time), and automatic generation of code generators from machine descrip
tions. Next it explores methods for intraprocedural (conventionally called global)
control-flow, data-flow, dependence, and alias analyses. Then a series of groups of
global optimizations are described, including ones that apply to program compo
nents from simple expressions to whole procedures. Next, interprocedural analyses
of control flow, data flow, and aliases are described, followed by interprocedural
optimizations and use of interprocedural information to improve global optimiza
tions. We then discuss optimizations designed to make effective use of the memory
hierarchy. Finally, we describe four commercial compiler systems in detail, namely,
ones from Digital Equipment Corporation, IBM, Intel, and Sun Microsysytems, to
provide specific examples of approaches to compiler structure, intermediate-code de
sign, optimization choices, and effectiveness. As we shall see, these compiler systems
represent a wide range of approaches and often achieve similar results in different
ways.

How This Book Came to Be Written
In June 1990 and 1991, while a Distinguished Engineer at Sun Microsystems,
I presented a half-day tutorial entitled “Advanced Compiling Techniques for R ise
Systems” at the annual ACM sigplan Conference on Programming Language De
sign and Implementation. The tutorial was based on approximately 130 transparen
cies on RISC architectures and relevant issues in compilers, particularly optimization.
I left that experience with the idea that somewhere within the material covered there
was a seed (the mental image was, in fact, of an acorn) yearning for sun, soil, and
water to help it grow into the mature oak tree of a book you have before you. Over

xxi

xxii Preface

a year later I discussed this idea with Wayne Rosing, then President of Sun Microsys
tems Laboratories, and within a few weeks he decided to nurture this project with a
year-and-a-half’s worth of partial funding.

The first draft that resulted included quite a lot of material on R is e architectures,
as well as material on advanced compilation issues. Before long (with the help of
three reviewers) I had decided that there was little point in including the architecture
material in the book. New R is e architectures are being developed quite frequently,
the kind of coverage of them that is needed is provided in architecture courses at
most universities, and the real strengths of the text were in the compiler material.

This resulted in a major change of direction. Most of the architecture material
was dropped, keeping just those parts that support decisions on how to proceed
in compilation; the focus of the compiler material was broadened to provide equal
coverage of ciscs; and it was decided to focus entirely on uniprocessors and to
leave it to other texts to discuss parallelization and vectorization. The focus of the
compilation material was deepened and, in some respects narrowed and in others
broadened (for example, material on hand-crafted code generation was dropped
almost entirely, while advanced methods of scheduling, such as trace and percolation
scheduling, were added). The result is what you see before you.

About the Cover
The design on the cover is of a Chilkat blanket from the author’s collection of
Northwest Coast native art. The blanket was woven of fine strands of red-cedar
inner bark and mountain-goat wool in the late 19th century by a Tlingit woman
from southeastern Alaska. It generally took six to nine months of work to complete
such a blanket. The blanket design is divided into three panels, and the center panel
depicts a diving whale. The head is the split image at the bottom; the body is the
panel with the face in the center (a panel that looks like a face never represents the
face in this iconography); the lateral fins are at the sides of the body; and the tail
flukes are at the top. Each part of the design is, in itself, functional but meaningless;
assembled together in the right way, the elements combine to depict a diving whale
and proclaim the rights and prerogatives of the village chief who owned the blanket.

In a similar way, each component of a compiler is functional, but it is only when
the components are put together in the proper way that they serve their overall
purpose. Designing and weaving such a blanket requires skills that are akin to
those involved in constructing industrial-strength compilers—each discipline has a
set of required tools, materials, design elements, and overall patterns that must be
combined in a way that meets the prospective users’ needs and desires.

Audience for This Book
This book is intended for computer professionals, graduate students, and advanced
undergraduates who need to understand the issues involved in designing and con
structing advanced compilers for uniprocessors. The reader is assumed to have had
introductory courses in data structures, algorithms, compiler design and implemen-

Preface xxiii

tation, computer architecture, and assembly-language programming, or equivalent
work experience.

Overview of the Book’s Contents
This volume is divided into 21 chapters and three appendices as follows:

Chapter 1. Introduction to Advanced Topics
This chapter introduces the subject of the book, namely, advanced topics in the de
sign and construction of compilers, and discusses compiler structure, the importance
of optimization, and how the rest of the material in the book works together.

Chapter 2. Informal Compiler Algorithm Notation (ICAN)
Chapter 2 describes and gives examples of an informal programming notation called
ican that is used to present algorithms in the text. After describing the notation used
to express the language’s syntax, it gives a brief overview of ican, followed by a
detailed description of the language. The brief description should be sufficient for
reading most of the algorithms presented and the full description should need to be
referred to only rarely.

Chapter 3. Symbol-Table Structure
Chapter 3 first discusses the attributes of variables, such as storage class, visibility,
volatility, scope, size, type, alignment, structure, addressing method, and so on.
Then it describes effective methods for structuring and managing local and global
symbol tables, including importation and exportation of scopes (as found, e.g., in
Ada, Mesa, and Modula-2); storage binding; and approaches to generating load and
store instructions that take the above characteristics into account.

Chapter 4. Intermediate Representations
This chapter focuses on intermediate language design, three specific intermediate lan
guages used in the remainder of the book, and other basic forms of intermediate code
that might be used in a compiler. We use three closely related intermediate forms,
one high-level, one medium-level, and one low-level, to allow us to demonstrate vir
tually all the optimizations discussed. We also discuss the relative importance and
usefulness of our chosen forms and the others.

Two other more elaborate forms of intermediate code, namely, static single
assignment (SSA) form and program dependence graphs, are discussed in Sec
tions 8.11 and 9.5, respectively.

Chapter 5. Run-Time Support
Chapter 5 concerns the issues involved in supporting programs written in high-level
languages at run time. It discusses data representation, register usage, design of the
stack frame and overall run-time stack, parameter passing, procedure structure and

XXIV Preface

linkage, procedure-valued variables, code sharing, position-independent code, and
issues involved in supporting symbolic and polymorphic languages.

Chapter 6. Producing Code Generators Automatically
Chapter 6 discusses automatic approaches for producing code generators from ma
chine descriptions. We present the Graham-Glanville syntax-directed technique in
detail and introduce two other approaches, namely, semantics-directed parsing and
tree pattern matching.

Chapter 7. Control-Flow Analysis
This and the following three chapters discuss four types of analyses that apply to
procedures and that are vital to doing correct and ambitious optimization.

Chapter 7 concentrates on approaches to determining the control flow within
a procedure and to constructing a control-flow graph (CFG). It begins with an
overview of the possible approaches and then discusses three of them in detail. The
first is the classic approach of using depth-first search and dominators. In this area
we also discuss flowgraph traversals, such as preorder and postorder, of the CFG
and finding the strongly connected components of a CFG. The other two approaches
depend on the concept of reducibility, which allows the control flow of a procedure
to be composed hierarchically. One of the two is called interval analysis and the other
is called structural analysis, and the two differ in what types of structural units they
distinguish. We also discuss the representation of a procedure’s hierarchical structure
by a so-called control tree.

Chapter 8. Data-Flow Analysis
Chapter 8 discusses approaches to determining the flow of data in a procedure. It
begins with an example and next discusses the basic mathematical concepts un
derlying data-flow analysis, namely, lattices, flow functions, and fixed points. It
continues with a taxonomy of data-flow problems and solution methods and then
proceeds to discuss in detail three techniques for solving data-flow problems that
correspond to the three approaches to control-flow analysis presented in the preced
ing chapter. The first approach is iterative data-flow analysis, which corresponds to
the use of depth-first search and dominators. The other two approaches correspond
to the control-tree-based approaches to control-flow analysis and are known by the
same names as those analyses: interval analysis and structural analysis. This is fol
lowed by an overview of a new sparse technique known as slotwise analysis, and
descriptions of methods of representing data-flow information, namely, du-chains,
ud-chains, webs, and static single-assignment (or SSA) form. The chapter concludes
with thoughts on how to deal with arrays, structures, and pointers and with a dis
cussion of a method for automating construction of data-flow analyzers.

Chapter 9. Dependence Analysis and Dependence Graphs
Chapter 9 concerns dependence analysis, which is a poor-man’s version of data-flow
analysis for arrays and low-level storage references, and a closely related intermedi
ate code form known as the program dependence graph. It first discusses dependence

Preface XXV

relations and then how to compute dependence relations within a basic block, which
is vital to the code-scheduling techniques discussed in Chapter 17. Next it discusses
dependence in loops and methods of doing dependence testing, which are essential to
the data-storage optimizations discussed in Chapter 20. Finally, it discusses the pro
gram dependence graph, which is an intermediate-code form that represents control
and data dependences directly, and that can be used to perform a series of optimiza
tions more effectively than on an intermediate code that leaves such information
implicit.

Chapter 10. Alias Analysis
Chapter 10 discusses alias analysis, which determines whether a storage location
may be accessible by more than one access path, such as by name and through a
pointer. It discusses how aliases may impact programs in specific languages, such as
Fortran 77, Pascal, C, and Fortran 90. Next it discusses a very general approach
to determining the aliases present in a procedure that consists of a language-specific
alias gatherer and a language-independent alias propagator. The alias gatherer and
propagator can be tailored to provide information that depends or not on the control
flow of the procedure and that also provides information in a variety of other ways,
making it a general approach that can be suited to the needs and time constraints of
a particular programming language and compiler.

Chapter 11. Introduction to Optimization
Chapter 11 introduces the subject of code optimization, discusses the fact that the
applicability and effectiveness of most optimizations are recursively undecidable but
still worthwhile for programs for which they are determinable, and provides a quick
survey of the intraprocedural optimizations covered in Chapters 12 through 18. It
then discusses flow sensitivity and may vs. must information and how they apply to
optimization, the relative importance of particular optimizations, and the order in
which they should be performed.

Chapter 12. Early Optimizations
Chapter 12 discusses optimizations that are usually performed early in the opti
mization process, namely, scalar replacement of aggregates, local and global value
numbering (performed on SSA-form code), local and global copy propagation, and
sparse conditional constant propagation (also performed on SSA-form code). It also
discusses constant expression evaluation (or constant folding) and algebraic simpli
fication and how they are best included in an optimizer as subroutines that can be
called from wherever they are needed.

Chapter 13. Redundancy Elimination
Chapter 13 concerns several types of redundancy elimination, which, in essence,
delete computations that are performed more than once on a path through a pro
cedure. It describes local and global common-subexpression elimination, forward
substitution, loop-invariant code motion, partial-redundancy elimination, and code
hoisting.

xxvi Preface

Chapter 14. Loop Optimizations
Chapter 14 deals with optimizations that apply to loops, including identification
of induction variables, strength reduction, removal of induction variables, linear-
function test replacement, elimination of unnecessary bounds checking.

Chapter 15. Procedure Optimizations
Chapter 15 presents optimizations that apply to procedures as units of code. It
discusses tail-call optimization (including tail-recursion elimination), procedure in
tegration, in-line expansion, leaf-routine optimization, and shrink wrapping.

Chapter 16. Register Allocation
Chapter 16 concerns intraprocedural register allocation and assignment. First it
discusses local, cost-based methods and then an approach that uses graph coloring.
We discuss webs as the allocatable objects, the interference graph, coloring the
interference graph, and generating spill code. This is followed by a brief presentation
of approaches to register allocation that use a procedure’s control tree.

Chapter 17. Code Scheduling
Chapter 17 concerns local and global instruction scheduling, which reorders instruc
tions to take best advantage of the pipelines built into modern processors. There
are two issues in local scheduling, namely, list scheduling, which deals with the
sequence of instructions within a basic block, and branch scheduling, which deals
with connections between blocks. We next consider approaches to scheduling across
basic-block boundaries, including speculative loads and boosting. Next we discuss
two approaches to software pipelining, called window scheduling and unroll and
compact. Next we discuss loop unrolling, variable expansion, and register renaming,
all of which increase the freedom available to scheduling, and hierarchical reduc
tion, which deals with control structures embedded in loops. We finish the chapter
with two global approaches to scheduling, namely, trace scheduling and percolation
scheduling.

Chapter 18. Control-Flow and Low-Level Optimizations
Chapter 18 deals with control-flow optimizations and ones that are generally per
formed on a low-level form of intermediate code or on an assembly-language-like
representation. These include unreachable-code elimination, straightening, if sim
plification, loop simplifications, loop inversion, unswitching, branch optimizations,
tail merging (also called cross jumping), use of conditional move instructions, dead-
code elimination, in-line expansion, branch prediction, machine idioms, instruction
combining, and register coalescing or subsumption.

Chapter 19. Interprocedural Analysis and Optimization
Chapter 19 concerns extending analysis and optimization to deal with whole pro
grams. It discusses interprocedural control-flow analysis, data-flow analysis, alias
analysis, and transformations. It presents two approaches each to flow-insensitive

Preface xxvii

side effect and alias analysis, along with approaches to computing flow-sensitive
side effects and doing interprocedural constant propagation. Next it discusses inter
procedural optimizations and applying interprocedural information to optimization
within procedures, followed by interprocedural register allocation and aggregation
of global references. It concludes with a discussion of how to integrate interproce
dural analysis and optimization into the order of optimizations.

Chapter 20. Optimization for the Memory Hierarchy
Chapter 20 discusses optimization to take better advantage of the memory hierar
chy found in most systems and specifically of cache memories. We first discuss the
impact of data and instruction caches on program performance. We next consider
instruction-cache optimization, including instruction prefetching, procedure sorting,
procedure and block placement, intraprocedural code positioning, procedure split
ting, and combining intra- and interprocedural methods.

Next we discuss data-cache optimization, focusing mostly on loop transforma
tions. Rather than providing a full treatment of this topic, we cover some parts of
it in detail, such as scalar replacement of array elements and data prefetching, and
for others give only an outline of the definitions, terminology, and techniques, and
issues involved and examples of the techniques. The latter topics include data reuse,
locality, tiling, and the interaction of scalar and memory-oriented optimizations. We
take this approach because the research on this subject is still too new to warrant
selection of a definitive method.

Chapter 21. Case Studies of Compilers and Future Trends
Chapter 21 presents four case studies of commercial compiling systems that include
a wide range of target architectures, compiler designs, intermediate-code representa
tions, and optimizations. The four architectures are Sun Microsystems’ sparc, IBM’s
power (and PowerPC), the Digital Equipment Alpha, and the Intel 386 family. For
each, we first discuss the architecture briefly and then present the hardware vendor’s
compilers for it.

Appendix A. Guide to Assembly Languages Used in This Book
Appendix A presents a short description of each of the assembly languages used
in the text, so as to make the code examples more easily accessible. This includes
discussion of the sparc, power (and PowerPC), Alpha, Intel 386 architecture family,
and pa-risc assembly languages.

Appendix B. Representation of Sets, Sequences, Trees, DAGs, and Functions
Appendix B provides a quick review of concrete representations for most of the ab
stract data structures in the text. It is not a substitute for a course in data structures,
but a ready reference to some of the issues and approaches.

Preface

Appendix C. Software Resources
Appendix C is concerned with software accessible via anonymous FTP or on the
World Wide Web that can be used as a basis for compiler implementation projects
in the classroom and, in some cases, in industrial settings also.

Bibliography
Finally, the bibliography presents a wide range of sources for further reading in the
topics covered in the text.

Indexes
The book ends with two indexes, one of which lists mathematical formulas, ican
functions, and major ican data structures.

Supplements, Resources, and Web Extensions

Several exercises appear at the end of each chapter. Advanced exercises are marked
ADV in the left margin, and research exercises are marked RSCH. Solu
tions for selected exercises are available electronically from the publisher. Book-
related materials can be found on the World Wide Web at the URL for this book
h t tp : //www. mkp. com /books_catalog/1-55860-320-4. a sp . Instructors should
contact the publisher directly to obtain solutions to exercises.

Resources
Appendix C, as described above, concerns free software designed for student
compiler-construction projects and how to obtain it electronically. The entire ap
pendix, with links to these addresses, can be accessed at the URL listed above.

Web Extension
Additional material concerned with object-code translation, an approach to produc
ing machine code for an architecture from code for another architecture, rather than
from source code, is available from the publisher’s World Wide Web site, at the URL
listed above. The Web Extension discusses the principles of object-code compilation
and then focuses on three examples, Hewlett-Packard’s HP3000h :o- pa-risc transla
tor OCT and Digital Equipment Corporation’s VAX VMS-to-Alpha translator vest
and its MiPS-to-Alpha translator mx.

Acknowledgments
First and foremost, I would like to thank my former colleagues at Sun Microsystems
without whose support and encouragement this book would not have been possible.
Chief among them are Peter Deutsch, Dave Ditzel, Jon Kannegaard, Wayne Rosing,
Eric Schmidt, Bob Sproull, Bert Sutherland, Ivan Sutherland, and the members of

Preface xxix

the Programming Languages departments, particularly Sharokh Mortazavi, Peter
Damron, and Vinod Grover. I particularly thank Wayne Rosing for the faith to fund
my time working on the book for its first one and a half years.

Second, I would like to thank the reviewers, all of whom have provided
valuable comments on drafts of the book, namely, J. Randy Allen, Bill Appelbe,
Preston Briggs, Fabian E. Bustamante, Siddhartha Chatterjee, Bob Colwell,
Subhendu Raja Das, Amer Diwan, Krishna Kunchithapadam, Jim Larus, Ion
Mandoiu, Allan Porterfield, Arch Robison, Francisco J. Torres-Rojas, and Michael
Wolfe.

I am also indebted to colleagues in other companies and organizations who
have shared information about their compilers and other technical topics, whether
they appear directly in the book or not, namely, Michael Tiemann, James Wilson,
and Torbjorn Granlund of Cygnus Support; Richard Grove, Neil Faiman, Maurice
Marks, and Anton Chernoff of Digital Equipment; Craig Franklin of Green Hills
Software; Keith Keilman, Michael Mahon, James Miller, and Carol Thompson of
Hewlett-Packard; Robert Colwell, Suresh Rao, William Savage, and Kevin J. Smith
of Intel; Bill Hay, Kevin O’Brien, and F. Kenneth Zadeck of International Business
Machines; Fred Chow, John Mashey, and Alex Wu of MIPS Technologies; Andrew
Johnson of the Open Software Foundation; Keith Cooper and his colleagues at Rice
University; John Hennessy, Monica Lam, and their colleagues at Stanford University;
and Nic Peeling of the UK Defense Research Agency.

I am particularly indebted to my parents, Samuel and Dorothy Muchnick, who
created a homelife for me that was filled with possibilities, that encouraged me to
ask and to try to answer hard questions, and that stimulated an appreciation for the
beauty to be found in both the gifts of simplicity and in complexity, be it natural or
made by the hand of man.

The staff at Morgan Kaufmann have shepherded this project through the stages
of the publishing process with skill and aplomb. They include Bruce Spatz, Doug
Sery, Jennifer Mann, Denise Penrose, Yonie Overton, Cheri Palmer, Jane Elliott, and
Lisa Schneider. I thank them all and look forward to working with them again.

The compositor, Paul Anagnostopoulos of Windfall Software, designed the spe
cial symbols used in ican and did a thorough and knowledgeable job of typesetting
the book. He made my day one morning when he sent me email saying that he looked
forward to reading the product of our joint labor.

Last, but by no means least, I would like to thank my long-time lover, Eric
Milliren, for putting up with my spending so much time writing this book during
the last five years, for providing a nourishing home life for me, and for deferring
several of his own major projects until completion of the book was in sight.

CHAPTER 1

Introduction to
Advanced Topics

W e begin by reviewing the structure of compilers and then proceed to lay
the groundwork for our exploration of the advanced topics in compiler
design and implementation discussed in the remainder of the book. In
particular, we first review the basics of compiler structure and then give an overview
of the advanced material about symbol-table structure and access, intermediate-code
forms, run-time representations, and automatic generation of code generators con

tained in Chapters 3 through 6. Next we describe the importance of optimization
to achieving fast code, possible structures for optimizing compilers, and the orga
nization of optimizations in an aggressive optimizing compiler. Then we discuss the
reading flow relationships among the chapters. We conclude with a list of related
topics not covered in this book, two short sections on target machines used in ex
amples and notations for numbers and the names we use for various data sizes, and
a wrap-up of this chapter, followed by a Further Reading section and exercises, as
will be found at the end of all but the last chapter.

1.1 Review o f Compiler Structure
Strictly speaking, compilers are software systems that translate programs written in
higher-level languages into equivalent programs in object code or machine language
for execution on a computer. Thus, a particular compiler might run on an IBM-
compatible personal computer and translate programs written in Fortran 77 into
Intel 386-architecture object code to be run on a PC. The definition can be widened
to include systems that translate from one higher-level language to another, from one
machine language to another, from a higher-level language to an intermediate-level
form, etc. With the wider definition, we might have, for example, a compiler that
runs on an Apple Macintosh and translates Motorola M68000 Macintosh object
code to PowerPC object code to be run on a PowerPC-based Macintosh.

1

2 Introduction to Advanced Topics

FIG. 1.1 High-level structure of a simple compiler.

A compiler, as narrowly defined, consists of a series of phases that sequentially
analyze given forms of a program and synthesize new ones, beginning with the
sequence of characters constituting a source program to be compiled and producing
ultimately, in most cases, a relocatable object module that can be linked with others
and loaded into a machine’s memory to be executed. As any basic text on compiler
construction tells us, there are at least four phases in the compilation process, as
shown in Figure 1.1, namely,

1. lexical analysis, which analyzes the character string presented to it and divides it up
into tokens that are legal members of the vocabulary of the language in which the
program is written (and may produce error messages if the character string is not
parseable into a string of legal tokens);

2. syntactic analysis or parsing, which processes the sequence of tokens and produces
an intermediate-level representation, such as a parse tree or a sequential intermediate
code (for an example, see the definition of m ir in Section 4.6.1), and a symbol table
that records the identifiers used in the program and their attributes (and may produce
error messages if the token string contains syntax errors);

3. checking of the program for static-semantic validity (or semantic checking), which
takes as input the intermediate code and symbol table and determines whether the
program satisfies the static-semantic properties required by the source language,
e.g., whether identifiers are consistently declared and used (and may produce error
messages if the program is semantically inconsistent or fails in some other way to
satisfy the requirements of the language’s definition); and

Section 1.2 Advanced Issues in Elementary Topics 3

4. code generation, which transforms the intermediate code into equivalent machine
code in the form of a relocatable object module or directly runnable object code.

Any detected errors may be warnings or definite errors and, in the latter case, may
terminate compilation.

In addition to the four phases, a compiler includes a symbol table and its access
routines and an interface to the operating system and user environment (to read
and write files, read user input, output messages to the user, etc.) that are available
to all phases of the compilation process (as shown in Figure 1.1). The latter can
be structured to allow the compiler to run under multiple operating systems without
changing how it interfaces with them. The compiler structure diagrams from here on,
except in Chapter 21, do not include the symbol table or operating-system interface.

For many higher-level languages, the four phases can be combined into one pass
over the source program to produce a fast, one-pass compiler. Such a compiler may
be entirely appropriate for a casual user or as an alternative to incremental compi
lation in a software-development environment, where the goal is to provide quick
turnaround for program changes in the edit-compile-debug cycle. It is generally not
possible for such a compiler to produce very efficient code, however.

Alternatively, the lexical and syntactic analysis phases can be combined into a
pass that produces a symbol table and some form of intermediate code,1 and the
semantic checking and generation of object code from the intermediate code may be
done as a separate, second pass, or as two separate passes (or semantic checking may
be done largely as part of the first pass). The object code produced by the compiler
may be relocatable target-machine code or assembly language, which, in turn, needs
to be processed by an assembler to produce relocatable object code. Once a program
or its parts have been compiled, they generally need to be linked to interconnect them
and any needed library routines, and read and relocated by a loader to produce a
runnable image in memory. Linking may be done either before execution (statically)
or during execution (dynamically), or may be split between the two, e.g., with the
user’s program components linked statically and system libraries linked dynamically.

Advanced Issues in Elementary Topics
Here we provide an introduction to the advanced topics in symbol-table design and
access, intermediate-code design, run-time representations, and automatic genera
tion of code generators discussed in Chapters 3 through 6. These are topics whose
basic issues are generally among the major focuses of first courses in compiler design

1. Some languages, such as Fortran, require that lexical and syntactic analysis be done cooperatively
to correctly analyze programs. For example, given a line of Fortran code that begins “do 32 i = 1”
it is not possible to tell, without further lookahead, whether the characters before the equals sign
make up three tokens or one. If the 1 is followed by a comma, there are three tokens before the
equals sign and the statement begins a do loop, whereas if the line ends with the 1, there is one
token before the equals sign, which may be equivalently written “do32i” , and the statement is an
assignment.

4 Introduction to Advanced Topics

and development. However, they all have complexities that are introduced when one
considers supporting a language whose flavor is not strictly vanilla.

Design of symbol tables has been largely a matter more of occult arts than
scientific principles. In part this is because the attributes of symbols vary from one
language to another and because it is clear that the most important aspects of a
global symbol table are its interface and its performance. There are several ways to
organize a symbol table for speed depending on the choice of the underlying data
structures, such as stacks, various sorts of trees, hash tables, and so on, each having
strong points to recommend it. We discuss some of these possibilities in Chapter 3,
but we primarily focus on a combination of stacks, hashing, and linked lists that
deals with the requirements of languages such as Ada, Mesa, Modula-2, and C++ to
be able to import and export scopes in ways that expand on the simple stack model
of languages like Fortran, C, and Pascal.

Intermediate-code design is also, to a significant degree, a matter of wizardry
rather than science. It has been suggested that there are as many intermediate-
language designs as there are different compiler suites—but this is probably off by
a factor of two or so. In fact, given that many compilers use two or more distinct
intermediate codes, there may be about twice as many intermediate-code designs as
compiler suites!

So Chapter 4 explores the issues encountered in designing intermediate codes
and the advantages and disadvantages of various choices. In the interest of moving
on to describe algorithms that operate on intermediate code, we must ultimately
choose one or more of them as concrete examples. We choose four: hir, a high-level
one that preserves loop structure and bounds and array subscripting for use in data-
cache-related optimization; mir, a medium-level one for most of the remainder of
the book; lir, a low-level one for optimizations that must deal with aspects of real
machines, with a subvariety that has symbolic, rather than real, machine registers for
use in global register allocation; and SSA form, which can be thought of as a version
of mir with an additional operation, namely, the 0-function, although we almost
always use it in flowgraphs, rather than sequential programs. Figure 1.2 shows a
hir loop, and a translation of it to mir, and to lir with symbolic registers.

Figure 1.3 shows the SSA form of the loop; its code is identical to that in Fig
ure 1.2(c), except that it has been turned into a flowgraph and the symbolic register
s2 has been split into three—namely, s2 j, s 22 , and s2$—and a 0-function has been
added at the beginning of block B2 where s2\ and s 23 come together. SSA form has
the major advantage of making several optimizations that previously worked on ba
sic blocks or extended basic blocks2 apply, as well, to whole procedures, often with
significantly improved effectiveness.

Another intermediate-code form, the program dependence graph, that is useful
in performing several types of optimizations is discussed in Section 9.5.

Chapter 5 focuses on issues of structuring the run-time environment in which
programs execute. Along with code generation, it is one of the few things that are
essential to get right if a language implementation is to be both correct and efficient.

2. An extended basic block is a tree of basic blocks that can be entered only at its root and left only
from a leaf.

Section 1.2 Advanced Issues in Elementary Topics 5

fo r v <- v l by v2 to v3 do
a [i] <- 2

endfor

(a)

v <- v l
t2 <- v2
t3 <- v3

L I: i f v > t3 goto L2
t4 <- addr a
t5 <- 4 * i
t6 <- t4 + t5
* t 6 <- 2
v <- v + t2
goto LI

L2:

(b)

s2 <- s i
s4 <- s3
s6 s5

L I : i f s2 > s6 goto L2
s7 <- addr a
S8 4 * s9
slO s7 + s8
[slO] <- 2
s2 <- s2 + s4
goto LI

L2 :

(c)

FIG, 1,2 A code fragment (assuming v2 is positive) in (a) hir, (b) mir, and (c) lir with symbolic
registers.

If the run-time model as designed doesn’t support some of the operations of the
language, clearly one has failed in the design. If it works, but is slower than it needs
to be, it will have a major impact on performance, and one that generally will not
be fixable by optimizations. The essential issues are representation of source data
types, allocation and use of registers, the run-time stack, access to nonlocal symbols,
and procedure calling, entry, exit, and return. In addition, we cover extensions to
the run-time model that are necessary to support position-independent code, and

FIG. 1.3 SSA form of the example in Figure 1.2. Note the splitting of s2 into three variables s2i,
s22, and s 23, and the 0-function at the entry to block B2.

Introduction to Advanced Topics

their use in making possible and efficient the dynamic linking of shared code objects
at run time, and we provide an overview of the additional issues that must be
considered in compiling dynamic and polymorphic languages, such as incrementally
changing running code, heap storage management, and run-time type checking (and
its optimization or, where possible, elimination).

Finally, Chapter 6 concerns methods for automatically generating code gener
ators from machine descriptions. It describes one technique, namely, the syntax-
directed Graham-Glanville approach, in detail, and introduces two others, Gana-
pathi and Fischer’s semantics-directed parsing and Aho, Ganapathi, and Tjiang’s
twig, which uses tree pattern matching and dynamic programming. All of these ap
proaches have the advantage over hand-generated code generators of allowing the
programmer to think at a higher level and to more easily modify a code generator
over time, either to fix it, to improve it, or to adapt it to a new target.

The Importance o f Code Optimization
Generally, the result of using a one-pass compiler structured as described in Sec
tion 1.1 is object code that executes much less efficiently than it might if more
effort were expended in its compilation. For example, it might generate code on an
expression-by-expression basis, so that the C code fragment in Figure 1.4(a) might
result in the sparc assembly code3 in Figure 1.4(b), while it could be turned into the
much more efficient code in Figure 1.4(c) if the compiler optimized it, including allo
cating the variables to registers. Even if the variables are not allocated to registers, at
least the redundant load of the value of c could be eliminated. In a typical early one-
scalar sparc implementation, the code in Figure 1.4(b) requires 10 cycles to execute,
while that in Figure 1.4(c) requires only two cycles.

Among the most important optimizations, in general, are those that operate
on loops (such as moving loop-invariant computations out of them and simplify
ing or eliminating computations on induction variables), global register allocation,
and instruction scheduling, all of which are discussed (along with many other opti
mizations) in Chapters 12 through 20.

However, there are many kinds of optimizations that may be relevant to a
particular program, and the ones that are vary according to the structure and details
of the program.

A highly recursive program, for example, may benefit significantly from tail-call
optimization (see Section 15.1), which turns recursions into loops, and may only
then benefit from loop optimizations. On the other hand, a program with only a few
loops but with very large basic blocks within them may derive significant benefit
from loop distribution (which splits one loop into several, with each loop body
doing part of the work of the original one) or register allocation, but only modest
improvement from other loop optimizations. Similarly, procedure integration or
inlining, i.e., replacing subroutine calls with copies of their bodies, not only decreases
the overhead of calling them but also may enable any or all of the intraprocedural
optimizations to be applied to the result, with marked improvements that would

3. A guide to reading sparc assembly language can be found in Appendix A.

Section 1.4 Structure of Optimizing Compilers 7

in t a , b , c , d; ldw a , r l add r l , r 2 , r 3
c = a + b; ldw b ,r2 add r 3 , l , r 4
d = c + 1; add r l , r 2 , r 3

stw r 3 ,c
ldw c ,r 3
add r 3 , l , r 4
stw r4 ,d

(a) (b) (c)

FIG. 1.4 A C code fragment in (a) with naive sparc code generated for it in (b) and optimized
code in (c).

not have been possible without inlining or (the typically much more expensive)
techniques of interprocedural analysis and optimization (see Chapter 19). On the
other hand, inlining usually increases code size, and that may have negative effects
on performance, e.g., by increasing cache misses. As a result, it is desirable to
measure the effects of the provided optimization options in a compiler and to select
the ones that provide the best performance for each program.

These and other optimizations can make large differences in the performance
of programs—frequently a factor of two or three and, occasionally, much more, in
execution time.

An important design principle for large software projects, including compilers, is
to design and construct programs consisting of small, functionally distinct modules
and make each module as simple as one reasonably can, so that it can be easily
designed, coded, understood, and maintained. Thus, it is entirely possible that
unoptimized compilation does very local code generation, producing code similar
to that in Figure 1.4(b), and that optimization is necessary to produce the much
faster code in Figure 1.4(c).

.4 Structure o f Optimizing Compilers
A compiler designed to produce fast object code includes optimizer components.
There are two main models for doing so, as shown in Figure 1.5(a) and (b).4 In
Figure 1.5(a), the source code is translated to a low-level intermediate code, such
as our lir (Section 4.6.3), and all optimization is done on that form of code; we
call this the low-level model of optimization. In Figure 1.5(b), the source code is
translated to a medium-level intermediate code, such as our mir (Section 4.6.1),
and optimizations that are largely architecture-independent are done on it; then
the code is translated to a low-level form and further optimizations that are mostly
architecture-dependent are done on it; we call this the mixed model of optimization.
In either model, the optimizer phase(s) analyze and transform the intermediate code
to eliminate unused generality and to take advantage of faster ways to perform given
tasks. For example, the optimizer might determine that a computation performed

4. Again, lexical analysis, parsing, semantic analysis, and either translation or intermediate-code
generation might be performed in a single step.

8 Introduction to Advanced Topics

String of characters

(a) (b)

FIG. 1.5 Two high-level structures for an optimizing compiler: (a) the low-level model, with all
optimization done on a low-level intermediate code, and (b) the mixed model, with
optimization divided into two phases, one operating on each of a medium-level and a
low-level intermediate code.

in a loop produces the same result every time it is executed, so that moving the
computation out o f the loop would cause the program to execute faster. In the mixed
model, the so-called postpass optimizer performs low-level optimizations, such as
taking advantage of machine idioms and the target machine’s addressing modes,
while this would be done by the unitary optimizer in the low-level model.

A mixed-model optimizer is likely to be more easily adapted to a new architec
ture and may be more efficient at compilation time, while a low-level-model opti
mizer is less likely to be easily ported to another architecture, unless the second ar
chitecture resembles the first very closely— for example, if it is an upward-compatible

Section 1.4 Structure of Optimizing Compilers 9

extension of the first. The choice between the mixed and low-level models is largely
one of investment and development focus.

The mixed model is used in Sun Microsystems’ compilers for sparc (see Sec
tion 21.1), Digital Equipment Corporation’s compilers for Alpha (see Section 21.3),
Intel’s compilers for the 386 architecture family (see Section 21.4), and Silicon Graph
ics’ compilers for m ips. The low-level model is used in IBM’s compilers for power
and PowerPC (see Section 21.2) and Hewlett-Packard’s compilers for pa-risc .

The low-level model has the advantage of making it easier to avoid phase
ordering problems in optimization and exposes all address computations to the
entire optimizer. For these and other reasons, we recommend using the low-level
model in building an optimizer from scratch, unless there are strong expectations
that it will be ported to a significantly different architecture later. Nevertheless, in
the text we describe optimizations that might be done on either medium- or low-
level code as being done on medium-level code. They can easily be adapted to work
on low-level code.

As mentioned above, Sun’s and Hewlett-Packard’s compilers, for example, rep
resent contrasting approaches in this regard. The Sun global optimizer was originally
written for the Fortran 77 compiler for the Motorola MC68010-based Sun-2 series
of workstations and was then adapted to the other compilers that shared a com
mon intermediate representation, with the certain knowledge that it would need to
be ported to future architectures. It was then ported to the very similar MC68020-
based Sun-3 series, and more recently to sparc and sparc-V9. While considerable
investment has been devoted to making the optimizer very effective for sparc in par
ticular, by migrating some optimizer components from before code generation to
after it, much of it remains comparatively easy to port to a new architecture.

The Hewlett-Packard global optimizer for pa-risc , on the other hand, was
designed as part of a major investment to unify most of the company’s computer
products around a single new architecture. The benefits of having a single optimizer
and the unification effort amply justified designing a global optimizer specifically
tailored to pa-risc .

Unless an architecture is intended only for very special uses, e.g., as an embedded
processor, it is insufficient to support only a single programming language for it. This
makes it desirable to share as many of the compiler components for an architecture
as possible, both to reduce the effort of writing and maintaining them and to derive
the widest benefit from one’s efforts at improving the performance of compiled
code. Whether the mixed or the low-level model of optimization is used makes no
difference in this instance. Thus, all the real compilers we discuss in Chapter 21
are members of compiler suites for a particular architecture that share multiple
components, including code generators, optimizers, assemblers, and possibly other
components, but that have distinct front ends to deal with the lexical, syntactic, and
static-semantic differences among the supported languages.

In other cases, compilers for the same language are provided by a software
vendor for multiple architectures. Here we can expect to see the same front end
used, and usually the same optimizer components, but different cqde generators
and possibly additional optimizer phases to deal with the particular features of each
architecture. The mixed model of optimization is the more appropriate one in this
case. Often the code generators are structured identically, independent of the target

10 Introduction to Advanced Topics

machine, in a way appropriate either to the source language or, more frequently, the
common intermediate code, and differ only in the instructions generated for each
target.

Yet another option is the use of a preprocessor to transform programs in one
language into equivalent programs in another language and to compile them from
there. This is how the early implementations of C++ worked, using a program named
c fro n t to translate C++ code to C code, performing, in the process (among other
things), what has come to be known as name mangling—the transformation of
readable C++ identifiers into virtually unreadable— but compilable—C identifiers.
Another example of this is the use of a preprocessor to transform Fortran programs
to ones that can take better advantage of vector or multiprocessing systems. A third
example is to translate object code for an as-yet-unbuilt processor into code for an
existing machine so as to emulate the prospective one.

One issue we have ignored so far in our discussion of optimizer structure and
its place in a compiler or compiler suite is that some optimizations, particularly the
data-cache-related ones discussed in Section 20.4, are usually most effective when
applied to a source-language or high-level intermediate form, such as our hir (Sec
tion 4.6.2). This can be done as the first step in the optimization process, as shown
in Figure 1.6, where the final arrow goes to the translator in the low-level model and

FIG. 1.6 Adding data-cache optimization to an optimizing compiler. The continuation is to
either the translator in the low-level model in Figure 1.5(a) or to the intermediate-code
generator in the mixed model in Figure 1.5(b).

Section 1.5 Placement of Optimizations in Aggressive Optimizing Compilers 11

to the intermediate-code generator in the mixed model. An alternative approach,
used in the IBM compilers for power and PowerPC, first translates to a low-level
code (called XIL) and then generates a high-level representation (called YIL) from it
to do data-cache optimization. Following the data-cache optimization, the resulting
YIL code is converted back to XIL.

1.5 Placement of Optimizations in Aggressive
Optimizing Compilers
In the last section we discussed the placement of optimizations in the overall com
pilation process. In what follows, the wrap-up section of each chapter devoted to
optimization includes a diagram like the one in Figure 1.7 that specifies a reason
able sequence for performing almost all the optimizations discussed in the text in an
aggressive optimizing compiler. Note that we say “ aggressive” because we assume
that the goal is to improve performance as much as is reasonably possible without
compromising correctness. In each of those chapters, the optimizations discussed
there are highlighted by being in bold type. Note that the diagram includes only
optimizations, not the other phases of compilation.

The letters at the left in Figure 1.7 specify the type of code that the optimizations
to its right are usually applied to, as follows:

A These optimizations are typically applied either to source code or to a high-level
intermediate code that preserves loop structure and sequencing and array accesses
in essentially their source-code form. Usually, in a compiler that performs these
optimizations, they are done very early in the compiling process, since the overall
process tends to lower the level of the code as we move along from one pass to the
next.

B,C These optimizations are typically performed on medium- or low-level intermediate
code, depending on whether the mixed or low-level model is used.

D These optimizations are almost always done on a low-level form of code—one that
may be quite machine-dependent (e.g., a structured assembly language) or that may
be somewhat more general, such as our lir—because they require that addresses
have been turned into base register + offset form (or something similar, depending
on the addressing modes available on the target processor) and because several of
them require low-level control-flow code.

E These optimizations are performed at link time, so they operate on relocatable object
code. One interesting project in this area is Srivastava and Wall’s OM system, which
is a pilot study for a compiler system that does all optimization at link time.

The boxes in Figure 1.7, in addition to corresponding to the levels of code ap
propriate for the corresponding optimizations, represent the gross-level flow among
the optimizations. For example, constant folding and algebraic simplifications are in
a box connected to other phases by dotted arrows because they are best structured
as subroutines that can be invoked anywhere they are needed.

12 In trod u ctio n to A dvan ced T o p ic s

FIG. 1.7 Order of optimizations.

The branches from C l to either C2 or C3 represent a choice of the methods one
uses to perform essentially the same optimization (namely, moving computations to
places where they are computed less frequently without changing the semantics of
the program). They also represent a choice of the data-flow analyses used to perform
the optimizations.

The detailed flow within the boxes is much freer than between the boxes. For
example, in box B, doing scalar replacement of aggregates after sparse conditional
constant propagation may allow one to determine that the scalar replacement is
worthwhile, while doing it before constant propagation may make the latter more
effective. An example of the former is shown in Figure 1.8(a), and of the latter in

Section 1.5 Placement of Optimizations in Aggressive Optimizing Compilers 13

D

E

(to constant folding, algebraic
simplifications, and reassociation)

A

FIG. 1.7 (continued)

Figure 1.8(b). In (a), upon propagating the value 1 assigned to a to the test a = 1,
we determine that the Y branch from block B1 is taken, so scalar replacement of
aggregates causes the second pass of constant propagation to determine that the Y
branch from block B4 is also taken. In (b), scalar replacement of aggregates allows
sparse conditional constant propagation to determine that the Y exit from B1 is
taken.

Similarly, one ordering of global value numbering, global and local copy prop
agation, and sparse conditional constant propagation may work better for some
programs and another ordering for others.

Further study of Figure 1.7 shows that we recommend doing both sparse con
ditional constant propagation and dead-code elimination three times each, and in
struction scheduling twice. The reasons are somewhat different in each case:

1. Sparse conditional constant propagation discovers operands whose values are con
stant each time such an operand is used—doing it before interprocedural constant
propagation helps to transmit constant-valued arguments into and through proce
dures, and interprocedural constants can help to discover more intraprocedural ones.

2. We recommend doing dead-code elimination repeatedly because several optimiza
tions and groups of optimizations typically create dead code and eliminating it as
soon as reasonably possible or appropriate reduces the amount of code that other

14 Introduction to Advanced Topics

(a) (b)

FIG. 1.8 Examples of (a) the effect of doing scalar replacement of aggregates after constant
propagation, and (b) before constant propagation.

compiler phases—be they optimizations or other tasks, such as lowering the level of
the code from one form to another—have to process.

3. Instruction scheduling is recommended to be performed both before and after regis
ter allocation because the first pass takes advantage of the relative freedom of code
with many symbolic registers, rather than few real registers, while the second pass
includes any register spills and restores that may have been inserted by register allo
cation.

Finally, we must emphasize that implementing the full list of optimizations in
the diagram results in a compiler that is both very aggressive at producing high-
performance code for a single-processor system and that is quite large, but does not
deal at all with issues such as code reorganization for parallel and vector machines.

1.6 Reading Flow Among the Chapters
There are several approaches one might take to reading this book, depending on
your background, needs, and several other factors. Figure 1.9 shows some possible
paths through the text, which we discuss below. 1

1. First, we suggest you read this chapter (as you’re presumably already doing) and
Chapter 2. They provide the introduction to the rest of the book and the definition
of the language ican in which all algorithms in the book are written.

2. If you intend to read the whole book, we suggest reading the remaining chapters in
order. While other orders are possible, this is the order the chapters were designed
to be read.

Section 1.6 Reading Flow Among the Chapters 15

FIG. 1.9 Reading flow among the chapters in this book.

3. If you need more information on advanced aspects of the basics of compiler design
and implementation, but may skip some of the other areas, we suggest you continue
with Chapters 3 through 6. 4 5 6

4. If your primary concern is optimization, are you interested in data-related optimiza
tion for the memory hierarchy, as well as other kinds of optimization?
(a) If yes, then continue with Chapters 7 through 10, followed by Chapters 11

through 18 and 20.
(b) If not, then continue with Chapters 7 through 10, followed by Chapters 11

through 18.

5. If you are interested in interprocedural optimization, read Chapter 19, which covers
interprocedural control-flow, data-flow, alias, and constant-propagation analyses,
and several forms of interprocedural optimization, most notably interprocedural
register allocation.

6. Then read Chapter 21, which provides descriptions of four production compiler
suites from Digital Equipment Corporation, IBM, Intel, and Sun Microsystems
and includes examples of other intermediate-code designs, choices and orders of

Introduction to Advanced Topics

optimizations to perform, and techniques for performing optimizations and some
of the other tasks that are parts of the compilation process. You may also wish to
refer to the examples in Chapter 21 as you read the other chapters.

The three appendixes contain supporting material on the assembly languages
used in the text, concrete representations of data structures, and access to resources
for compiler projects via f tp and the World Wide Web.

Related Topics Not Covered in This Text
There is a series of other topics we might have covered in the text, but which we
omit for a variety of reasons, such as not expanding the book beyond its already
considerable size, having only tangential relationships to the primary subject matter,
or being covered well in other texts. (In Section 1.11 we provide references that the
reader can use as entry points to material on these areas.) These include, among
other areas, the following:

1. The interaction o f optimization and debugging is an area that has been under
investigation since about 1980. Progress has been relatively slow, but there is an
impressive body of work by now. The work of Adl-Tabatabai and Gross and of
Wismiiller provides excellent entry points into the literature.

2. Parallelization and vectorization and their relationship to scalar optimization are not
covered because they would require a lot more space and because there are already
several good texts on parallelization and vectorization, for example, those by Wolfe,
Banerjee, and Zima and Chapman. However, the technique of dependence analysis
covered in Chapter 9 and the loop transformations discussed in Section 20.4.2 are
fundamental to parallelization and vectorization.

3. Profiling feedback to the compilation process is important and is referred to several
times in the remainder of the book. A good introduction to the techniques, interpre
tation of their results, and their application in compilers can be found in the work
of Ball and Larus and of Wall, along with references to previous work.

Target Machines Used in Examples
Most of our examples of target-machine code are in sparc assembly language. We
use a simplified version that does not have register windows. Occasionally there are
examples for sparc-V9 or in other assembly languages, such as for power or the
Intel 386 architecture family. In all cases, the assembly languages are described well
enough in Appendix A to enable one to read the examples.

Number Notations and Data Sizes
The terms byte and word are usually reserved for the natural sizes of a character
and a register datum on a particular system. Since we are concerned primarily with
32-bit systems with 8-bit bytes and with 64-bit systems designed as extensions of

Section 1.10 Wrap-Up 17

TABLE 1.1 Sizes of data types.

Term Size (bits)

Byte 8
Halfword 16
Word 32
Doubleword 64
Quadword 128

32-bit systems, we use these and other terms for storage sizes uniformly as shown in
Table 1.1.

Almost all the numbers in this book are in decimal notation and are written in
the ordinary way. We occasionally use hexadecimal notation, however. An integer
represented in hexadecimal is written as “ Ox” followed by a string of hexadecimal
digits (namely, 0-9 and either a -f or A-F) and is always to be interpreted as an
unsigned number (unless it is specifically indicated to represent a signed value) of
length equal to the number of the leftmost one bit counting the rightmost as number
one. For example, 0x3a is a 6-bit representation of the number 58 and Oxf f f f f f f e
is a 32-bit representation of the number 4294967294 = 232 - 2.

1.10 Wrap-Up
In this chapter we have concentrated on reviewing some of the basic aspects of
compilers and on providing a setting for launching into the chapters that follow.

After discussing what to expect in Chapters 3 through 6, which concern ad
vanced aspects of what are generally considered elementary topics, we next described
the importance of optimization; structures for optimizing compilers, including the
mixed and low-level models; and the organization of optimizations in an aggressive
optimizing compiler.

Next we discussed possible orderings for reading the remaining chapters, and
concluded with a list of related topics not covered here, and short sections on target
machines used in examples and on notations for numbers and the names we use for
various data sizes.

The primary lessons to take away from this chapter are five in number, namely, 1

1. that there are advanced issues in what are usually considered elementary topics in
compiler construction, such as dealing with imported and exported scopes, design or
selection of intermediate languages, and position-independent code and shared code
objects, that need to be taken into consideration in designing and building real-world
compilers;

2. that there are several reasonable ways to organize both a compiler as a whole and
the optimization components within it;

18 Introduction to Advanced Topics

3.

4.

5.

1.11

1.12
i . i

RSCH 1.2

that there are two primary models (mixed and low-level) for dividing up the opti
mization process, that the low-level model is generally preferable, but that the one to
choose varies with the circumstances of a particular compiler/optimization project;

that there are new optimizations and improved methods of performing traditional
ones being developed continually; and

that there are important topics, such as debugging of optimized code and the inte
gration of scalar optimization with parallelization and vectorization, that deserve
careful study but are beyond the scope of this book.

Further Reading
Unlike the history of programming languages, for which there are two excellent
books available, namely, [Wexe81] and [BerG95], there is very little published ma
terial on the history of compilers. A history of the very earliest stages of compiler
development is given in Knuth [Knut62]; some more recent material is included in
the two volumes noted above, i.e., [Wexe81] and [BerG95].

Among the better recent introductory texts on compiler construction are
[AhoS86] and [FisL91].

Name mangling, as used in the encoding of C++ programs as C programs, is
described as the “ function name encoding scheme” in [Stro88].

[GhoM86] describes the origins, structure, and function of the Sun global op
timizer, and [JohM86] describes the structure and performance of the Hewlett-
Packard global optimizer for pa-risc .

Srivastava and Wall’s OM system is described in [SriW93].
A starting reference to Adl-Tabatabai and Gross’s work on optimization and

debugging is [AdlG93]. Wismiiller’s [Wism94] is a reference to another thread of
work in this area.

The texts available on compiling for parallel systems are [Bane88], [Bane93],
[Bane94], [Wolf96], and [ZimC91].

The work of Ball and Larus on profiling is covered in [BalL92]. Wall’s work
in [Wall91] concerns the effect of feedback from profiling on recompilation and the
resulting performance effects.

Exercises
Determine and describe the large-scale structure and intermediate codes of a com
piler in use in your computing environment. What sections of the compiler are
optionally executed under user control?

Pick a paper from among [GhoM86], [JohM86], [SriW93], [AdlG93], [Wism94],
[BalL92], and [Wall91] and write a three- to five-page synopsis of the issues or
problems it concerns, the findings or conclusions, and the support for them offered
in the paper.

CHAPTER 2

Informal Compiler
Algorithm Notation (ICAN)

In this chapter we discuss ican, the Informal Compiler Algorithm Notation we
use in this text to express compiler algorithms. First we discuss the extended
Backus-Naur form that is used to express the syntax of both ican and the
intermediate languages discussed in the following chapter. Next we provide an in

troduction to the language and its relationship to common programming languages,
an informal overview of the language, and then a formal description of the syntax
of ican and an informal English description of its semantics. It is hoped that, in
general, the informal overview will be sufficient for the reader to understand ican
programs, but the full definition is provided to deal with those instances where it is
not.

2.1 Extended Backus-Naur Form Syntax Notation
To describe the syntax of programming languages we use a version of Backus-Naur
Form that we call Extended Backus-Naur Form, or xbnf. In xbnf terminals are
written in typew riter font (e.g., “ type” and “ [”), nonterminals are written in
italic font with initial capital letters and other uppercase letters interspersed for read
ability (e.g., “ ProgUnit”, not “ Progunit”). A production consists of a nonterminal
followed by a long right arrow (“ — ► ”) and a sequence of nonterminals, terminals,
and operators. The symbol “e ” represents the empty string of characters.

The operators are listed in Table 2.1. The operators superscript superscript
“ + ” , and “x ” all have higher precedence than concatenation, which has higher
precedence than alternation “ |” . The curly braces “ {” . . . “ }” and square brackets
“ [” . . . “]” act as grouping operators, in addition to brackets indicating that what
they contain is optional. Note that the xbnf operators are written in our ordinary
text font. When the same symbols appear in typew riter font, they are terminal
symbols in the language being defined. Thus, for example,

19

20 Informal Compiler Algorithm Notation (ICAN)

TABLE 2.1 Operators used in Extended Backus-Naur Form syntax descriptions.

Symbol Meaning

1 Separates alternatives
{ and } Grouping
[and] Optional
* Zero or more repetitions
+ One or more repetitions
X One or more repetitions of the left operand

separated by occurrences of the right operand

Knittinglnst — > {{knit | purl} Integer | c a s to f f }+

describes a Knittinglnst as a sequence of one or more of any of three possibilities,
namely, kn it followed by an integer, purl followed by an integer, or c a s to ff ; and

Wall — > b rick x mortar | cementblock x mortar

describes a Wall as a sequence of bricks separated (or, perhaps more appropriately,
joined) by occurrences of mortar or as a sequence of cementblocks separated by
occurrences of mortar.

As a more relevant example, consider

ArrayTypeExpr — > array [ArrayBounds] of TypeExpr
ArrayBounds — > {[Expr\ •• [Expr]} tx ,

The first line describes an ArrayTypeExpr as the keyword array, followed by a left
bracket “ [” , followed by an occurrence of something that conforms to the syntax
of ArrayBounds, followed by a right bracket “] ” , followed by the keyword of,
followed by an occurrence of something conforming to the syntax of TypeExpr. The
second line describes ArrayBounds as a series of one or more triples of the form of
an optional Expr, followed by “ • • ” , followed by an optional Expr, with the triples
separated by com m as", ” . The following are examples of ArrayTypeExprs:

array [• •] of in teger
array [1• * 10] of r e a l
array [l - * 2 , l * - 2] of r e a l
array [m**n+2] of boolean

2.2 Introduction to ICAN
Algorithms in this text are written in a relatively transparent, informal notation1
called ican (Informal Compiler Algorithm Notation) that derives features from

1. One measure of the informality of ican is that many facets of the language that are considered
to be errors, such as accessing an array with an out-of-range subscript, have their effects undefined.

Section 2.2 Introduction to ICAN 21

1 Struc: Node — > set of Node
2
3 procedure Example.1(N,r)
4 N: in set of Node
5 r: in Node
6 begin
7 change :* true: boolean
8 D, t: set of Node
9 n, p: Node
10 Struc(r) := {r>
11 for each n e N (n * r) do
12 Struc(n) :* N
13 od
14 while change do
15 change :* false
16 for each n e N - {r> do
17 t :« N
18 for each p e Pred[n] do
19 t n= Struc(p)
20 od
21 D := {n} u t
22 if D * Struc(n) then
23 change := true; Struc(n) := D
24 fi
25 od
26 od
27 end I I Example.1

FIG. 2.1 A sample ican global declaration and procedure (the line numbers at left are not part of
the code).

several programming languages, such as C, Pascal, and Modula-2, and that ex
tends them with natural notations for objects such as sets, tuples, sequences, func
tions, arrays, and compiler-specific types. Figures 2.1 and 2.2 give examples of ic a n
code.

The syntax of ic a n is designed so that every variety of compound statement
includes an ending delimiter, such as “ f i ” to end an if statement. As a result, sep
arators are not needed between statements. However, as a convention to improve
readability, when two or more statements are written on the same line we separate
them with semicolons (Figure 2.1, line 23). Similarly, if a definition, declaration,
or statement extends beyond a single line, the continuation lines are indented (Fig
ure 2.2, lines 1 and 2 and lines 4 and 5).

A comment begins with the delimiter “ I I” and runs to the end of the line
(Figure 2.1, line 27).

Lexically, an ic a n program is a sequence of a s c ii characters. Tabs, comments,
line ends, and sequences of one or more spaces are called “whitespace.” Each
occurrence of whitespace may be turned into a single space without affecting the
meaning of a program. Keywords are preceded and followed by whitespace, but
operators need not be.

22 Inform al C om piler A lgorithm N otation (IC A N)

1 webrecord = record {defs: set of Def,
2 uses: set of Use}
3
4 procedure Example_2(nwebs,Symreg,nregs,
5 Edges) returns boolean
6 nwebs: inout integer
7 nregs: in integer
8 Symreg: out array [1••nwebs] of webrecord
9 Edges: out set of (integer x integer)
10 begin
11 si, s2, rl, r2: integer
12 for rl := 1 to nregs (odd(rl)) do
13 Symreg[nwebs+rl] := nil
14 od
15 Edges := 0
16 for rl := 1 to nregs do
17 for r2 := 1 to nregs do
18 if rl * r2 then
19 Edges u= {<nwebs+rl,nwebs+r2>}
20 fi
21 od
22 od
23 for si := 1 to nwebs do
24 repeat
25 case si of
26 1: s2 := si * nregs
27 2: s2 := si - 1
28 3: s2 := nregs - nwebs
29 return false
30 default: s2 := 0
31 esac
32 until s2 = 0
33 for r2 := 1 to nregs do
34 if Interfere(Symreg[si],r2) then
35 goto LI
36 fi
37 od
38 LI: od
39 nwebs += nregs
40 return true
41 end I I Example_2

FIG. 2.2 A second example of ican code (the line numbers at left are not part of the code).

Lexical analysis proceeds left to right, and characters are accumulated to form
tokens that are as long as they can be. Thus, for example, the code

f o r I3 7 _ 6 a := -1 2 by 1 to n l7 a do

consists of nine tokens, as follows:

f o r I3 7 _ 6 a := -12 by 1 to n l7 a do

Section 2.3 A Quick Overview of ICAN 23

A Quick Overview o f ICAN
In this section we give a quick overview of ican , which should be sufficient for
the reader to begin reading and understanding programs in the text. The following
sections define the syntax of the language formally and the semantics informally.

An ican program consists of a series of type definitions, followed by a series of
variable declarations, followed by a series of procedure declarations, followed by an
optional main program.

A type definition consists of a type name followed by an equals sign and a type
expression, such as

intset = set of integer

Types may be either generic or compiler-specific, and either simple or constructed.
The generic simple types are boolean, in te g e r , r e a l , and ch arac ter . The type
constructors are listed in the following table:

Constructor Name Example Declaration

enum
array ... of
set of
sequence of
x
record
u

Enumeration
Array
Set
Sequence
Tuple
Record
Union
Function

enum {left,right}
array [1 • • 10] of integer
set of MIRInst
sequence of boolean
integer x set of real
record {x: real, y: real}
integer u boolean
integer — > set of real

A variable declaration consists of the name of the variable, followed by an
optional initialization, followed by a colon and the variable’s type, e.g.,

is := {1,3,7}: intset

A procedure declaration consists of the procedure’s name, followed by its
parameter list in parentheses, followed by an optional return type, followed by its
parameter declarations and its body. A parameter declaration consists of a comma-
separated sequence of variable names; followed by a colon; one of in (call by value),
out (call by result), or inout (call by value-result); and the type of the param
eters. A procedure body consists of the keyword begin , followed by a series of
variable declarations, followed by a series of statements, followed by the keyword
end. For example, Figures 2.1, 2.2, and 2.3 all give examples of procedure declara
tions.

An expression is either a constant, a variable, n i l , a unary operator followed
by an expression, two expressions separated by a binary operator, a parenthesized
expression, an array expression, a sequence expression, a set expression, a tuple
expression, a record expression, a procedure or function call, an array element,
a tuple element, a record field, a size expression, or a quantified expression. The
operands and operators must be of compatible types.

24 Informal Com piler Algorithm N otation (ICAN)

procedure exam(x,y,is) returns boolean
x, y: out integer
is: in intset

begin
tv := true: boolean
z: integer
for each z e is (z > 0) do

if x = z then
return tv

fi
od
return y e is

end I| exam
FIG. 2.3 An example ican procedure declaration.

The operators appropriate to specific types may be found in Section 2.7. A few of
the less obvious ones are discussed below. The following are examples of constants
of constructed types:

Type______________________
array [1•* 2,1••2] of real
sequence of integer
integer x boolean
set of (integer x real)
record {x: real, y: real}
(integer x real) — > boolean

Example Constant

[[1.0,2.0],[3.0,4.0]]
[2,3,5,7,9,11]
<3,true){<3 ,3 .0),<2 ,2 .0»
<x:1.0,y:-1.0>
{<1,2.0,true),<1,3.0,false)}

The in te g e r and r e a l types include 00 and The empty set is denoted 0 and
the empty sequence []. The value n i l is a member of every type and is the value of
any uninitialized variable. The expression \x \ produces the size of x if x is a member
of any constructed type—cardinality for sets, length for sequences, etc.

The unary operator when applied to a set yields an arbitrary member of the
set. The expression sq i i yields the /th member of the sequence sq, sq 1 © sq l yields
the concatenation of sq l and sq l , and sq © i yields sq with the /th element removed;
if i is negative, it counts backward from the end of sq. The expression tpl @ i yields
the /th element of tuple tpl.

Compiler-specific types are defined as needed. For example,

Block = array [••] of array [••] of MIRInst
Edge = Node x Node

Statements include assignments, calls, returns, gotos, ifs, cases; and for, while,
and repeat loops. The basic assignment operator is “ As in C, the colon may be
replaced by any binary operator whose left-hand operand and result have the same
type; for example, the following assignments both do the same thing:

Section 2.5 Type Definitions 25

Seq := Seq ® [9,11]
Seq ®= [9,11]

Each compound statement has an ending delimiter. The beginning, internal, and
ending delimiters of the compound statements are as follows:

Beginning Internal Ending
if elif,else fi
case of, default esac
for do od
while do od
repeat until

Case labels are also internal delimiters in case statements.
All keywords used in the language are reserved—they may not be used as

identifiers. They are listed in Table 2.8.
The following sections describe ican in detail.

2.4 Whole Programs
An ican program consists of a series of type definitions, followed by a series of
variable declarations, followed by a series of procedure declarations, followed by an
optional main program. The main program has the form of a procedure body. The
syntax of ican programs is given in Table 2.2.

TABLE 2.2 Syntax of whole ican programs.

P ro gram — ► T y p e D e f* V arD ecl* P ro c D ec l* [M a in P ro g]
M a in P ro g — ► P ro c B o d y

2.5 Type Definitions
A type definition consists of one or more pairs of a type name followed by an equals
sign followed by the definition (Figure 2.2, lines 1 and 2). The syntax of type
definitions is given in Table 2.3. Type definitions may be recursive. The type defined
by a recursive type definition is the smallest set that satisfies the definition, i.e., it is
the least fixed point of the definition. For example, the type defined by

IntPair = integer u (IntPair x IntPair)

is the set containing all integers and all pairs each of whose elements is either an
integer or a pair of elements of the type.

2 6 Informal Compiler Algorithm Notation (ICAN)

TABLE 2.3 Syntax of ican type definitions.

TypeD ef

TypeNam e

TypeExpr

Sim pleTypeExpr

C onstrTypeExpr

Enum TypeExpr

A rrayTypeExpr

Array Bounds

SetTypeExpr

SequenceTypeExpr

TupleTypeExpr

RecordTypeExpr

UnionTypeExpr

EuncTypeExpr

{TypeNam e =}* TypeExpr

Identifier

Sim pleTypeExpr \ ConstrTypeExpr | (TypeExpr)
| TypeNam e | 0
boolean | integer | real | character
Enum TypeExpr \ A rrayTypeExpr \ SetTypeExpr

| SequenceTypeExpr \ TupleTypeExpr \ RecordTypeExpr

| UnionTypeExpr \ EuncTypeExpr

enum { Identifier x , >
array [A rrayBounds] of TypeExpr

{[Expr] • • [Expr]\ x ,
set of TypeExpr

sequence of TypeExpr

TypeExpr x *
record { {Identifier x , : TypeExpr] x , >
TypeExpr x u
TypeExpr x x — > TypeExpr

2.6 Declarations
The syntax of ican variable and procedure declarations is given in Table 2.4. The
syntax includes the nonterminal C o n s tE x p r , which is not defined in the grammar. It
denotes an expression none of whose components is a variable.

A variable declaration consists of the name of the identifier being declared
followed by an optional initialization, followed by a colon and its type (Figure 2.1,
lines 1, 4, 5, and 7 through 9). An array’s dimensions are part of its type and are
specified by placing a list of the ranges of values of each of the subscripts in square

TABLE 2.4 Syntax of ican declarations.

VarDecl — ► {Variable [: = C on stE xpr]} x , : TypeExpr

Variable —> Identifier

ProcD ecl procedure ProcN am e P aram List [returns TypeExpr]

Param D ecls ProcBody

ProcN am e —> Identifier

P aram List —> ([Param eter x ,])
Param eter — ► Identifier

Param D ecls —* P aram D ecl*

Param D ecl —> Variable x , : (in | out | inout} TypeExpr

ProcBody — ► begin VarDecl* Statement* end

Section 2.7 Data Types and Expressions 27

brackets after the keyword array (Figure 2.2, line 8). An initial value for an identifier
is specified by following it with the assignment operator “ := ” and the value (which
may be any expression constructed solely from constants, as long as it is of the
right type) following the identifier (Figure 2.1, line 7). Several identifiers of the same
type may be declared in a single declaration by separating their names and optional
initializations with commas (Figure 2.1, lines 8 and 9).

A procedure is declared by the keyword procedure followed by its name, fol
lowed by a series of parameters in parentheses, followed by an optional return type,
followed by a series of indented lines that declare the types of the parameters (Figure
2.1, lines 4 and 5), followed by the procedure’s body (Figure 2.1, lines 6 through 27).
The return type consists of the keyword returns followed by a type expression (Fig
ure 2.2, line 5). Parameters are declared “ in ” (call by value), “ out” (call by result),
or “ inout” (call by value-result) (see Figure 2.2, lines 6 through 9). A procedure’s
text is indented between the keywords begin and end (Figure 2.1, lines 6 and 27).

A type definition or variable declaration may be made global to a group of
procedures by placing it before their declarations (Figure 2.1, line 1 and Figure 2.2,
lines 1 and 2).

2.7 Data Types and Expressions
The syntax of ican expressions and generic simple constants are given in Tables 2.5
and 2.6, respectively.

TABLE 2.5 Syntax of ican expressions.

E x p r

U n aryO per

B in ary O p er

A rray E x p r

S equ en ceE xpr

S etE xp r

Tuple E x p r

R eco rd E xp r

P rocF u n cE xp r

A rgL ist

A rray E ltE xp r

Q u an tE x p r

S izeE xp r

Variable

V ariable \ S im p leC on st | (E x p r) | U n ary O p er E x p r

| E x p r B in ary O p er E x p r \ A rray E x p r | S eq u en ceE x p r

| S e tE x p r \ T u p leE x p r \ R eco rd E x p r \ P ro cF u n cE xp r

| A rray E ltE x p r \ S izeE xp r \ Q u an tE x p r \ E x p r e Type E x p r

| nil
! 1-1*
= I * I & I V | + | - | * | / | % | t | < | < | > | > | u | n

|G|*|x|©|i|e|@| .
[E x p r x ,]
[E x p r x ,] | " A S C I I C h aracter* "
0 | { E x p r x , | [V ariable e] E x p r where SetD efC lau se }
< E x p r x , >
< {Identifier : E xp r} x , >
P rocN am e A rg L ist

([E xp r x ,])
E x p r [E x p r x ,]
{3 | V} V ariable e [E x p r \ TypeExpr] (E x p r)
1 E x p r I
Identifier

28 Informal Com piler Algorithm N otation (ICAN)

TABLE 2.6 Syntax of ican constants of generic simple types.

S im p le C o n st

In tC o n s t

N Z D ig i t

D ig it

R e a lC o n s t

B o o lC o n s t

C h a r C o n s t

Id en tifie r

L e tte r

I n tC o n s t | R e a lC o n s t \ B o o lC o n s t \ C h a rC o n s t

0 | [-] N Z D ig i t D ig i t * | [-] 00

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
0 | N Z D ig i t

[-] { In tC o n s t . [In tC o n st] \ [In tC o n st] . I n tC o n s t }

[E In tC o n st] | [-] «>

tru e | f a l s e

' A S C I I C h a ra c te r '

L e tte r [L e tte r \ D ig it \ _)*

a|...|z|A|...|Z

A type corresponds to the set of its members. It may be either simple or con
structed. Also, a type may be generic or compiler-specific.

The generic simple types are boolean, in te g e r , r e a l , and ch aracter.
A constructed type is defined by using one or more type constructors. The

type constructors are enum, a rray . . . o f, s e t o f, sequence o f, record , “ u” , “ x” ,
and “ — The symbol “ u” constructs union types, “ x” constructs tuple types, and
“ —> ” constructs function types.

An expression is either a constant, a variable, n i l , a unary operator followed
by an expression, two expressions separated by a binary operator, a parenthesized
expression, an array expression, a sequence expression, a set expression, a tuple
expression, a record expression, a procedure or function call, an array element, a
quantified expression, or a size expression. The operands and operators must be of
compatible types, as described below.

2.7.1 Generic Simple Types
The Boolean values are tru e and f a l s e . The following binary operators apply to
Booleans:

Operation Symbol

Equals
Not equals *
Logical and &
Logical or V

The prefix unary operator negation “ ! ” applies to Booleans.
A quantified expression is Boolean-valued. It consists of the symbol “ 3” or

“ V” followed by a variable, followed by “ e ” , followed by a type- or set-valued
expression, followed by a parenthesized Boolean-valued expression. For example,

3v e Var (O p n d (in st, v))

is a quantified expression that evaluates to tru e if and only if there is some variable
v such that O pn d(in st,v) is tru e .

Section 2.7 Data Types and Expressions 29

An integer value is either 0, an optional minus sign followed by a series of one
or more decimal digits the first of which is nonzero, °°, or -®.

A real value is an integer followed by a period, followed by an integer (either
but not both of the integers may be absent), followed by an optional exponent, °°, or
-°°.2 An exponent is the letter “E” followed by an integer.

The following binary operators apply to finite integers and reals:

Operation Symbol

Plus +
Minus -
Times *
Divide /
Modulo °/o

Exponentiation t
Equals =
Not equals *
Less than <
Less than or equal to <
Greater than >
Greater than or equal to >

The prefix unary operator negation applies to finite integers and reals. Only the
relational operators apply to infinite values.

A character value is an allowed ascii character enclosed in single quotation
marks, e.g., 'a ' or ' G'. The allowed ascii characters (represented by the otherwise
undefined nonterminal ASCIICharacter in the syntax) are all the printing ascii
characters, space, tab, and carriage return. Several of the characters require escape
sequences to represent them, as follows:

Escape
Sequence Meaning

%r Carriage return
y ii it

V
n y.

The binary operators equals (“ =”) and not equals (“ * ”) apply to characters.

2.7.2 Enumerated Types
An enumerated type is a non-empty finite set of identifiers. A variable var is declared
to be of an enumerated type by a declaration of the form

var: enum { element\t elementny

where each elementi is an identifier.

2. ican real values are not floating-point numbers—they are mathematical real numbers.

30 Informal Compiler Algorithm Notation (ICAN)

The following example declares action to be a variable of an enumerated type:

actio n : enum { S h i f t , Reduce, Accept, E rror}

The binary operators equals (“ =”) and not equals (“ * ”) apply to members of an
enumerated type.

Elements of an enumerated type may appear as case labels (see Section 2.8.6).

2.7.3 Arrays
A variable var is declared to be of an array type by a declaration of the form

var: array [.subslist] of basetype

where subslist is a comma-separated list of subscript ranges, each of which may be
just “ • • ” , and basetype is the type of the array’s elements. For example, the code
fragment

U : array [5••8] of real
V: array [1"2,1"3] of real

U := [1 .0 ,0 .1 ,0 .0 1 ,0 .0 0 1]
V := [[1 .0 ,2 .0 ,3 .0] , [4 .0 ,5 .0 ,6 .0]]

declares U to be a one-dimensional array whose subscript ranges over the integers
5 through 8, and V to be a two-dimensional array whose first subscript ranges over
the integers 1 through 2, whose second subscript ranges over the integers 1 through
3, and both of whose elements are of type re a l. It also assigns particular array
constants to be their values.

Of course, an array may be viewed as a finite function from the product of some
number of copies of the integers to another type.

A constant of a one-dimensional array type is a comma-separated series of con
stants of the element type, enclosed in square brackets, whose length is hi — lo + 1,
where lo and hi are the minimal and maximal subscript values. A constant of an n-
dimensional array type for n > 1 is a comma-separated series of constants in square
brackets whose type is that of the (n — 1)-dimensional array obtained by deleting the
first subscript. The series is enclosed in square brackets and its length is hi — lo + 1,
where lo and hi are the minimal and maximal values of the first subscript. Thus,
arrays are represented in row-major order.

The binary operators equals (“ =”) and not equals (“ * ”) apply to whole arrays.
An array-valued expression of dimension n followed by a comma-separated list of
at most n subscript values enclosed in square brackets is an expression.

Note that the two array types

array [1••10,1••10] of integer
array [1••10] of array [1••10] of integer

are different, even though constants of the two types are indistinguishable. The
first is a two-dimensional array, and the second is a one-dimensional array of one
dimensional arrays.

Section 2.7 Data Types and Expressions 31

2.7.4 Sets
A variable var of a set type may have as its value any subset of its base type declared
as follows:

var: se t of basetype

where basetype is the type of the set’s elements.
A set constant is either the empty set “ 0” , a comma-separated series of elements

enclosed by left and right curly braces, or an intentionally defined set constant. The
elements must all be of the same type. For example, the following are set constants:

0 {1 } {1 ,2 ,1 0 0 } {< t ru e ,1 . 0) , { f a l s e ,- 2 .3) }
{n e in teger where 0 £ n & n ^ 20 & n % 2 = 0}

Further, in the program fragment

B: se t of in teger
B := {1 ,4 ,9 ,1 6 }
B := {n e in teger where 3m e in teger (1 < m & m < 4 & n = m * m) }

both assignments are valid, and both assign the same value to B.
The following binary operators apply to sets:

Operation Symbol

Union u
Intersection n
Difference -
Product X

Member of €
Not member of *

The last two of these, “ e ” and take a value of a type ty as their left operand and
a value of type “ se t of ty” as their right operand, and produce a Boolean result. For
“ e ” , the result is true if the left operand is a member of the right operand and f a l s e
otherwise. For the result is f a l s e if the left operand is a member of the right
and true otherwise.

The prefix unary operator selects, at random, an element from its set
operand, and the selected element is the result, e.g., ^ {1 ,2 ,7 } may have any of 1, 2,
or 7 as its value.

Note that the binary operator “e ” and the same symbol used in for-loop iterators
are different. The former produces a Boolean value, while the latter is part of a larger
expression that generates a sequence of values, as shown in Figure 2.4. The code in
(a) is equivalent in meaning to that in (b), where Tmp is a new temporary of the same
type as A.

The otherwise undefined nonterminal SetDefClause in the syntax description is
a clause that defines the members of a set intentionally, such as the text between
where and “ } ” in the following code:

S := {n e N where 3e e E (e@2 = n)}

32 Informal Compiler Algorithm Notation (ICAN)

Tmp := A
for each a e A do while Tmp * 0 do

body a := ♦Tmp
od Tmp -= {a}

body
od

(a) (b)
FIG. 2.4 (a) An ican for loop that iterates over a set, and (b) equivalent code using a while loop.

Note that a set definition containing a SetDefClause can always be replaced by a nest
of loops, such as the following for the assignment above, assuming that the type of
E is the product of the type of N with itself:

S := 0
fo r each n © N do

fo r each e © E do
i f e@2 = n then

S u= { n>
f i

od
od

2.7.5 Sequences
A variable var is declared to be of a sequence type by a declaration of the form

var: sequence of basetype

where basetype is the element type of the sequences that may be var's value.
A constant of a sequence type is a finite comma-separated series of members

of its base type enclosed in square brackets. The elements must all be of the same
type. The empty sequence is denoted “ [] ” . For example, the following are sequence
constants:

[] [1] [1 ,2 ,1] [tru e , f a l s e]

Sequence concatenation is represented by the binary operator “®” . The binary oper
ator “ 1” when applied to a sequence and a nonzero integer selects an element of the
sequence; in particular, the positive integer n selects the « th element of the sequence,
and the negative integer — n selects the « th element from the end of the sequence. For
example, [2 ,3 ,5 ,7] 12 = 3 and [2 ,3 ,5 ,7] 1-2 = 5. The binary operator © when ap
plied to a sequence s and a nonzero integer n produces a copy of the sequence with
the « th element removed. For example, [2 ,3 ,5 ,7]© 2 = [2 ,5 ,7] and [2 ,3 ,5 ,7]© -2
= [2 ,3 ,7] .

The type CharString is an abbreviation for sequence of character. For ex
ample, "ab CD" is identical to ['a ' , 'b ' , ' ' , 'C' , 'D ']. The empty CharString is
denoted interchangeably by [] and by and for any character x , [' * '] = "x".

Section 2.7 Data Types and Expressions 33

Note that the array constants are a subset of the sequence constants—the only
difference is that in an array constant, all members at each nesting level must have
the same length.

2.7.6 Tuples
A variable var is declared to be of a tuple type by a declaration of the form

var: basetypex x . . . x basetypen

where basetypej is the type of the /th component.
A tuple constant is a fixed-length comma-separated series enclosed in angle

brackets. As an example of a tuple type, consider

in teger x in teger x boolean

An element of this type is a triple whose first and second elements are integers
and whose third element is a Boolean, such as < 1 ,7 ,tru e). The following are also
examples of tuple constants:

<1> < 1 ,2 ,tru e) < t r u e ,fa ls e)

The binary operator @ when applied to a tuple and a positive integer index
produces the element of the tuple with that index. Thus, for example, < 1 ,2 , true>@3
= true.

2.7.7 Records
A variable var is declared to be of a record type by a declaration of the form

var: record { idents\ : basetype1, . . . , identsn: basetypeny

where identSj is a comma-separated list of component selectors and basetypez is the
corresponding components’ type.

A record constant is a tuple, each of whose elements is a pair consisting of
an identifier (called the selector) and a value, separated by a colon. All values of
a particular record type must have the same set of identifiers and, for each identifier,
the values must be of the same type, but the values corresponding to different
selectors may be of different types. For example, the type ib p a ir defined by the
type definition

ib p a ir = record { in t : in teg er,
bool: boolean}

has as its members pairs of the form < in t : / ,b o o l: fc), where i is an integer and b is
a Boolean. The order of the pairs in a member of a record type is immaterial; thus,
for example, < in t :3 ,bool: tru e) and <bool: t r u e , in t :3> are identical record con
stants. The following are also examples of record constants:

< r l :1 .0 ,im :-1 .0 > < l e f t :1 , r ig h t :2 ,v a l :t r u e)

34 Informal Compiler Algorithm Notation (ICAN)

The binary operator “ . ” when applied to a record and an expression whose value
is one of the record’s selectors produces the corresponding component’s value. For
example, in the code sequence

ib p a ir = record { in t : in teg er,
bool: boolean}

b: boolean
ib p : ib p a ir

ibp := <int:2,bool:true)
ibp.int := 3
b := ibp.bool

the final values of ibp and b are < in t :3 ,b o o l:tru e) and true, respectively.

2.7.8 Unions
A union type is the union of the sets of values in the types that make up the union.
A variable var is declared to be of a union type by a declaration of the form

var: basetype x u . . . u basetypen

where basetype{ ranges over the types of the sets making up the union type.
As an example of a union type, consider in teger u boolean. An element of this

type is either an integer or a Boolean.
All the operators that apply to sets apply to unions. If the sets making up a union

type are disjoint, then the set an element of the union belongs to may be determined
by using the “member of” operator “e ” .

2.7.9 Functions
A function type has a domain type (written to the left of the arrow) and a range type
(written to the right of the arrow).

A variable var is declared to be of a function type by a declaration of the form

var: basetype x x . . . x basetypen —> basetype0

where for i = 1, . . . , basetype, is the type of the /th component of the domain and
basetype0 is the type of the range.

A function constant with n argument positions is a set each of whose elements
is an (n + l)-tuple whose first n members are of the 1st through « th domain types,
respectively, and whose (n + l) st member is of the range type. To be a function, the
set of tuples must be single-valued, i.e., if two tuples have the same first n members,
they must have the same (n + l) st member also.

As an example of a function type, consider boolean —> integer. A variable or
constant of this type is a set of pairs whose first member is a Boolean and whose

Section 2.7 Data Types and Expressions 35

second is an integer. It may also be expressed by an assignment or assignments
involving the name of the type. Thus, given the declaration

A: boolean — > integer
we could write, for example, either

A := {<true,3>,<false,2>>
or

A(true) := 3
A(false) := 2

to assign a particular function to be the value of A.
A function need not have a defined value for every element of its domain.

2.7.10 Compiler-Specific Types
The compiler-specific types are all named with an uppercase initial letter and are
introduced as needed in the text. They may be either simple or constructed, as
necessary. For example, the types Var, Vocab, and Operator are all simple types,
while the types Procedure, Block, and Edge defined by

Block = array [••] of array [••] of MIRInst
Procedure = Block
Edge = Node x Node

are constructed. The type MIRInst is also constructed and is defined in Section 4.6.1.

2.7.11 The Value n i l
The value n i l is a member of every type. It is the value of any variable that has not
been initialized. In most contexts, using it as an operand in an expression causes the
result to be n il . For example, 3 + n i l equals n il .

The only expressions in which using n i l as an operand in an expression does
not produce n i l as the result are equality and inequality comparisons, as follows:

Expression Result

nil = nil true
a = nil false
nil * nil false
a * nil true

where a is any value other than n il .
In addition, n i l may appear as the right-hand side of an assignment (Figure 2.2,

line 13) and as an argument to or return value from a procedure.

36 Informal Compiler Algorithm Notation (ICAN)

2.7.12 The Size Operator
The operator “ I I” applies to objects of all constructed types. In each case, its value
is the number of elements in its argument, as long as its argument is of finite size.
For example, if A is declared to be

A: array [1 • •5 ,1 * *5] of boolean

and f is declared and defined to be

f: integer x integer — > boolean

f(l,l) := true
f(1,2) := false
f(3,4) := true

then

I{ 1 ,7 ,2 3 } I = 3
I [* a * , * b * , * e * , ' c ' , ' b 1] I = 5
I<rl:1.0,im:-l.0)I = 2
IA| = 25
If I = 3

If x is of infinite size, I x I is undefined.

2.8 Statements
Statements include assignments (e.g., Figure 2.1, lines 12 and 19), procedure and
function calls (Figure 2.1, line 19 and Figure 2.2, line 34), returns (Figure 2.2, lines
29 and 40), gotos (Figure 2.2, line 35), ifs (Figure 2.1, lines 22 through 24), cases
(Figure 2.2, lines 25 through 31), and for loops (Figure 2.1, lines 16 through 25),
while loops (Figure 2.1, lines 14 through 26), and repeat loops (Figure 2.2, lines 24
through 32). Their syntax is given in Table 2.7.

A statement may be labeled (Figure 2.2, line 38) with an identifier followed by
a colon.

Each structured statement’s body is delimited by keywords, such as i f and f i.

2.8.1 Assignment Statements
An assignment statement consists of a series of one or more left-hand parts, each
followed by an assignment operator, and a right-hand part (Figure 2.1, lines 10,12,
15, 19, and 21). Each left-hand part may be a variable name or the name of an
element of a variable, such as a member of a record, array, sequence, or tuple, or
a function value. The assignment operator in each of the left-hand parts except the
last must be “ : =” . The last assignment operator may be either “ : =” (Figure 2.1, lines
10 and 17 and Figure 2.2, lines 26 through 28) or an extended assignment operator
in which the colon is replaced by a binary operator whose left-hand operand and
result have the same type (Figure 2.1, line 19 and Figure 2.2, lines 19 and 39). For
example, all the assignments in the following code are legal:

Section 2.8 Statements 37

TA BLE 2.7 Syntax of ican statements.

Statement

Label
AssignStmt
LeftSide

ArrayElt
SequenceElt
TupleElt
RecordElt
FuncElt
ProcEuncStmt
ReturnStmt
GotoStmt
IfStmt

CaseStmt

WhileStmt
ForStmt
Iterator

RepeatStmt

AssignStmt \ ProcFuncStmt \ ReturnStmt
| GotoStmt | IfStmt \ CaseStmt \ WhileStmt
| ForStmt \ RepeatStmt \ Label : Statement
| Statement ;
Identifier
[LeftSide :=}* LeftSide {: | BinaryOper} = Expr
Variable \ ArrayElt \ SequenceElt \ TupleElt \ RecordElt

| FuncElt
LeftSide [Expr x ,]
LeftSide 1 Expr
LeftSide @ Expr
LeftSide . Expr
LeftSide ArgList
ProcFuncExpr
return [Expr]
goto Label
if Expr then Statement* {elif Statement*}*
[else Statement*] f i
case Expr of [CaseLabel : Statement*}+
[default : Statement*] esac
while Expr do Statement* od
for Iterator do Statement* od
[Variable Expr [by Expr] to Expr
| each Variable x , e [Expr \ TypeExpr}} [(Expr)]
repeat Statement* until Expr * i

recex = record {lt,rt: boolean}
i, j: integer
f: integer — > (boolean — > integer)
g: integer — > sequence of recex
p: sequence of integer
t: boolean x boolean
r: recex

i := 3
j := i += 1
f(3)(true) := 7
g(0)12.It := true
p!2 := 3
t@l := true
r.rt := r.lt := false

38 Informal Compiler Algorithm Notation (ICAN)

The right-hand part may be any type-compatible expression (see Section 2.7). The
left- and right-hand parts of an assignment must be of the same type when an
extended assignment operator is expanded to its ordinary form. The right-hand
side following an extended assignment operator is evaluated as if it had parentheses
around it. For example, the assignment

S := SI u= {a} n X
is equivalent to

S := SI := SI u ({a} n X)
which, in turn, is equivalent to

SI := SI u ({a} n X)
S := SI

rather than to

SI := (SI u {a» n X
S := SI

2.8.2 Procedure Call Statements
A procedure call statement has the form of a procedure expression, i.e.,
ProcFuncExpr in Table 2.5. It consists of a procedure name followed by a parenthe
sized list of arguments separated by commas. It causes the named procedure to be
invoked with the given arguments.

2.8.3 Return Statements
A return statement consists of the keyword return followed optionally by an ex
pression.

2.8.4 Goto Statements
A goto statement consists of the keyword goto followed by a label.

2.8.5 If Statements
An if statement has the form

i f conditiono then
thenjbody

e l i f conditioni then
elif-body \

e l i f conditionn then
elif.bodyn

Section 2.8 Statements 39

e lse
elsejbody

fi
with the e l i f and e lse parts optional. The conditions are Boolean-valued expres
sions and are evaluated in the short-circuit manner, e.g., given p V q, q is evaluated
if and only if p evaluates to fa ls e . Each of the bodies is a sequence of zero or more
statements.

2.8.6 Case Statements
A case statement has the form

case selector of
la b e l\ : body\
la b e h : bodyi

labeln : bodyn
d e fau lt : bodyo

esac

with the default part optional. Each label is a constant of the same type as the selector
expression, which must be of a simple type or an enumerated type. Each body is a
sequence of zero or more statements. As in Pascal, after executing one of the bodies,
execution continues with the statement following the “ e sac” closing delimiter. There
must be at least one non-default case label and corresponding body.

2.8.7 While Statements
A while statement has the form

while condition do
w bilejbody

od

The condition is a Boolean-valued expression and is evaluated in the short-circuit
manner. The body is a sequence of zero or more statements.

2.8.8 For Statements
A for statement has the form

fo r iterator do
fo rjb od y

od

The iterator may be numerical or enumerative. A numerical iterator specifies a
variable, a range of values, and a parenthesized Boolean expression, such as “ i : = n
by -1 to 1 (A [i] = 0) ” (see Figure 2.2, lines 12 through 14). The “by” part is

4 0 Informal Compiler Algorithm Notation (ICAN)

optional if it is “by 1” . The Boolean expression is optional and, if not supplied,
the value true is used. The value of the variable may not be changed in the body of
the loop.

An enumerative iterator, such as “ each n e n (n * abc)” (see Figure 2.1, lines
11 through 13 and lines 16 through 25), or “ each p ,q e T (p * q)”, selects all and
only the elements of its set operand that satisfy the parenthesized Boolean expression
following the set operand, in an indeterminate order. If the parenthesized Boolean
expression is missing, the value true is used. If the variable series has more than
one element, they all must satisfy the same criteria. For example, “ each m,n e n (1
< m & m ^ n & n ^ 2) ” causes the pair of variables <m,n> to range over < 1 ,1>, <1,2>,
and <2,2>, in some order. For any set S that appears in the iterator, the body of the
for statement must not change S’s value.

The body is a sequence of zero or more statements.

2.8.9 Repeat Statements
A repeat statement has the form

rep eat
repeatjbody

u n t i l condition

The body is a sequence of zero or more statements. The condition is a Boolean
valued expression and is evaluated in the short-circuit manner.

2.8.10 Keywords in ICAN
The keywords in i c a n are given in Table 2.8. They are all reserved and may not be
used as identifiers.

TABLE 2.8 The keywords in ican.

array begin boolean by
case character default do
each elif else end
enum esac false fi
for goto if in
inout integer nil od
of out procedure real
record repeat return returns
sequence set to true
until where while

Section 2.11 Exercises 41

2.9 Wrap-Up
This chapter is devoted to describing ican, the informal notation used to present
algorithms in this book.

The language allows for a rich set of predefined and constructed types, including
ones that are specific to compiler construction, and is an expressive notation for
expressions and statements. Each compound statement has an ending delimiter, and
some, such as while and case statements, have internal delimiters too.

The informality of the language lies primarily in its not being specific about the
semantics of constructions that are syntactically valid but semantically ambiguous,
undefined, or otherwise invalid.

2.10 Further Reading
There are no references for ican, as it was invented for use in this book.

2.11 Exercises
2.1 (a) Describe how to translate an xbnf syntax representation into a representation

that uses only concatenation, (b) Apply your method to rewrite the xbnf description

E — ► V \ A E \ (E) \ S T \ S E \ T E
AE — ► [{ E \ n i l }]
S T — ► - AC+ "
SE — ► 0 K E* >
TE — ► < £ tx , >

2.2 Show that arrays, sets, records, tuples, products, and functions are all “ syntactic
sugar” in ican by describing how to implement them and their operations in a
version of ican that does not include them (i.e., express the other type constructors
in terms of the union and sequence constructors).

2.3 (a) Write an ican algorithm to run a maze. That is, given a set of nodes N £ Node, a
set of undirected arcs E £ Node x Node, and start and finish nodes s t a r t , g o a l € N,
the algorithm should return a list of nodes that make up a path from s t a r t to go a l,
or n i l if there is no such path, (b) What is the time complexity of your algorithm in
terms of n = INI and e = IEI ?

2.4 Adapt your algorithm from the preceding exercise to solve the traveling salesman
problem. That is, return a list of nodes beginning and ending with s t a r t that passes
through every node other than s t a r t exactly once, or return n i l if there is no such
path.

2.5 Given a binary relation R on a set A, i.e., R £ A x A, write an ican procedure
RTC(R,x,y) to compute its reflexive transitive closure. The reflexive transitive clo
sure of R, written R*, satisfies a R* b if and only if a = b or there exists a c such that
a R c and c R* b, so RTC(R,x,y) returns tru e if x R* y and f a l s e otherwise.

42 Informal Compiler Algorithm Notation (ICAN)

ADV 2.6 We have purposely omitted pointers from ican because they present several serious
issues that can be avoided entirely by excluding them. These include, for example,
pointer aliasing, in which two or more pointers point to the same object, so that
changing the referent of one of them affects the referents of the others also, and the
possibility of creating circular structures, i.e., structures in which following a series
of pointers can bring us back to where we started. On the other hand, excluding
pointers may result in algorithms’ being less efficient than they would otherwise be.
Suppose we were to decide to extend ican to create a language, call it pican, that
includes pointers, (a) List advantages and disadvantages of doing so. (b) Discuss the
needed additions to the language and the issues these additions would create for
programmers and implementers of the language.

CHAPTER 3

Symbol-Table Structure

In this chapter we explore issues involved in structuring symbol tables to ac
commodate the features of modern programming languages and to make them
efficient for compiled implementations of the languages.
We begin with a discussion of the storage classes that symbols may belong

to and the rules governing their visibility, or scope rules, in various parts of a
program. Next we discuss symbol attributes and how to structure a local symbol
table, i.e., one appropriate for a single scope. This is followed by a description of
a representation for global symbol tables that includes importing and exporting
of scopes, a programming interface to global and local symbol tables, and ican
implementations of routines to generate loads and stores for variables according to
their attributes.

3.1 Storage Classes, Visibility, and Lifetimes
Most programming languages allow the user to assign variables to storage classes
that prescribe scope, visibility, and lifetime characteristics for them. The rules gov
erning scoping also prescribe principles for structuring symbol tables and for repre
senting variable access at run time, as discussed below.

A scope is a unit of static program structure that may have one or more variables
declared within it. In many languages, scopes may be nested: procedures are scoping
units in Pascal, as are blocks, functions, and files in C. The closely related concept
of visibility of a variable indicates in what scopes the variable’s name refers to a
particular instance of the name. For example, in Pascal, if a variable named a is
declared in the outermost scope, it is visible everywhere in the program1 except

1. In many languages, such as C, the scope of a variable begins at its declaration point in the code
and extends to the end of the program unit, while in others, such as PL/I, it encompasses the entire
relevant program unit.

43

44 Symbol-Table Structure

within functions that also declare a variable a and any functions nested within
them, where the local a is visible (unless it is superseded by another declaration of
a variable with the same name). If a variable in an inner scope makes a variable
with the same name in a containing scope temporarily invisible, we say the inner
one shadows the outer one.

The extent or lifetime of a variable is the part of the execution period of the
program in which it is declared from when it first becomes visible to when it is
last visible. Thus, a variable declared in the outermost scope of a Pascal program
has a lifetime that extends throughout the execution of the program, while one
declared within a nested procedure may have multiple lifetimes, each extending from
an entry to the procedure to the corresponding exit from it. A Fortran variable with
the save attribute or a C static local variable has a noncontiguous lifetime—if it is
declared within procedure f (), its lifetime consists of the periods during which f ()
is executing, and its value is preserved from each execution period to the next.

Almost all languages have a global storage class that gives variables assigned to
it an extent that covers the entire execution of the program and global scope, i.e., it
makes them visible throughout the program, or in languages in which the visibility
rules allow one variable to shadow another, it makes them visible wherever they are
not shadowed. Examples of global scope include variables declared extern in C and
those declared in the outermost scope in Pascal.

Fortran has the common storage class, which differs from most scoping concepts
in that an object may be visible in multiple program units that are not related by
nesting and it may have different names in any or all of them. For example, given
the common declarations

common /blockl/il,jl
and

common /b lo c k l / i2 , j2

in routines f l () and f2 () , respectively, variables i l and i2 refer to the same
storage in their respective routines, as do j l and j2 , and their extent is the whole
execution of the program.

Some languages, such as C, have a file or module storage class that makes a
variable visible within a particular file or module and makes its extent the whole
period of execution of the program.

Most languages support an automatic or stack storage class that gives a variable
a scope that is the program unit in which it is declared and an extent that lasts for a
particular activation of that program unit. This may be associated with procedures,
as in Pascal, or with both procedures and blocks within them, as in C and PL/I.

Some languages allow storage classes that are static modifications of those
described above. In particular, C allows variables to be declared s t a t ic , which
causes them to be allocated storage for the duration of execution, even though
they are declared within a particular function. They are accessible only within the
function, and they retain their values from one execution of it to the next, like
Fortran save variables.

Section 3.2 Symbol Attributes and Symbol-Table Entries 45

Some languages allow data objects (and in a few languages, variable names) to
have dynamic extent, i.e., to extend from their points of (implicit or explicit) alloca
tion to their points of destruction. Some, particularly lisp, allow dynamic scoping,
i.e., scopes may nest according to calling relationships, rather than static nesting.
With dynamic scoping, if procedure f () calls g() and g () uses a variable x that
it doesn’t declare, then the x declared in its caller f () is used, or if there is none, in
the caller of f (), and so on, regardless of the static structure of the program.

Some languages, such as C, have an explicit v o la t i le storage class modifier
that specifies that a variable declared volatile may be modified asynchronously, e.g.,
by an I/O device. This imposes restrictions on optimizations that may be performed
on constructs that access the variable.

3.2 Symbol Attributes and Symbol-Table Entries
Each symbol in a program has associated with it a series of attributes that are derived
both from the syntax and semantics of the source language and from the symbol’s
declaration and use in the particular program. The typical attributes include a series
of relatively obvious things, such as the symbol’s name, type, scope, and size. Others,
such as its addressing method, may be less obvious.

Our purpose in this section is to enumerate possible attributes and to explain
the less obvious ones. In this way, we provide a description of the constituents
of a symbol table, namely, the symbol-table entries. A symbol-table entry collects
together the attributes of a particular symbol in a way that allows them to be easily
set and retrieved.

Table 3.1 lists a typical set of attributes for a symbol. The provision of both s iz e
and boundary on the one hand and b it s iz e and b itbdry on the other allows for
both unpacked and packed data representations.

A type referent is either a pointer to or the name of a structure representing a
constructed type (in ican, lacking pointers, we would use the latter). The provision
of type, basetype, and machtype allows us to specify, for example, that the Pascal
type

array [1 . . 3 , 1 . . 5] of char

has for its type field a type referent such as t2 , whose associated value is
<array ,2 , [<1,3) ,< 1 ,5>] ,char>, for its basetype simply char, and for its
machtype the value byte. Also, the value of n e lt s for it is 15. The presence of
the basereg and d isp fields allows us to specify that, for example, to access the
beginning of our Pascal array we should form the address [r7+8] if basereg is r7
and d isp is 8 for it.

The most complex aspect of a symbol-table record is usually the value of the
type attribute. Source-language types typically consist of the predefined ones, such
as in teger, char, r e a l, etc. in Pascal, and the constructed ones, such as Pascal’s
enumerated, array, record, and set types. The predefined ones can be represented by
an enumeration, and the constructed ones by tuples. Thus, the Pascal type template

array [t 1 ,. . ., tn\ of tO

4 6 Symbol-Table Structure

TABLE 3.1 Typical fields in symbol-table entries.

Name Type Meaning

name Character string The symbol’s identifier
c la s s Enumeration Storage class
v o la t i le Boolean Asynchronously accessed
s iz e Integer Size in bytes
b i t s iz e Integer Size in bits if not an integral

number of bytes
boundary Integer Alignment in bytes
bitbdry Integer Alignment in bits if not an

integral number of bytes
type Enumeration or

type referent
Source-language data type

basetype Enumeration or Source-language type of the
type referent elements of a constructed type

machtype Enumeration Machine type corresponding to
the source type, if simple, or the
type of the elements, if constructed

n e lts Integer Number of elements
r e g is te r Boolean True if the symbol’s value is

in a register
reg Character string Name of register containing

the symbol’s value
basereg Character string Name of the base register used

to compute the symbol’s
address

d isp Integer Displacement of symbol’s storage
from value in base register

can be represented by a tuple consisting of an enumerated value representing its
constructor (array), the number of dimensions, and a sequence of representations
of each of the dimensions t \ through tn, and the representation of its base type *0,
i.e., the ican triple

< array ,« , [t 1 , . . .,tri\ , t 0>

as in the exam ple above. Similarly, a record type template

re c o r d f \ : 11 ; . . . ; fn : tn end

Section 3.3 Local Symbol-Table Management 47

t l = array [0 ..5 ,1 ..10] of integer;
t2 = record

t2a: integer;
t2b: Tt2;
t2c: array [1..3] of char;

end;
t3 = array [1..100] of t2;
(a)
t l = <array,2 , [<0,5>,<1 ,10>], integer)
t2 = <record,3 , [<t2a,integer), <t2b,<pointer,t2>>,

<t2c,<array,1 , [<1,3>],char>>]>
t3 = <array,1 , [<1, 100>],t2>
(b)

FIG. 3.1 (a) A series of Pascal type declarations, and (b) its representation by ican tuples.

can be represented by a tuple consisting of an enumerated value representing its
constructor (record), the number of fields, and a sequence of pairs comprising
representations of the field identifiers fi and types ti, i.e.,

<record,«, [<̂ 1 ,£l>,. . .,</«,£«>] >
Uses of names of constructed types in type definitions are represented by refer

ences to the definitions of those types. As a specific example, consider the Pascal type
declarations in Figure 3.1(a), which are represented by ican structures like those
shown in Figure 3.1(b). Note that they are recursive: the definition of t2 includes a
reference to t2.

In all languages we are aware of, the predefined types are global and the user-
defined types follow scoping rules identical to those for variables, so they can be
represented by type tables (or graphs) that parallel the local and global symbol-table
structures discussed below.

.3 Local Symbol-Table Management
We next consider how to manage a symbol table that is local to a specific procedure,
an issue that is fundamental to any approach to code generation.

The interfaces of a set of procedures that create, destroy, and manipulate the
symbol table and its entries are as follows (SymTab is the type representing symbol
tables and Symbol is the type of symbols):

New_Sym_Tab: SymTab —> SymTab
Creates a new local symbol table with the given symbol table as its parent, or n i l
if there is none (see the discussion of global symbol-table structure in Section 3.4),
and returns the new (empty) local symbol table.

Dest_Sym_Tab: SymTab —> SymTab
Destroys the current local symbol table and returns its parent (or n i l if there is no
parent).

48 Symbol-Table Structure

Insert_Sym: SymTab x Symbol — > boolean
Inserts an entry for the given symbol into the given symbol table and returns true,
or if the symbol is already present, does not insert a new entry and returns fa ls e .

Locate_Sym: SymTab x Symbol — > boolean
Searches the given symbol table for the given symbol and returns true if it is found,
or f a l s e if it is not.

Get_Sym_Attr: SymTab x Symbol x Attr — > Value
Returns the value associated with the given attribute of the given symbol in the given
symbol table, if it is found, or n i l if not.

Set_Sym_Attr: SymTab x Symbol x Attr x Value —> boolean
Sets the given attribute of the given symbol in the given symbol table to the given
value and returns tru e, if it is found, or returns f a l s e if not; each of the fields listed
in Table 3.1 is considered an attribute, and there may be others as needed.

Next_Sym: SymTab x Symbol — > Symbol
Iterates over the symbol table, in some order, returning the symbol following the
one that is its second argument; when called with the second argument set to n il ,
it returns the first symbol in the symbol table or n i l if the symbol table is empty;
when called with the second argument set to the last symbol, it returns n il .

More.Syms: SymTab x Symbol — > boolean
Returns tru e if there are more symbols to iterate over and f a l s e otherwise; if the
symbol argument is n il , it returns true if the symbol table is non-empty, or f a l s e
if the symbol table is empty.

Note the use of the type Value in the definitions of Get_Sym_Attr() and
Set_Sym_Attr(). It is intended to be a union type that encompasses all the types
that attributes might have. Note, also, that the last two routines can be used to iterate
over the symbols in a symbol table by being used in the following way:

s := nil
while More_Syms(symtab,s) do

s := Next_Sym(symtab,s)
if s * nil then

process symbol s
fi

od
A major consideration in designing a symbol table is implementing it so that

symbol and attribute insertion and retrieval are both as fast as possible. We could
structure the symbol table as a one-dimensional array of entries, but that would
make searching relatively slow. Two alternatives suggest themselves, namely, a bal
anced binary tree or hashing. Both provide quick insertion, searching, and retrieval,
at the expense of some work to keep the tree balanced or to compute hash keys. As
discussed in Section 3.4 below, hashing with a chain of entries for each hash key
is generally the better approach. The most appropriate implementation of it to deal
with the scope rules of languages such as Modula-2, Mesa, Ada, and object-oriented

Section 3.4 Global Symbol-Table Structure 49

Key 1

Key 2

Key n

Entry 1.1 7
Entry 2.3 /
Entry n. 2

Entry 2.2

Entry n. 1

:

Entry 2.1

Entry n 3 /
Hash keys Symbol-table entries

FIG. 3.2 Hashed local symbol table with a chain of buckets for each hash key.

languages is to combine an array with hashing. Figure 3.2 shows a schematic view of
how such a symbol table might be organized (“Entry /./” represents the /th entry in
the zth hash chain). The hash function should be chosen so as to distribute identifiers
relatively evenly across the key values.

.4 Global Symbol-Table Structure
The scoping and visibility rules of the source language dictate the structure of the
global symbol table. For many languages, such as Algol 60, Pascal, and PL/I, the
scoping rules have the effect of structuring the entire global symbol table as a tree
of local symbol tables with the local table for the global scope as its root and the
local tables for nested scopes as the children of the table for the scope they are
nested in. Thus, for example, if we have a Pascal program with the structure given
in Figure 3.3, then the structure of its global symbol table is as shown in Figure 3.4.

However, a simpler structure can be used for such languages in a compiler since,
at any point during compilation, we are processing a particular node of this tree and
only need access to the symbol tables on the path from that node to the root of the
tree. Thus, a stack containing the local symbol tables on a path is sufficient. When
we enter a new, more deeply nested scope, we push a local table onto the stack,
and when we exit a scope, we pop its table from the stack. Figure 3.5 shows the
sequence of global symbol tables that occurs during the processing of the program
in Figure 3.3. Now any reference to a variable not found in the current local scope
can be searched for in the ancestor scopes. For example, focusing on procedure i (),
the use of variable b refers to the local b declared in i (), while the use of a refers
to the one declared in g (), and the use of c refers to the global c declared in the
outermost scope e ().

50 Sym bol-Table Structure

program e;
var a, b, c: integer;
procedure f;

var a, b, c: integer;
begin

a := b + c
end;
procedure g;

var a, b: integer;
procedure h;

var c, d: integer;
begin

c := a + d;
end;
procedure i;

var b, d: integer;
begin

b := a + c
end;

begin
b := a + c

end;
procedure j;

var b, d: integer;
begin

b := a + d
end;

begin
a := b + c

end .
FIG* 1*3 Nesting structure of an example Pascal program.

e () ’s symtab

integer a
integer b
integer c

f () ’s symtab

integer a
integer b
integer c

g () ’s symtab

integer a
integer b

j () ’s symtab

integer b
integer d

h() ’s symtab i () ’s symtab

integer c integer b
integer d integer d

FIG* 3*4 Tree of local symbol tables for the Pascal code in Figure 3.3.

Section 3.4 Global Symbol-Table Structure 51

Routine
being
compiled e() f () g () h() i () j () e ()

2?01- Em Em
stedc [fn] gr>] go] Em

|e () | |e () | |e () | |e () | |e () | |e () | [e() |

FIG. 3.5 Symbol-table stacks occurring during compiling the Pascal code in Figure 3.3.

The stack of local symbol tables can be implemented as a stack of arrays and
hash tables, with each of them implemented as described in Section 3.3. A better
structure uses two stacks, one to contain identifiers and the other to indicate the
base of each local table, with a single hash table accessed by hashing a symbol’s
name as before. If we take this approach, New_Sym_Tab() pushes a new entry onto
the block stack, Insert_Sym() adds an entry at the top of the symbol stack and
puts it at the beginning of its hash chain, and Locate_Sym() needs to search only
along the chain the symbol hashes to. Dest_Sym_Tab() removes from all chains the
entries above the current entry in the block stack, all of which are at the heads of the
chains, and deallocates the top entry on the block stack. Figure 3.6 gives an example
of this scoping model, assuming e and f have the same hash value.

f t

Symbol stack

FIG. 3.6 Hashed global symbol table with a block stack.

52 Symbol-Table Structure

The only remaining issue is dealing with scoping constructs that do not obey the
tree structure discussed above, such as Modula-2’s import and export, Ada’s pack
ages and use statement, and C++’s inheritance mechanism. Compilation systems for
the first two languages must provide a mechanism for saving and retrieving interface
definitions for modules and packages, respectively. A useful distinction due to Gra
ham, Joy, and Roubine [GraJ79], on which the following model of scoping is based,
is between open scopes, for which the visibility rules correspond directly to the nest
ing of the scopes, and closed scopes, for which visibility is explicitly specified in a
program. For open scopes, the mechanism we have described above is sufficient.

Closed scopes, on the other hand, make a specified set of names visible in certain
other scopes, independent of nesting. For example, in Modula-2 a module may
include a list of names of objects it exports, and other modules may import any
or all of those names by listing them explicitly. Ada’s package mechanism allows
a package to export a set of objects and allows other modules to import them by
indicating explicitly that they use the package. These and the other explicit scoping
mechanisms can be implemented in the stack-plus-hashing symbol-table model by
keeping, for each identifier, a list of the scope level numbers of scopes in which the
identifier is visible. This would be simple to maintain, but it can be done with less
space overhead.

A simplification results from noting that the level numbers in such a list must be
consecutive, since a scope can export an identifier only if it is visible in it and can
import it only explicitly or if it is visible in the containing scope. The process can be
further simplified by making sure that each entry is removed from the symbol table
when the outermost scope in which it is visible is exited—then we need only record
the level of the innermost scope in which it is visible and update the level number
on entry to and exit from such a scope. This provides fast implementations for
scope entry, symbol insertion, and attribute setting and retrieval, but could require
searching the entire symbol table upon leaving a scope to find the entries that need
to be deleted.

The most effective adaptation of the stack-plus-hashing model to closed scopes
uses the stack structure to reflect the scope that a symbol is declared in or the out
ermost level it is exported to, and the hash structure to implement visibility rules. It
reorders the elements of the hash chain into which an imported symbol is to be en
tered to bring it to the front before setting its innermost-level-number field, and does
the same reordering for each symbol the scope exports. It then enters locally declared
symbols ahead of those already in the hash chain. The reader can verify that the sym
bols in each chain are kept in an order that reflects the visibility rules. On exiting a
scope, we must remove from the hash chains the local symbols that are not exported,
which are among those whose stored level numbers match the level number of the
current scope. If such a symbol is declared in a scope containing the current one or
is exported to such a scope, then we can determine that from the stack structure of
the symbol table and can leave the symbol in the hash chain, subtracting one from
its innermost level number; otherwise, we remove the symbol from its hash chain.

As an example, consider the code shown in Figure 3.7. Upon entering procedure
f (), the symbol table is as shown in Figure 3.8(a). Upon entering g(), we have a
newly declared d and variables a and b (note that we assume that b and d have the

Section 3.4 Global Symbol-Table Structure 53

program
var a, b, c, d
procedure f()

var b
procedure g()

var d
import a, b from P

end
end

end
package P

export a, b
end

FIG. 3.7 An example of code with an import.

f t

Hash keys Symbol stack Block stack

(a)

f t

Hash keys Symbol stack Block stack

(b)
FIG. 3.8 (a) Hashed global symbol table with innermost level numbers, and (b) after entering

g(), a scope with local variable d and imported symbols a and b.

54 Symbol-Table Structure

same hash value) imported from package P. The resulting symbol-table structure is
as shown in Figure 3.8(b). Note that the hash chain containing the bs and d in (a)
has been extended so that the imported b comes first, followed by the newly declared
d, and then the other three previous entries. The innermost level numbers have been
adjusted to indicate that the imported a and b, g () ’s d, and the global a are visible
inside g (). To return to the previous state, i.e., the state represented in (a), we pop
the top entry off the block stack and all the symbol entries at or above the point it
indicates in the symbol stack and adjust the hash chains to reflect deletion of those
symbols. Since we did not reorder the hash chains for the enclosing scopes when we
entered g (), this returns the symbol table to its previous state.

To support the global symbol-table structure, we add two routines to the inter
face described in Section 3.3:

Encl_Sym_Tab: SymTab x Symbol — > SymTab
Returns the nearest enclosing symbol table that declares its second argument, or n il
if there is none.

Depth_Sym_Tab: SymTab — > integer
Returns the depth of the given symbol table relative to the current one, which, by
convention, has depth zero.

Storage binding translates variable names into addresses, a process that must occur
either before or during code generation. In our intermediate-language hierarchy, it is
part of the process of translating a routine from mir to lir (see Chapter 4), which,
in addition to translating names to addresses, expands mir assignments into loads,
operations, and stores, and expands calls to instruction sequences.

Each variable is assigned an address, or more accurately an addressing method,
appropriate to its storage class. We use the latter term because, for example, a local
variable in a procedure is not assigned a fixed machine address (or a fixed address
relative to the base of a module), but rather a stack location that is accessed by an
offset from a register whose value generally does not point to the same location each
time the procedure is invoked.

For storage binding, variables are divided into four major categories: global,
global static, stack, and stack static variables. In languages that allow variables or a
whole scope to be imported, we must consider that case as well.

Global variables and those with static storage class are generally assigned either
to fixed relocatable addresses or to offsets from a base register known as the global
pointer.2 Some R i s e compilers, such as those provided by mips for the mips archi
tecture, use offsets from a base register for all globals up to a maximum size the
programmer can control and, thus, achieve single-instruction access for all the glob
als that fit into the available range. Stack variables are assigned offsets from the stack

3.5 Storage Binding and Symbolic

2. In generating position-independent code, the latter approach is used, as discussed in Section 5.7.

Section 3.5 Storage Binding and Symbolic Registers 55

pointer or frame pointer, so they appear and disappear with procedure invocations
and, thus, their locations may change from one invocation to another.

In most languages, heap objects are allocated space dynamically and are accessed
by means of pointers whose values are set by the memory allocator. However, in
some languages, such as lisp, such objects may be “ interned,” i.e., assigned names
that access them directly.

An alternative approach for stack variables and, in some cases, for global vari
ables as well, is to allocate them to registers, rather than to memory locations. Of
course, it is essential that such variables fit into a register and registers are not
generally indexable, so this approach cannot be used for arrays. Also, one cannot
generally assign many variables to registers before or during code generation, since
there is only a fixed set of registers available. However, one can assign scalar vari
ables to an unbounded set of symbolic registers, i.e., to names that can be assigned
to real registers or to memory locations later in the compilation process. This is
done in compilers that use the graph-coloring approach to global register allocation
discussed in Section 16.3. Symbolic registers are allocated by simply incrementing
a counter, so the first variable is assigned to sO, the next to s i , and so on. Alter
natively, the register allocator can pack variables assigned to storage locations into
registers and then delete the associated storage accesses, as is done in the priority-
based graph-coloring approach discussed in Section 16.4.

Figure 3.9 gives an ican routine named Bind_Local_Vars() that binds lo
cal variables to storage locations using the symbol-table manipulation routines de
scribed in Sections 3.3 and 3.4. The fields in symbol-table entries include at least the
ones described in Table 3.1.

Bind_Local_Vars() assigns each static variable a displacement and, for stack-
allocated variables, assigns a displacement and the frame pointer as the base register.
For records, we cycle through the elements, assigning them displacements and base
registers. The value of in itd isp is the displacement of the first location in the
stack frame that is available to allocate. We assume that Initdisp and the bases
of the stack frame and static storage area are doubleword-aligned to begin with.
Note that we assign negative offsets from f p to local symbols, as discussed below in
Chapter 5, and positive offsets to statics. We ignore the possibility of packed records,
as discussed in Section 5.1. Round_Abs_Up() is used to ensure proper boundary
alignment. The function abs () returns the absolute value of its argument, and the
function ceil() returns the least integer greater than or equal to its argument.
Binding to symbolic registers is virtually the same and handling global variables is
similar, except that it may need to be spread out across a series of compilation units,
depending on the source language’s structure.

As an example of storage binding, consider the mir fragment in Figure 3.10(a),
where a is a global integer variable, b is a local integer variable, and c [0. . 9] is
a local variable holding an array of integers. Let gp be the register pointing to
the global area and fp be the frame pointer. Then we might assign a to offset 8
beyond gp, b to fp-20, and c to fp-60 (note that fetching c [1] results in loading
from location fp-56: this is the case because c[0] is located at fp-60 and the
elements of c [] are 4 bytes long); binding each variable to its location in the
mir code would result in the lir code shown in Figure 3.10(b). (Of course, the

56 Symbol-Table Structure

procedure Bind_Local_Vars(symtab,Initdisp)
symtab: in SymTab
Initdisp: in integer

begin
symclass: enum {local, local.static}
symbasetype: Type
i, symsize, staticloc := 0, stackloc := Initdisp,

symnelts: integer
s := nil: Symbol
while More_Syms(symtab,s) do

s := Next_Sym(symtab,s)
symclass := Get_Sym_Attr(symtab,s,class)
symsize := Get_Sym_Attr(symtab,s,size)
symbasetype := Get_Sym_Attr(symtab,s,basetype)
case symclass of

local: if symbasetype = record then
symnelts := Get_Sym_Attr(symtab,s,nelts)
for i := 1 to symnelts do

symsize := Get_Sym_Attr(symtab,s,<i,size))
I| allocate local symbols at negative offsets
I I from the frame pointer
stackloc -= symsize
stackloc := Round_Abs_Up(stackloc,symsize)
Set_Sym_Attr(symtab,s,reg,"fp")
Set_Sym_Attr(symtab,s,<i,disp>,stackloc)

od
else

stackloc -= symsize
stackloc := Round.Abs_Up(stackloc,symsize)
Set_Sym_Attr(symtab,s,reg,"fp")
Set_Sym_Attr(symtab,s,disp,stackloc)

fi
FIG. 3.9 Routines to do storage binding of local variables.

fourth instruction is redundant, since the value it loads is stored by the preceding
instruction. The MiR-to-LiR translator might recognize this, or the task might be left
to the postpass optimizer, as described in Section 18.11.)

If we were using symbolic registers, b would be assigned to one, say s2. Global
variable a might also be, depending on whether the register allocator assigns globals
to registers or not; we assume for now that it does. The resulting lir code would be
as shown in Figure 3.10(c). Note that c [1] has not been assigned a symbolic register
because it is an array element.

There are several possible approaches to arranging local variables in the stack
frame. We could simply assign them to consecutive locations in the frame, allowing
enough space for each, but this might require us to put variables on boundaries in
memory that are inappropriate for accessing them quickly—e.g., it might result in a
word-sized object being put on a halfword boundary, requiring two halfword loads,

Section 3.5 Storage Binding and Symbolic Registers 57

local_static:
if symbasetype = record then

symnelts Get_Sym_Attr(symtab,s,nelts)
for i := 1 to symnelts do

symsize := Get_Sym_Attr(symtab,s,<i,size))
I| allocate local static symbols at positive offsets
I| from the beginning of static storage
staticloc := Round_Abs_Up(staticloc,symsize)
Set.Sym.Attr(symtab,s,<i,disp>,staticloc)
staticloc + - symsize

od
else

staticloc := Round_Abs_Up(staticloc,symsize)
Set_Sym_Attr(symtab,s,disp,staticloc)
staticloc += symsize

fi
esac

od
end I I Bind_Local_Vars

procedure Round.Abs_Up(m,n) returns integer
m, n: in integer

begin
return sign(m) * ceil(abs(float(m)/float(n))) * abs(n)

end I I Round.Abs_Up
FIG. 3.9 (continued)

a shift, and an “ or” at worst, in place of a single word load. If there are no half
word loads, as in the Alpha architecture, an “ and” would be needed also. We might
remedy this by guaranteeing that each stack frame starts on a doubleword bound
ary and leaving gaps between objects to cause them to appear on the appropriate
boundaries, but this wastes space, which may be important because Rise loads and
stores provide only short offsets and cisc instructions might require use of longer
offsets and may impact cache performance.

a <- a * 2

b <r- a + c[l]

r l <r- [gp+8]
r2 <- rl * 2
[gp+8] <- r2
r3 <- [gp+8]
r4 [fp-56]
r5 <- r3 + r4
[fp-20] <- r5

sO <- sO * 2

si <- [fp-56]
s2 <- sO + si

(a) (b) (c)

FIG. 3.10 (a) A mir fragment and two translations to lir, one with names bound to storage
locations (b) and the other with simple variables bound to symbolic registers (c).

58 Symbol-Table Structure

int i;
double float x;
short int j;
float y;

FIG. 3.11 C local variable declarations.

We can do better by sorting variables by the alignments they need, largest first,
and by guaranteeing that each stack frame is aligned in memory on a boundary
that provides the most efficient access. We would sort all quantities needing double-
word alignment at the beginning of the frame, followed by word-aligned quantities,
then halfwords, and finally bytes. If the beginning of the stack frame is doubleword-
aligned, this guarantees that each variable is on an appropriate boundary. For exam
ple, given the C variable declarations shown in Figure 3.11, we could store them in
declaration order as shown in Figure 3.12(a) or store them sorted by size as shown
in Figure 3.12(b). Note that sorting them not only makes access to them faster, it
also frequently saves space. Since no language definition we know of permits one to
rely on the arrangement in memory of local variables, this sorting is safe.

A third approach is to sort by size, but to allocate smallest first, respecting
boundary alignment. This may use somewhat more space than the preceding ap
proach, but for large stack frames it makes more variables accessible with short
offsets.

How to store large local data structures, such as arrays, requires more thought.
We could store them directly in the stack frame, and some compilers do so, but
this might require offsets larger than the immediate field allowed in instructions to
access array elements and other variables. Note that if we put large objects near the
beginning of the stack frame, then other objects require large offsets from f p, while
if we put them at the end of the frame, the same thing occurs relative to sp. We could
allocate a second base register (and, perhaps, more) to extend the stack frame, but
even that might not make it large enough. An alternative is to allocate large objects in
the middle of the stack frame (or possibly elsewhere), and to store pointers to them
in the stack frame at small offsets from f p. This requires an extra load to access an
array, but the cost of the load is frequently amortizable over many array accesses,
especially if the array is used heavily in one or more loops.

(b)

FIG. 3.12 (a) Unsorted aligned and (b) sorted frame layouts for the declarations shown in
Figure 3.11 (offsets in bytes).

Section 3.6 Approaches to Generating Loads and Stores 59

Approaches to Generating Loads and Stores
For concreteness, we assume for now that we are generating assembly code for a
32-bit sparc-V9 system, except that we use a flat register file, rather than register
windows.

The procedures described below generate the loads needed to put values into
registers to be used and the stores to put computed values into the appropriate
memory locations. They could also modify the corresponding symbol-table entries
to reflect the location of each value, i.e., whether it is in a register and, if so,
which register and generate moves between the integer and floating-point registers,
as necessary, so that values are in the type of registers they need to be in to be used.

Sym_to_Reg: SymTab x Var — > Register
Generates a load from the storage location corresponding to a given variable to a
register, register pair, or register quadruple of the appropriate type, and returns the
name of the first register. The global data types and structures used in the process
are given in Figure 3.13; a straightforward version of Sym_to_Reg() is given in
Figure 3.14 and auxiliary routines used in the process are given in Figure 3.15.
The variable GloSymtab has as its value the global symbol table. The variable
StaticLinkOff set holds the offset from register fp of the current procedure’s static
link. The following functions are used in the code:

1. Locate.Sym (symtab, i/) returns true if variable v is in symbol table symtab and
f a l s e otherwise (see Section 3.3).

2. Enel_Sym_Tab {symtab , v) returns the symbol table, stepping outward from
sym tab, in which variable v is found or n i l if it is not found (see Section 3.4).

3. Depth_Sym_Tab(sym tabl f sym tab) returns the difference in depths from the
current symbol table symtab to the enclosing one sym tabl (see Section 3.4).

4. Get_Sym_Attr (sym tab , v , attr) returns the value of the attr attribute of variable
v in symbol table symtab (see Section 3.3).

5. Short.Const (c) returns true if c fits into 13 bits (the length of a sparc short
constant operand) and f a l s e otherwise.

6. G en .In st(op c , opds) outputs the instruction with opcode opc and argument
list opds.

7. Reg_Char (reg) converts its R eg ister operand reg to the corresponding charac
ter string.

8. Find.Opcode (stype) returns the index in the array LdStType of the entry with
type stype.

Sym_to_Reg_Force: SymTab x Var x Register
Generates a load from the storage location corresponding to a given symbol to the
named register, register pair, or register quadruple of the appropriate type. This
routine can be used, for example, to force procedure arguments to the appropriate
registers.

Alloc_Reg: SymTab x Var — > Register
Allocates a register, register pair, or register quadruple of the appropriate type to
hold the value of its variable argument and sets the reg field in the variable’s

60 Symbol-Table Structure

SymType = enum {byte, uns_byte, short, uns.short, int,
uns_int, long_int, uns_long_int, float, dbl_float,
quad_float}

LdStType = array [1**11] of record
{type: SymType,
LdOp, StOp: CharString}

LdStType :=
I I types, load instructions, and store instructions
[<type:byte, LdOp:"ldsb", St Op "stsb">,
<type:uns_byte, LdOp:"ldub", St Op "stub"),
<type:short, LdOp:"ldsh", St Op "stsh"),
<type:uns_short, LdOp:"lduh", St Op "stuh"),
<type:int, LdOp:"ldsw", St Op "stsw"),
<type:uns_int, LdOp:"lduw", St Op "stuw"),
<type:long_int, LdOp:"ldd", St Op "std">,
<type:uns_long_int, LdOp:"ldd", St Op "std">,
<type:float, LdOp:"ldf", St Op "stf">,
<type:dbl_float, LdOp:"lddf", St Op "stdf">,
<type:quad_float, LdOp:"ldqf", St Op "stqf">]

GloSymtab: SymTab
StaticLinkOffset: integer
Depth: integer

FIG. 3.13 Global types and data structures used to generate loads and stores.

symbol-table entry, unless there already is a register allocated, and (in either case)
returns the name of the first register.

Reg_to_Sym: SymTab x R e g is te r —> Var
Generates a store of the second argument’s value (a register name) to the variable’s
storage location. Code for a straightforward version of Reg_to_Sym() is given in
Figure 3.14 and uses the global types and data structures in Figure 3.13 and the
auxiliary routines in Figure 3.15.

Alloc_Reg_Anon: enum { i n t , f i t } x in te g e r —> R e g iste r
Allocates a register, register pair, or register quadruple of the appropriate type
(according to the value of the second argument, which may be 1, 2, or 4) and returns
the name of the first register. It does not associate the register with a symbol, unlike
A lloc_Reg().

Free_Reg: R e g is te r —> 0
Returns its argument register to the pool of available registers.

Rather than simply loading a value into a register before using it and storing a
value as soon as it has been computed, we can easily provide more sophisticated ver
sions of the routines that move values to and from registers. The first improvement
is to track what is in each register and, if a needed value is already in a register of the
appropriate type, to use it without redundantly loading it; if the value is already in a
register, but of the wrong type, we can generate a move instead of a load if the target
architecture supports moves between the integer and floating-point registers. If we

Section 3.6 Approaches to Generating Loads and Stores 61

procedure Sym_to_Reg(symtab,v) returns Register
symtab: in SymTab
v: in Var

begin
symtabl: SymTab
symdisp: integer
Opcode: CharString
symreg: Register
symtype: SymType
symtabl := Find_Sym_Tab(symtab,v)
if Get_Sym_Attr(symtabl,v,register) then

return Get_Sym_Attr(symtabl,v,reg)
fi
symtype := Get_Sym_Attr(symtabl,v,type)
Opcode :* LdStType[Find.Opcode(symtype)].LdOp
symreg := Alloc_Reg(symtabl,v)
symdisp := Get_Sym_Attr(symtabl,v,disp)
I| generate load instruction and return loaded register
Gen_LdSt(symtabl,Opcode,symreg,symdisp,false)
return symreg

end I| Sym_to_Reg

procedure Reg_to_Sym(symtab,r,v)
symtab: in SymTab
r: in Register
v: in Var

begin
symtabl: SymTab
disp: integer
Opcode: CharString
symtype: SymType
symtabl := Find_Sym_Tab(symtab,v)
symtype := Get_Sym_Attr(symtabl,v,type)
Opcode := LdStType[Find_Opcode(symtype)].StOp
symdisp := Get_Sym_Attr(symtabl,v,disp)
I| generate store from register that is the value of r
Gen_LdSt(symtabl,Opcode,r,symdisp,true)

end || Reg_to_Sym
FIG. 3.14 Routines to load and store, respectively, a variable’s value to or from a register, register

pair, or quadruple.

run out of registers, we select one for reuse (we assign this task to Alloc_Reg()).
Similarly, instead of storing each value as soon as it has been computed, we can defer
stores to the end of the basic block, or until we run out of registers. Alternatively, if
there are more registers needed than available, we could implement Reg_to_Sym()
so that it stores each computed quantity as early as it reasonably can, so as to mini
mize both the number of stores needed and the number of registers in use at once.

The last two strategies above can be carried a step further. Namely, we can do
register allocation for basic blocks in a sequence that allows us to take into account,

62 Symbol-Table Structure

procedure Find_Sym_Tab(symtab,v) returns SymTab
symtab: in SymTab
v: in Var

begin
symtabl: SymTab
I I determine correct symbol table for symbol
I| and set Depth if neither local nor global
Depth := 0
if Locate_Sym(symtab,v) then

return symtab
elif Locate_Sym(GloSymtab,v) then

return GloSymtab
else

symtabl Encl_Sym_Tab(symtab,v)
Depth Depth_Sym_Tab(symtabl,symtab)
return symtabl

fi
end || Find_Sym_Tab

procedure Find_Opcode(symtype) returns integer
symtype: in SymType

begin
for i := 1 to 11 do

if symtype = LdStType[i].type then
return i

fi
od

end || Find_Opcode
FIG. 3.15 Auxiliary routines used in generating loads and stores.

for most blocks, the contents of the registers on entry to the block. If a block has a
single predecessor, the register state on entry to it is the exit state of its predecessor. If
it has multiple predecessors, the appropriate choice is the intersection of the register
states on exit from the predecessors. This allows quite efficient register allocation
and minimization of loads and stores for structures such as if- th e n -e lse s , but
it does not help for loops, since one of the predecessors of a loop body is the
loop body itself. To do much better than this we need the global register-allocation
techniques discussed in Chapter 16, which also discusses the local approach we have
just described in more detail.

Another alternative is to assign symbolic registers during code generation and
leave it to the global register allocator to assign memory locations for those symbolic
registers requiring them.

It is a relatively easy generalization to generate loads and stores for variables in
closed scopes imported into the current scope. Doing so involves adding attributes
to each symbol table (not symbol-table entries) to indicate what kind of scope it
represents and what register to use (i.e., other than f p and gp) to access the symbols
in it.

Section 3.6 Approaches to Generating Loads and Stores 63

procedure Gen.LdSt (symtabl,OpCode,reg,symdisp,stflag)
symtabl: in SymTab
OpCode: in CharString
reg: in Register
symdisp: in integer
stflag: in boolean

begin
i: integer
regl, regc: CharString
if symtabl * GloSymtab then

I I set regl to base address
regl := "gp"
regc := Reg.Char(reg)

else
regl := "fp"
if stflag then

reg := Alloc_Reg_Anon(int,4)
fi
regc := Reg_Char(reg)
I| generate loads to get to the right stack frame
for i := 1 to Depth do

Gen.Inst("lduw","[" © regl © "+"
© StaticLinkOffset © © regc)

regl := regc
od
if stflag then

Free.Reg(reg)
fi

fi
I| generate load or store
if Short_Const(symdisp) & stflag then

Gen_Inst(Opcode,regc © © regl © "+" © Int_Char(symdisp) © "]");
return

elif Short_Const(symdisp) then
Gen.Inst(Opcode,"[" © regl © "+" © Int.Char(symdisp) © "]," © regc);
return

fi
I| generate sethi and load or store
Gen_Inst ("sethi", "#/,hi(" © Int_Char (symdisp) © ")," ® regl)
if stflag then

Gen.Inst(Opcode,regc © ",[" © regl © "+#/0lo(" © Int_Char(symdisp)
© ••)]")

else
Gen_Inst (Opcode," [" © regl © "+°/0lo(" © Int_Char (symdisp) © ")],"

© regc)
fi

end |I Gen_LdSt
FIG. 3.15 (continued)

Symbol-Table Structure

Wrap-Up
In this chapter we have been concerned with issues involved in structuring local
and global symbol tables to accommodate the features of modern programming
languages and to make them efficient for use in compiled language implementa
tions.

We began with a discussion of storage classes and visibility or scoping rules.
Next we discussed symbol attributes and how to structure a local symbol table,
followed by a description of a way to organize a global symbol table that includes
importing and exporting scopes, so as to support languages like Modula-2, Ada,
and C++.

Then we specified a programming interface to global and local symbol tables
that allows them to be structured in any way one desires, as long as it satisfies
the interface. Next we explored issues involved in binding variables to storage
locations and symbolic registers, and we presented ican implementations of routines
to generate loads and stores for variables in accord with their attributes and the
symbol-table interface mentioned above.

The primary lessons in this chapter are (1) that there are many ways to imple
ment symbol tables, some more efficient than others, (2) that it is important to make
operations on symbol tables efficient, (3) that careful thought about the data struc
tures used can produce both highly efficient and relatively simple implementations,
(4) that the structure of the symbol table can be hidden from other parts of a com
piler by a sufficiently specified interface, and (5) that there are several approaches
to generating loads and stores that can be more or less efficient in terms of tracking
register contents and minimizing memory traffic.

Further Reading
The programming language Mesa is described in [MitM79].

[Knut73] provides a wealth of information and techniques for designing hash
functions.

The paper by Graham, Joy, and Roubine on which our scoping model is based
is [GraJ79].

Exercises
3.1 Give examples from real programming languages of as many of the following pairs

of scopes and lifetimes as actually occur. For each, cite the language and give example
code.

Section 3.9 Exercises 65

Entire
program

File or
module

Set of
procedures

One
procedure

One
block

Entire
execution
Execution in
a module
All executions
of a procedure
Single execution
of a procedure
Execution of
a block

3.2 Write an ican routine S tru ct_ E q u iv (ta l ,tn l,td) that takes two type names tnl
and tnl and an ican representation of a set of Pascal type definitions td9 such that
each of tnl and tnl is either a simple type or one of the types defined in td and returns
true if the types named tnl and tnl are structurally equivalent or f a l s e if they are
not. td is an ican list of pairs, each of whose members consists of a type name and
a type representation, where, for example, the type definitions in Figure 3.1(b) are
represented by the following list:

[<tl,<array,2,[<0,5>,<1,10>],integer>>,
<t2,<record,3 ,[<t2a,integer),<t2b,<pointer,t2> >,

<t2c,<array,l,[<1,3>],char>>]>>,
<t3,<array,1,[<1,100>],t2>>]

Two types are structurally equivalent if (1) they are the same simple type or (2) their
definitions are identical, except for possibly using different names for types from
which they are composed. For example, given the Pascal type definitions

tl = integer;
t2 = array [1..10] of integer;
t3 = array [1..10] of tl;
t4 = record fl: integer; f2: Tt4 end;
t5 = record fl: tl; f2: Tt4 end;
t6 = record fl: t2; f2: Tt4 end;

each of the pairs t l and in teger, t2 and t3 , and t4 and t5 are structurally
equivalent, while t6 is inequivalent to all the other types.

3.3 Write routines to assign stack variables to offsets from the frame pointer (a) in the
order given in the symbol table, (b) ordered by the length of the data, longest first,
and (c) ordered shortest first.

3.4 Write register-tracking versions of (a) Sym_to_Reg(), (b) Reg_to_Sym(), and (c)
Alloc_Reg().

66 Symbol-Table Structure

3.5 Design an ican symbol-table entry that includes at least the fields described at the be
ginning of Section 3.2 and write the routines Get _Sym_Attr() andSet_Sym_Attr()
in ican.

3.6 Design a structure for a local symbol table, using your entry design from the preced
ing exercise, and write ican implementations of Insert_Sym(), Locate_Sym(),
Next_Sym(), and More_Syms().

3.7 Design a structure for a global symbol table, using your local-table design from
the preceding exercise, and write ican implementations of New_Sym_Tab (),
Dest_Sym_Tab(), Encl_Sym_Tab(), and Depth_Sym_Tab() that take closed
scopes into account.

CHAPTER 4

Intermediate
Representations

In this chapter we explore issues involved in the design of intermediate-code
representations. As we shall see, there are numerous feasible choices for
intermediate-code structure.
While we discuss several intermediate-code forms and their relative advantages,

we shall finally need to select and use a particular intermediate-code design for
concreteness in our presentation of optimization and code-generation issues. Our
primary intermediate language is called mir, for Medium-level Intermediate Repre
sentation. In addition, we also describe a somewhat higher-level form called hir, for
High-level Intermediate Representation, and a lower-level form called lir, for Low-
level Intermediate Representation. The basic mir is suitable for most optimizations
(as is lir), while hir is used for dependence analysis and some of the code transfor
mations based on it, and lir is used for optimizations that require that registers and
addressing be explicit.

4.1 Issues in Designing an Intermediate Language
Intermediate-language design is largely an art, not a science. There are several prin
ciples that apply and a large body of experience to draw on, but there is always a
decision about whether to use or adapt an existing representation or, if an existing
language is not used, there are many decisions to be made in the design of a new one.
If an existing one is to be used, there are considerations of its appropriateness for the
new application—both the languages to be compiled and the target architecture—
and any resulting porting costs, versus the savings inherent in reuse of an existing
design and code. There is also the issue of whether the intermediate form is appro
priate for the kinds and degree of optimization to be performed. Some optimizations
may be very hard to do at all on a given intermediate representation, and some may
take much longer to do than they would on another representation. For example,
the ucode intermediate language, forms of which are used in the pa-risc and mips

67

68 Intermediate Representations

compilers, is very well suited to an architecture that evaluates expressions on a stack,
as that is its model of expression evaluation. It is less well suited a priori to a load-
store architecture with a large register set instead of an evaluation stack. Thus, both
Hewlett-Packard’s and m ips ’s compilers translate ucode into another form for opti
mization. HP translates it to a very low-level representation, while mips translates it
within its optimizer to a medium-level triples form, optimizes it, and then translates
it back to ucode for the code generator.

If a new intermediate representation is to be designed, the issues include its level
(and, most particularly, how machine-dependent it is), its structure, its expressive
ness (i.e., the constructs needed to cover the appropriate range of languages), its
appropriateness for optimization or for particular optimizations, and its appropri
ateness for code generation for the target architecture or architectures.

There is also the possibility of using more than one intermediate form, trans
lating from one to another in the compilation process, either to preserve an existing
technology investment or to do the tasks appropriate to each level at the correspond
ing time (or both), or the possibility of having a multi-level intermediate form. The
former is what Hewlett-Packard does in their compilers for pa-risc . They first trans
late to a version of u co d e , which was the intermediate form used for the previous
generation of HP3000s (for which it was very appropriate, since they were stack ma
chines). Then, in two steps, they translate to a very low-level representation called
sll ic 1 on which they do virtually all their optimization. It is essential to doing op
timization effectively at that level, however, that they preserve information gathered
about the code in the language-specific front ends and the intermediate stages.

In the latter approach, some constructs typically have more than one possible
representation, and each may be appropriate for a particular task. One common ex
ample of this is being able to represent subscripted expressions by lists of subscripts
(a relatively high-level form) and by linearized expressions that make explicit the
computation of the offset in memory from the base address of the array or another
element’s address (a lower-level form). The list form is desirable for doing depen
dence analysis (see Section 9.1) and the various optimizations based on it, while
the linearized form is appropriate for constant folding, strength reduction, loop-
invariant code motion, and other more basic optimizations.

For example, using the notation described in Section 4.6 below, a use of the C
expression a [i] [j+2] with the array declared to be

f l o a t a [20][10]

might be represented in a high-level form (h ir) as shown in Figure 4.1(a), in a
medium-level form (m ir) as shown in Figure 4.1(b), and in a low-level form (lir)
as shown in Figure 4.1(c). Use of a variable name in the high-level and medium-level
forms indicates the symbol-table entry for it, and the unary operators addr and * in
the medium-level form indicate “ address o f” and pointer indirection, respectively.
The high-level form indicates that it is a reference to an element of an array with

1. sllic is an abbreviation for Spectrum Low-Level Intermediate Code. Spectrum was the internal
name for pa-risc during its development.

Section 4.2 High-Level Intermediate Languages 69

tl <- a[i,j+2] tl <- 3 + 2 rl <- [fp-4]
t2 <- i * 20 r2 <r~ rl + 2
t3 <- tl + t2 r3 <r~ [fp-8]
t4 <- 4 * t3 r4 <- r3 * 20
t5 <- addr a r5 <- r4 + r2
t6 <- t5 + t4 r6 <- 4 * r5
t7 <7- *t6 r7 fp - 216

fl [r7+r6]
(a) (b) (c)

FIG. 4.1 (a) High-, (b) medium-, and (c) low-level representations of a C array reference.

two subscripts, the first of which is i and the second of which is the expression
j + 2. The medium-level form computes

(addr a) + 4 * (i * 20 + j + 2)

as the address of the array element and then loads the value with that address into
the temporary t7. The low-level form fetches the values of i and j from memory
(assumed to be at offsets -4 and -8, respectively, from the contents of the frame
pointer register f p), computes the offset into the array, and then fetches the value of
the array element into floating-point register f 1.

Note that intermediate codes are typically represented within a compiler in a
binary form and symbols, such as variables, are usually pointers to symbol-table
entries, so as to achieve both speed and compactness. In our examples, we use
external text representations designed for readability. Most compilers include a
debugging output form of their intermediate code(s), at least for the benefit of the
compiler writers. In some cases, such as in compilers that save intermediate code
to enable cross-module procedure integration (see Section 15.2), there needs to be
a form that not only can be printed out for debugging, but that can also be read
back in and used. The three main issues encountered in designing such an external
representation are (1) how to represent pointers in a position-independent way in the
external form; (2) how to represent compiler-generated objects, such as temporaries,
in a way that makes them unique to the module in which they appear; and (3) how
to make the external representation both compact and fast to write and read. One
possibility is to use two external representations—a character-based one for human
consumption (and, possibly, human generation) and a binary one to support cross
module procedure integration and other interprocedural analyses and optimizations.
In the binary form, pointers can be made position-independent by making them
relative to the locations of the pointer references. To make each temporary unique
to the module that uses it, it can be made to include the module name.

.2 High-Level Intermediate Languages
High-level intermediate languages (ILs) are used almost entirely in the earliest stages
of the compilation process, or in preprocessors before compilation. In the former
case, they are produced by compiler front ends and are usually transformed shortly

70 Interm ediate Representations

in t f (a , b)
in t a , b ;
{ in t c ;

c = a + 2 ;
p r i n t (b , c) ;

}

FIG. 4.2 A tiny C routine whose abstract syntax tree is given in Figure 4.3.

function

ident
f

paramlist

ident paramlist

ident end
b

body

decllist stmtlist

ident
c

end stmtlist

FIG. 4.3 Abstract syntax tree for the C routine in Figure 4.2.

thereafter into lower-level forms; in the latter, they are often transformed back into
source code in the original language or another language.

One frequently occurring form of high-level IL is the abstract syntax tree, which
makes explicit the structure of a program , usually with just enough information
available to reconstruct its source form or a close facsimile thereof. A major use
for abstract syntax trees is in language-sensitive or syntax-directed editors for pro
gramming languages, in which they usually are the standard internal representation
for program s. As an example, consider the simple C routine in Figure 4.2 and its ab
stract syntax tree representation in Figure 4.3. The tree, along with a symbol table

Section 4.4 Low-Level Intermediate Languages 71

indicating the types of the variables, provides all the information necessary to recon
struct the source (except information about the details of its layout, which could be
included as annotations in the tree if desired).

A single tree traversal by a compiler component that is knowledgeable about the
semantics of the source language is all that is necessary to transform the abstract
syntax tree into a medium-level intermediate-code representation, such as those
discussed in the next section.

Another form of high-level IL is one that is designed for dependence analysis,
as discussed in Section 9.1. Such an IL is usually linear, rather than tree-like, but
preserves some of the features of the source language, such as array subscripts
and loop structure, in essentially their source forms. Our hir described below in
Section 4.6.2 has high-level features of this sort, but also includes many medium-
level features.

Medium-Level Intermediate Languages
Medium-level intermediate languages are generally designed to reflect the range of
features in a set of source languages, but in a language-independent way, and are
designed to be good bases for generation of efficient machine code for one or more
architectures. They provide a way to represent source variables, temporaries, and
registers; to reduce control flow to simple conditional and unconditional branches,
calls, and returns; and to make explicit the operations necessary to support block
structure and procedures.

Our mir (Section 4.6.1) and Sun IR (Section 21.1) are both good examples of
medium-level ILs.

Medium-level ILs are appropriate for most of the optimizations done in com
pilers, such as common-subexpression elimination (Section 13.1), code motion (Sec
tion 13.2), and algebraic simplification (Section 12.3).

Low-Level Intermediate Languages
Low-level intermediate languages frequently correspond almost one-to-one to target-
machine instructions and, hence, are often quite architecture-dependent. They devi
ate from one-to-one correspondence generally in cases where there are alternatives
for the most effective code to generate for them. For example, a low-level interme
diate language may have an integer multiply operator, while the target architecture
may not have a multiply instruction, or the multiply instruction may not be the best
choice of code to generate for some combinations of operands. Or, the intermediate
code may have only simple addressing modes, such as register + register and regis
ter + constant, while the target architecture has more complex ones, such as scaled
indexing or index register modification. In either case, it becomes the function of
the final instruction-selection phase of the compilation process or of a postpass opti
mizer to select the appropriate instruction or instruction sequence to generate from
the intermediate code. The use of such representations allows maximal optimization
to be performed on the intermediate code and in the final phases of compilation,

72 Intermediate Representations

t2 <— *tl
tl <- tl + 4

CO
• -p <- +CO■p 1

to-p <- VCO■p c+

if LO■P goto L I

LDWM 4(0,r2),r3 Ll: LDWX r2(0,rl),r3

ADDI 1,r4,r4 ADDIB,< 4,r2,L1
COMB,< r4,r5,Ll

(c)
FIG. 4.4 A mir fragment in (a) with alternative pa-risc code sequences generated for it in (b)

and (c).

to either expand intermediate-code instructions into code sequences or to combine
related ones into more powerful instructions.

For example, suppose the target architecture has a load instruction that option
ally updates the base address used to fetch the data in parallel with fetching it, but
that doing such an update fails to set the machine’s condition codes or does not al
low for its use in an add and (conditional) branch instruction, and so it cannot be
used to count the containing loop. We then have available the possibility of combin
ing intermediate-code instructions that fetch the data and increment the data address
into a fetch with increment. On the other hand, if the loop control variable has been
determined to be an induction variable and eliminated, we might need to keep the
address update separate from the data fetch to use it to test for termination of the
loop. An example of this is shown in Figure 4.4. The mir in Figure 4.4(a) separately
loads the data, increments the address loaded from, increments the loop counter,
tests for completion of the loop, and branches based on the result of the test. The
operands are temporaries and constants. The pa-risc code in Figure 4.4(b) does a
load word with modify that updates the address in r2 to point to the next array el
ement, then does an add immediate to increment the loop counter, and a compare
and branch to close the loop. The alternative code in Figure 4.4(c) does a load word
indexed to access the data, and an add immediate and branch to update the address
and close the loop.

4.5 Multi-Level Intermediate Languages
Some of the intermediate languages we consider include features that are best viewed
as representing multiple levels in the same language. For example, the medium-level
Sun IR has some high-level features, such as a way to represent multiply subscripted
array references with the multiple subscripts, as well as with the several subscripts
linearized to a single offset. The former representation is valuable for some varieties

Section 4.6 Our Intermediate Languages: MIR, HIR, and LIR 73

of dependence analysis (see Section 9.3) and hence valuable to vectorization, paral
lelization, and data-cache optimizations, while the latter form is more susceptible to
the traditional loop optimizations.

At the other end of the spectrum, the low-level sllic includes integer multiply
and divide operators, despite the fact that no pa-risc hardware includes an integer
multiply instruction that operates on integer registers (although pa-risc i .i does
provide one that operates on integers held in floating-point registers) or any integer
divide instruction at all. This provides the opportunity to do optimizations (such as
algebraic simplifications and strength reductions) that depend on recognizing that
a multiplication or division is being performed and thus allows the module that
generates the final code to determine that a particular multiplication, for example,
can be done most efficiently using shift and add instructions, rather than by the
hardware multiply.

Our Intermediate Languages: MIR, HIR, and LIR
In most of our examples expressed in an intermediate language from here on we
use a language called mir (Medium-level Intermediate Representation, pronounced
“meer”), which we describe next. Where appropriate we use an enhanced version
of mir called hir (High-level Intermediate Representation, pronounced “ heer”),
with some higher-level features, such as representing subscripted references to array
elements by lists, rather than by linear expressions representing offsets from the base
of the array. Correspondingly, where appropriate we use an adaptation of mir called
lir (Low-level Intermediate Representation, pronounced “ leer”), when lower-level
features, such as explicit representation of registers, memory addresses, and the like
are appropriate. On occasion we mix features of mir and hir or mir and lir in the
same program to make a specific point or to represent a stage in the translation from
one level to the next.

Medium-Level Intermediate Representation (MIR)
Basically mir consists of a symbol table and quadruples consisting of an operator
and three operands, plus a few additional operators that have fewer or more than
three operands. A few categories of special symbols are reserved to denote temporary
variables, registers, and labels. We write mir instructions, wherever it is appropriate,
as assignments, using as the assignment operator. We use the xbnf notation
described in Section 2.1 to present the syntax of mir and the other intermediate
languages, hir and lir, that are defined below.

We begin our description of mir by giving the syntax of programs in xbnf,
which appears in Table 4.1. A program consists of a sequence of program units.
Each program unit consists of an optional label, followed by a sequence of (possibly
labeled) instructions delimited by begin and end.

Next, we give the syntax of mir instructions in Table 4.2, which implicitly
declares the ican type MIRInst, and describe their semantics. A mir instruction may

74 Intermediate Representations

TA BLE 4.1 xbnf syntax of mir programs and program units.

P rogram — ► [L ab e l :] P rogU n it*

P rogU n it [L ab e l :] begin M IR In sts end
M IR In sts {[L ab e l :] M IR In st [I 1 C om m en t]]*

L ab e l Identifier

TA BLE 4.2 xbnf syntax of mir instructions.

M IR In st

R eceiveln st

A ssign ln st

G o to ln st

I fln st

C a llln st

A rg L ist

R etu rn ln st

Sequen celn st

E xp ression

R e lE x p r

O p eran d

B in O p er

R elO p er

U n ary O p er

C on st

Integer

E loatN u m ber

B oo lean

L ab e l

V arN am e

E ltN am e

P aram T ype

Identifier

L etter

N Z D e c D ig it

D ecD ig it

H ex D ig it

R eceiveln st | A ssign ln st | G o to ln st \ I fln st \ C a llln st

| R etu rn ln st \ Sequen celn st \ L ab e l : M IR In st

receive V arN am e (P aram T ype)
V arN am e < - E xp ression

| V arN am e < - (V arN am e) O p eran d

| [*] V arN am e [. E ltN am e] <- O p eran d

goto L ab e l

if R e lE x p r {goto L ab e l | trap Integer]

[call | V arN am e <-] P ro cN am e , A rgL ist

([{O p eran d , T ypeN am e] x ;])
return [O peran d]

sequence
O p eran d B in O p er O p eran d

| U n ary O p er O p eran d \ O p eran d

O p eran d R e lO p er O p eran d | [!] O p eran d

V arN am e \ C on st

+ | - | * | / | mod | min | max | R elO p er

| shl | shr | shra | and | or | xor | . | *.
= 1 !=l <I<-I>l>-
- | ! | addr | (TypeN am e) | *
Integer \ E loatN u m ber \ Boo lean

0 | [-] N Z D e c D ig it D ecD ig it* \ Ox H e x D ig it+

[-] D e c D ig it+ . D e c D ig itf [E [-] D e cD ig it+] [D]
true | false
Identifier

Identifier

Identifier

val | res | valres | ref
L etter {L etter \ D ig it | _)*
a | ... | z | A | ... | Z
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
0 | N Z D e c D ig it

D ecD ig it \ a | ... | f | A | ... | F

Section 4.6 Our Intermediate Languages: MIR, HIR, and LIR 75

be a re ce iv e , an assignment, a goto , an i f , a call, a re tu rn , or a sequence, and it
may be labeled.

A receive specifies the reception of a parameter from a calling routine. Receives
may appear only as the first executable instructions in a program. The instruction
specifies the parameter and the parameter-passing discipline used, namely, value
(val), result (res), value-result (v a lre s) , or reference (ref).

An assignment either computes an expression and assigns its value to a variable,
conditionally assigns the value of an operand to a variable, or assigns a value through
a pointer or to a component of a structure. The target of the first two types of
assignments is a variable. In a conditional assignment, the value of the variable in
parentheses after the arrow must be Boolean, and the assignment is performed only if
its value is tru e . An expression may consist of two operands combined by a binary
operator, a unary operator followed by an operand, or just an operand. A binary
operator may be any of the arithmetic operators

+ - * / mod min max
or the relational operators

= ! = < < = > > =

or the shift and logical operators

shl shr shra and or xor
or the component-selection operators

* .
A unary operator may be any of the symbols shown in Table 4.3.

The target of the second type of assignment is composed of an optional indirec
tion operator (which indicates assignment through a pointer), a variable name,
and an optional component selection operator (“ . ” followed by a member name of
the given structure). It can be used to assign a value to an object accessed by means
of a pointer, or to a component of a structure, or to an object that is both.

A goto instruction causes a transfer of control to the instruction labeled by its
target, which must be in the current procedure. An i f instruction tests a relation
or a condition or its negation and, if it is satisfied, causes a transfer of control. The
transfer of control may be either identical to that caused by a goto instruction or

TABLE 4.3 Unary operators in mir.

Symbol Meaning

- Arithmetic minus
! Logical negation
addr Address of
(TypeName) Type conversion
* Pointer indirection

76 Intermediate Representations

may be to an underlying run-time system (a “ trap”). In the latter case, it specifies an
integer trap number.

A call instruction gives the name of the procedure being called and a list of actual
arguments and may specify a variable to be assigned the result of the call (if there is
one). It causes the named procedure to be invoked with the arguments given and, if
appropriate, the returned value to be assigned to the variable.

A return specifies execution of a return to the procedure that invoked the
current one and may include an operand whose value is returned to the caller.

A sequence instruction represents a barrier in the intermediate code. Instruc
tions with one or more operands with the v o la t i le storage class modifier must not
be moved across a sequence instruction, either forward or backward. This restricts
the optimizations that can be performed on code that contains such instructions.

Identifiers consist of a letter followed by a sequence of zero or more letters, dig
its, or underscores. The name of a variable, type, or procedure may be any identifier,
except those reserved for labels, temporaries, and symbolic registers, as described
next. Identifiers consisting of an uppercase “L” followed by a non-negative decimal
integer, e.g., LO, L32, and L7701, denote labels. For the names of temporaries, we
reserve names consisting of a lowercase “t” followed by a non-negative decimal in
teger, e.g., tO, t32, and t7701. For symbolic registers, we reserve names consisting
of a lowercase “ s ” followed by a non-negative decimal integer, and for real registers
we reserve rO, ... , r31 and f 0, ... , f 31.

Integer constants may be in either decimal or hexadecimal notation. A decimal
integer is either “ 0” or consists of an optional minus sign followed by a nonzero dec
imal digit, followed by zero or more decimal digits. A hexadecimal integer consists
of “ Ox” followed by a sequence of hexadecimal digits, where a hexadecimal digit is
either a decimal digit, any of the uppercase letters “A” through “F” , or the lowercase
letters “ a ” through “ f ” . For example, the following are all legal integers:

0 1 3462 -2 -49 0x0 0xl37A 0x2ffffffc
In a floating-point number, the part beginning with “E” indicates that the preceding
value is to be multiplied by 10 to the value of the integer following the “E”, and the
optional “D” indicates a double-precision value. Thus, for example,

0.0 3.2E10 -0.5 -2.0E-22
are all single-precision floating-point numbers, and

0.0D 3.2E102D -0.5D -2.0E-22D
are all double-precision floating-point numbers.

Comments in mir programs begin with the characters “ I I ” and run to the end
of the current line.

We use full mir programs where appropriate, but most of the time we use only
fragments, since they are enough to satisfy our needs.

As an example of mir, the pair of C procedures in Figure 4.5 corresponds to the
code in Figure 4.6.

Note that some of the operators in mir, such as min and max, are not generally
included in machine instruction sets. We include them in our intermediate code be
cause they occur frequently in higher-level languages and some architectures provide

Section 4.6 Our Intermediate Languages: MIR, HIR, and LIR 77

void make_node(p,n)
struct node *p;
int n;

{ struct node *q;
q = malloc(sizeof(struct node));
q->next = nil;
q->value = n;
p->next = q;

>

void insert_node(n,l)
int n;
struct node *1;

{ if (n > l->value)
if (l->next == nil) make_node(l,n);
else insert_node(n,l->next);

>

FIG. 4 .5 Example pair of C procedures.

make_node:
begin

receive p(val)
receive n(val)
q <- call malloc,(8,int)
*q.next <- nil
*q.value <- n
*p.next <- q
return

end
insert_node:

begin
receive n(val)
receive l(val)
tl <- 1*.value
if n <= tl goto LI
t2 <- l*.next
if t2 != nil goto L2
call make_node(1,type1;n,int)
return

L2: t4 <- l*.next
call insert_node,(n,int;t4,typel)
return

LI: return
end

FIG. 4 .6 m i r code for the pair of C procedures in Figure 4.5.

78 Intermediate Representations

ways to compute them very efficiently and, in particular, without any branches. For
example, for pa-risc, the mir instruction tl t2 min t3 can be translated (assum
ing that t i is in register ri) to 2

MOVE r2,rl /* copy r2 to rl */
C0M,>= r3,r2 /* compare r3 to r2, nullify next if >= */
MOVE r3,rl /* copy r3 to rl if not nullified */
Also, note that we have provided two ways to represent conditional tests and

branches: either (1) by computing the value of a condition and then branching based
on it or its negation, e.g.,

t3 <- tl < t2
if t3 goto LI

or (2) by computing the condition and branching in the same mir instruction, e.g.,

if tl < t2 goto LI
The former approach is well suited to an architecture with condition codes, such
as sparc, power, or the Intel 386 architecture family. For such machines, the
comparison can sometimes be subsumed by a previous subtract instruction, since
t l < t2 if and only if 0 < t2 - t l , and it may be desirable to move the compare
or subtract away from the conditional branch to allow the condition codes to be
determined in time to know whether the branch will be taken or not. The latter
approach is well suited to an architecture with compare and branch instructions,
such as pa-risc or mips, since the mir instruction can usually be translated to a
single machine instruction.

4.6.2 High-Level Intermediate Representation (HIR)
In this section we describe the extensions to mir that make it into the higher-level
intermediate representation hir.

An array element may be referenced with multiple subscripts and with its sub
scripts represented explicitly in hir. Arrays are stored in row-major order, i.e., with
the last subscript varying fastest. We also include a high-level looping construct, the
fo r loop, and a compound i f . Thus, MIRInst needs to be replaced by HIRInst, and
the syntax of Assignlnst, Traplnst, and Operand need to be changed as shown in
Table 4.4. An IntExpr is any expression whose value is an integer.

The semantics of the fo r loop are similar to those of Fortran’s do, rather than
C ’s fo r statement. In particular, the meaning of the hir fo r loop in Figure 4.7(a) is
given by the mir code in Figure 4.7(b), with the additional proviso that the body of
the loop must not change the value of the control variable v. Note that Figure 4.7(b)
selects one or the other loop body (beginning with LI or L2), depending on whether
opd2 > 0 or not.

2. The MOVE and COM opcodes are both pseudo-ops, not actual pa-risc instructions. MOVE can be
implemented as an ADD or OR and COM as a COMCLR.

Section 4.6 Our Intermediate Languages: MIR, HIR, and LIR 79

TABLE 4.4 Changes to xbnf description of instructions and operands to turn mir into hir .

HIRInst * Assignlnst \ Gotolnst \ Iflnst \ Calllnst \ Returnlnst
| Receivelnst \ Sequencelnst \ Forlnst \ Iflnst
| Traplnst \ Label : HIRInst

Forlnst for VarName <- Operand [by Operand] to Operand do
HIRInst* endfor

Iflnst —> if RelExpr then HIRInst* [else HIRInst*] endif
Assignlnst [VarName | Array Ref] <- Expression

| [*] VarName [. EltName] <r- Operand
Traplnst — ► trap Integer
Operand VarName \ Array Ref \ Const
Array Ref — ► VarName [{Subscript x ,}]
Subscript — ► IntExpr

v <- opdl
t2 < - opd2
t3 <- opd3
if t2 > 0 goto L2

for v <- opdl by opd2 to opd3
instructions

endfor

instructions
v <- v + t2
goto L2

L3:

LI: if v < t3 goto L3
instructions

v <- v + t2
goto LI

L2: if v > t3 goto L3

(a) (b)
FIG. 4.7 (a) Form of the hir fo r loop, and (b) its semantics in m ir.

4.6.3 Low-Level Intermediate Representation (LIR)
In this section we describe the changes to m ir that make it into the lower-level inter
mediate code lir . We give only the necessary changes to the syntax and semantics
of mir by providing replacements for productions in the syntax of m ir (and addi
tional ones, as needed) and descriptions of the additional features. The changes to
the xbnf description are as shown in Table 4.5. Assignments and operands need
to be changed to replace variable names by registers and memory addresses. Calls
need to be changed to delete the argument list, since we assume that parameters are

80 Intermediate Representations

TABLE 4.5 Changes in the xbnf description of mir instructions and expressions to create lir.

LIRInst

RegAsgnlnst

CondAsgnlnst
Storelnst
Loadlnst
Gotolnst
Calllnst
Operand
MemAddr

Length

RegAsgnlnst \ CondAsgnlnst \ Storelnst \ Loadlnst
| Gotolnst | Iflnst \ Calllnst \ReturnInst
| Sequencelnst | Label: LIRInst
RegName <- Expression
| RegName (Integer , Integer) <- Operand
RegName <- (RegName) Operand
MemAddr [(Length)] <- Operand
RegName <- MemAddr [(Length)]
goto {Label \ RegName [{+ | -} Zwteĝ r]}
[RegName <-] c a l l {ProcName \ RegName] , RegName
RegName \ Integer
[RegName] [(Length)]
| [RegName + RegName] [(Length)]
| [RegName [+ | -] Integer] [(Length)]
Integer

passed in the run-time stack or in registers (or, if there are more than a predetermined
number of parameters, the excess ones are also passed in the run-time stack).

There are five types of assignment instructions, namely, those that

1. assign an expression to a register;

2. assign an operand to an element of a register (in lir , the element is represented
by two integers, namely, the first bit position and the width in bits of the element
separated by a comma and enclosed in parentheses);

3. conditionally assign an operand to a register depending on the value in a register;

4. store an operand at a memory address; or

5. load a register from a memory address.

A memory address is given in square brackets (“ [” and “] ”) as the contents of a
register, the sum of the contents of two registers, or a register’s contents plus or minus
an integer constant. The length specification, if it appears, is an integer number of
bytes.

In a c a l l instruction that has two or more register operands, the next to last
contains the address to be branched to and the last names the register to be used to
store the return address, which is the address of the c a l l instruction.

Section 4.7 Representing MIR, HIR, and LIR in ICAN 81

For the names of registers, we reserve rO, r l , . . . , r31 for integer or general-
purpose registers, fO, f 1, . . . , f31 for floating-point registers, and sO, s i , . . . for
symbolic registers.

Representing MIR, HIR, and LIR in ICAN
So as to be able to conveniently manipulate m ir, hir, and lir code in ican programs,
we next discuss a means of representing the former in the latter, which constitutes
the definition of the ican types MIRInst, HIRInst, LIRInst, and a series of others.
This representation can be thought of as an internal form, i.e., ican structures,
corresponding to the external printed forms of the intermediate representations that
are defined in the preceding section.

We begin with Table 4.6, which gives, for each intermediate-language operator
(including the ones that represent operations that are thought of as applying to the
left-hand side in an assignment), its representation by an element of the enumerated
type IROper and its synonym Operator, which are defined as follows:

IROper = Operator = enum {
add, sub, mul, div, mod, min,
max, eql, neql, less, lseq, grtr,
gteq, shl, shr, shr a, and, or,
xor, ind, elt, indelt, neg, not,
addr, val, cast, lind, lcond, 1indelt,
l e l t }

Next we define the ican types Var, Const, R eg ister , Symbol, Operand, and
LIROperand.

Var = CharString
Const = CharString
R eg ister = CharString
Symbol = Var u Const
Operand = Var u Const u TypeName
LIROperand = R eg ister u Const u TypeName

Actually, each type is a subset of the type it is declared to be. In particular:

1. A member of Var is a quoted sequence of alphanumeric characters and underscores,
the first of which must be a letter. Temporaries are variables that begin with a
lowercase “ t ” and follow it by a sequence of one or more decimal digits. Symbols
that begin with one of “ s ” , “ r ” , or “ f ” followed by one or more decimal digits
denote registers and are not members of Var.

2. A member of Const is an integer or a floating-point number, and a member of
Integer is an integer.

82 Intermediate Representations

TABLE 4.6 Names of mir, hir, and lir operators as members of the ican
enumerated type IROper.

Intermediate-
Code
Operator

ICAN
Identifier

Intermediate-
Code
Operator

ICAN
Identifier

+ add - (binary) sub
* (binary) mul / div
mod mod min min
max max = eql
! = neql < le ss
<= lseq > grtr
>= g teq shl shl
shr shr shra shra
and and or or
xor xor * (unary) ind

e lt * . indelt
- (unary) neg j not
addr addr (none) val
(type cast) cast

Intermediate-Code
Operator

ICAN
Identifier

(indirect assignment) lind
(conditional assignment) lcond
(indirect element assignment) lin de lt
(element assignment) le l t

3. A Register is a symbol that begins with one of “s”, “r”, or “ f ” followed by one or
more decimal digits. Symbolic registers begin with “s”, integer registers with “r”,
and floating-point registers with “ f

The remaining parts of the representation of the intermediate codes in ican
depend on the particular intermediate code— m ir , h ir , or lir—so we divide up the
presentation into the following three subsections. First we define Instruction to be

Instruction = HIRInst u MIRInst u LIRInst

4.7.1 Representing MIR in ICAN
We represent each kind of mir instruction by an ican tuple, as shown in Table 4.7,
which implicitly declares the type MIRInst. The enumerated types MIRKind,

Section 4.7 Representing MIR, HIR, and LIR in ICAN 83

TABLE 4.7 mir instructions represented as ican tuples.

Label:
<kind: l a b e l , l b l : Labels

receive VarName (ParamType)
<kind: re c e iv e , l e f t : VarName, p type: ParamType>

VarName <- Operandl Binop Operand2
<kind: b inasgn , l e f t : VarName, op r: Binop, op d l: O perandl, opd2: Operandl >

VarName <- Unop Operand
<kind: unasgn, l e f t : VarName, op r: Unop, opd: Operand>

VarName Operand
<kind: v a la sg n , l e f t : VarName, opd: Operand>

VarNamel < - (VarName!) Operand
<kind: condasgn, l e f t : VarNamel, cond: VarName2, opd: Operand>

VarName <- (TypeName) Operand
<kind: c a s ta sg n , l e f t : VarName, ty p e : TypeName, opd: Operand>

* VarName <- Operand
<kind: indasgn , l e f t : VarName, opd: Operand>

VarName. EltName <- Operand
<kind: e lta sg n , l e f t : VarName, e l t : EltName, opd: Operand>

* VarName. EltName <- Operand
<kind: in d e lta sgn , l e f t : VarName, e l t : EltName, opd: Operand>

goto Label
<kind: go to , l b l : Label>

i f Operandl Binop Operandl goto Label
<kind: b i n i f , op r: Binop, op d l: O perandl, opd2: O perandl, l b l : Label>

i f Unop Operand goto Label
<kind: u n if , op r: Unop, opd: Operand, l b l : Label>

i f Operand goto Label
<kind: v a l i f , op r: Operand, l b l : Label>

i f Operandl Binop Operandl trap Integer
<kind: b in tra p , op r: Binop, op d l: O perandl, opd2: O perandl, trapn o : Integer>

i f Unop Operand trap Integer
<kind: untrap , op r: Unop, opd: Operand, trapn o : Integer>

i f Operand trap Integer
<kind: v a lt r a p , op r: Operand, trapn o : Integer>

c a l l ProcName, (O p d l , T N I; ...; Opdn , TNn)
< k in d :c a ll ,p ro c : ProcName,a rg s : ViOpdl ,T N l> ,...,< O p d « ,T N «>] >

(continued)

84 Interm ediate R epresen tation s

TABLE 4.7 (continued)

VarName <-ProcName, (O p d l , T N I ; ...; Opdn , TNn)
<kind: c a l la sg n , l e f t : VarName, p ro c : ProcName,

a r g s : [<O p d l, TNI > ,..., iO pdn , TN«>] >

return
<kind: return)

return Operand
<kind: r e t v a l , opd: Operand>

sequence
<kind:sequence)

VarName
<kind: v a r , v a l : VarName>

Const (includes Integer)
<kind: c o n st, v a l : Const>

TNi
ptype: TNi

OpdKind, and ExpKind and the functions Exp_Kind() and H as_L eft () are defined
in Figure 4 .8 .

Exp_Kind(&) indicates whether a M IR instruction o f k in d k contains a bi
nary expression, a unary expression, a list o f expressions, or no expression, and
H a s .L e f t (k) returns t r u e if a m ir instruction o f k in d k has a l e f t field and f a l s e
otherwise. From here until we begin to need the basic-block structure o f procedures
in Chapter 12, we represent sequences o f intermediate-code instructions by the array
I n s t [1 • • n\ for som e « , which is declared as

I n s t : a r r a y [1 • • «] o f I n s t r u c t io n

For exam ple, the m i r instruction sequence

L I : b <r- a
c <- b + 1

is represented by the array o f tuples

I n s t [1] = < k in d : l a b e l , l b l : " L I ">
I n s t [2] = < k i n d :v a l a s g n , l e f t : ,,b " ,o p d : < k in d : v a r , v a l : "a "> >
I n s t [3] = < k in d r b in a s g n , l e f t : ,,c " , o p r : add ,

o p d l : < k in d : v a r , v a l : " b " > , op d2 : < k in d : c o n s t , v a l :1> >

As a larger exam ple, Figure 4 .9 shows the m i r code for the body o f the second
program unit, labeled “ i n s e r t .n o d e ” , in Figure 4 .6 represented as ican tuples.

Section 4.7 Representing MIR, HIR, and LIR in ICAN 85

MIRKind = enum {
label, receive, binasgn, unasgn, valasgn,
condasgn, castasgn, indasgn, eltasgn, indeltasgn,
goto, binif, unif, valif, bintrap,
untrap, valtrap, call, callasgn, return,
retval, sequence}

OpdKind = enum {var,const,type}
ExpKind = enum {binexp,unexp,noexp,listexp}
Exp_Kind: MIRKind — > ExpKind
Has_Left: MIRKind — > boolean

Exp_Kind := {
<label,noexp>,
<unasgn,unexp),
<castasgn,unexp>,
<indeltasgn,unexp),
<unif,unexp),
<untrap,unexp),
<callasgn,listexp>,
<sequence,noexp>}

<receive,noexp>,
<valasgn,unexp),
<indasgn,unexp),
<goto,noexp>,
<valif,unexp),
<valtrap,unexp),
<return,noexp>,

<binasgn,binexp>,
<condasgn,unexp),
<eltasgn,unexp),
<binif,binexp),
<bintrap,binexp),
<call,listexp>,
<retval,unexp),

Has_Left := {
< la b e l ,fa ls e) , <receive,true>,
<unasgn,true), <va lasgn ,tru e),
<castasgn ,tru e), <indasgn ,true),
<in d eltasgn ,tru e), < g o to ,fa lse),
< u n if ,fa lse), <v a l i f , f a l s e) ,
<u n tra p ,fa lse), <v a ltra p ,fa lse)
<ca lla sgn ,tru e), < re tu rn ,fa lse),
<sequence,false)}

<binasgn,true >,
< condasgn, true >,
<e lta sgn ,tru e),
< b in if ,fa ls e) ,
< b in tra p ,fa lse),
< c a l l , f a l s e) ,
< re tv a l,fa lse) ,

FIG. 4.8 Types and functions used to determine properties of mir instructions.

Note that the TNi occurring in the argument list of a c a l l or c a l la sg n in
struction are type names: a pair (O p di,T N i> indicates the value and type of the /th
argument.

.7.2 Representing HIR in ICAN
To represent hir in ican, we proceed essentially as for mir. Table 4.8 shows the
correspondence between hir instructions and ican tuples and implicitly declares the
type HIRInst. hir needs no additional operators, so we use IROper to represent
the type of its operands.

The enumerated types HIRKind, HIROpdKind, and HIRExpKind and the functions
HIR_Exp_Kind() and HIR_Has_Left () are somewhat different from the ones for

86 In term ed iate R e p resen ta tio n s

Inst [1]
Inst [2]
Inst [3]

Inst[4]

Inst [5]

Inst [6]

Inst [7]

Inst[8]
Inst [9]
Inst [10]

Inst[11]

Inst[12]
Inst[13]
Inst[14]

<kind:receive,left:"n",ptype:val>
<kind:receive,left:"1",ptype:val>
<kind:binasgn,left:"tl",opr:indelt,
opdl:<kind:var,val:1>,
opd2:<kind:const,val:"value">>
<kind:binif,opr:lseq,opdl:<kind:var,val:"n">,
opd2:<kind:var,val:"tl">,lbl:"Ll">
<kind:binasgn,left:"t2",opr:indelt,
opdl:<kind:var,val:1>,
opd2:<kind:const,val:"value"> >
<kind:if,opr:neql,opdl:<kind:var,val:"t2">,
opd2:<kind:const,val:nil),lbl:"L2">

: <kind:call,proc:"make_node",
args:[<<kind:var,val:"t3">,ptype:typel),
<<kind:var,val:"n">,ptype:int>]>
<kind:return)
<kind:label,lbl:"L2">
<kind:binasgn,left:"t4",opr:indelt,
opdl:<kind:var,val:"1">,
opd2:<kind:const,val:"next"> >
<kind:call,proc:"insert_node",
args:[<<kind:var,val:"n">,ptype:int),
<<kind:var,val:"t4">,ptype:typel)]>

<kind:return)
<kind:label,lbl:"LI">

: <kind:return)
FIG. 4 .9 The body of the mir program unit in se rt_ n o d e in Figure 4.6 represented by ican

tuples.

m ir and are defined in Figure 4 .1 0 . HIR_Exp_Kind(&) indicates whether a hir
instruction o f k in d k contains a ternary expression ,3 a binary expression , a unary
expression , a list o f expression s, or no expression , and H IR _H as_Left (&) returns
t r u e if a hir instruction o f k in d k has a l e f t field and f a l s e otherwise.

4.7.3 Representing LIR in ICAN
Table 4 .9 show s the correspondence between lir instructions and ican structures.
The last three item s represent operands. As in the representation o f m ir and hir
code in ican , we use the type IROper to represent lir operators.

The enum erated types LIRK ind, LIROpdKind, and LIRExpKind and the func
tions LIR _E xp_K ind() and L IR _ H as_ L eft () are declared in Figure 4 .11 .
LIR _Exp_K ind(&) indicates whether a lir instruction o f k in d k contains a binary

3. Only fo r instructions have ternary expressions.

Section 4.7 Representing MIR, HIR, and LIR in ICAN 87

TABLE 4.8 Representation of hir instructions that are not in mir in ican.

for VarName <- Operandl by Operand2 to Operand3 do
<kind: f or, l e f t : VarName, opdl: Operandl, opd2: Operandl, opd3: Operand3>

endfor
<kind:endfor>

i f Operandl Binop Operandl then
<kind: strb in if , opr: Binop, opdl: Operandl, opd2: Operandl>

i f Unop Operand then
<kind: stru n if, opr: Unop, opd: Operand>

i f Operand then
<kind: s t r v a l i f , opd: Operand>

else
<kind:else>

endif
<kind:endif>

VarName[Exprl,. . . ,Exprn] <- Operandl Binop Operandl
<kind: arybinasgn, l e f t : VarName, subs: [Exprl,. . ., Exprn] , opr: Binop,
opdl: Operandl, opd2: Operandl>

VarName [Exprl,. . . , Exprn] <- Unop Operand
<kind: aryunasgn, l e f t : VarName, subs: [Exprl,. . ., Exprn] , opr: Unop,
opd: Operand}

VarName [Exprl,. . ., Exprn] <- Operand
<kind: aryvalasgn ,left: VarName, subs: [Exprl,. . ., Exprn] , opd -.Operand}

VarName [Exprl, . . . , Exprn]
<kind: aryref, var: VarName, subs: [Exprl , . . . , Exprn] >

expression, a unary expression, or no expression, and LIR_Has_Left (k) returns
true if a lir instruction of kind k has a l e f t field and f a l s e otherwise.

A RegName operand may have as its value an integer register (written r /), a
floating-point register (written f /), or a symbolic register (written si). The enumera
tion and function declared by

RegType = enum {reg ,freg ,sy m re g }
Reg-Type: R eg ister —> RegType

can be used to distinguish the three varieties. Memory addresses (denoted by
tr a n (MemAddr) in Table 4.9) are represented as shown in Table 4.10.

As an example of the representation of lir code in ican, consider the code
shown in Figure 4.12. The corresponding sequence of ican structures is shown in
Figure 4.13.

88 In term ed iate R e p resen ta tio n s

HIRKind = enum
label,
condasgn,
goto,
retval,
strunif,
aryunasgn,

{
receive,
castasgn,
trap,
sequence,
strvalif,
aryvalasgn}

binasgn,
indasgn,
call,
for,
else,

unasgn,
eltasgn,
callasgn,
endfor,
endif,

valasgn,
indeltasgn,
return,
strbinif,
arybinasgn,

HIROpdKind = enum {var,const,type,aryref}
HIRExpKind = enum {terexp,binexp,unexp,noexp,listexp>
HIR_Exp_Kind: HIRKind — > HIRExpKind
HIR_Has_Left: HIRKind — > boolean

HIR_Exp_Kind := {
<label,noexp>,
<binasgn,binexp>,
<valasgn,unexp),
<castasgn,unexp>,
<eltasgn,unexp),
<goto,noexp>,
<call,listexp>,
<return,noexp>,
<sequence,noexp>,
<endfor,noexp>,
<strunif,unexp),
<else,noexp>,
<arybinasgn,binexp)
<aryvalasagn,unexp)

>

<receive ,n oexp > ,
<unasgn, unexp),
<condasgn ,unexp),
< in d asgn , unexp >,
<in d e lta sg n ,u n ex p),
< trap ,n oexp> ,
< c a l la s g n ,l i s t e x p > ,
< r e tv a l , unexp),
< fo r ,te re x p > ,
<s t r b i n i f , b in e x p),
<s t r v a l i f ,unexp),
<en d if,n o exp > ,
<aryunasagn,unexp),

HIR.Has.Left := {
<label,false),
<binasgn,true>,
<valasgn,true),
<castasgn,true>,
<eltasgn,true>,
<goto,false),
<call,false),
<return,false),
<sequence,false),
<endfor,false),
<strunif,false),
<else,false),
<arybinasgn,true>,
< aryvalas agn,true >

<receive,true>,
<unasgn,true>,
<condasgn,true),
<indasgn,true),
<indeltasgn,true),
<trap,false),
<callasgn,true>,
<retval,false),
<for,true>,
<strbinif,false),
<strvalif,false),
<endif,false),
<aryunasagn,true),

>

FIG . 4 .10 ican types and functions to determine properties of hir instructions.

Section 4.7 Representing MIR, HIR, and LIR in ICAN 89

TABLE 4,9 Representation of l ir instructions in ic a n .

Label:
<kind: label, lbl: Labels

RegName <- Operandl Binop Operand2
<kind: regbin, left: RegName, opr: Binop, opdl: O perandl, opd2: Operandl }

RegName < - Unop Operand
<kind: regun, left: RegName, opr: Unop, opd: Operand}

RegName Operand
(kind: regval, left: RegName, opd: Operand}

RegNamel <- (RegName!) Operand
(kind: regcond, left: RegN am el, cond: RegN am el, opd: Operand}

RegName (Integer 1 , Integerl) <- Operand
(kind: regelt, left: RegName, f st: Integerl,blen: Integerl, opd: Operand}

MemAddr <- Operand
(kind: stormem,addr :tran(MemAddr),opd: Operand}

RegName <^MemAddr
(kind: loadmem, left: RegName, addr: tran (MemAddr) >

goto Label
(kind:goto,lbl: Label}

goto RegName + Integer
(kind: gotoaddr, reg: RegName, disp: Integer}

if Operandl Binop Operandl goto Label
(kind: regbinif, opr: Binop, opdl: O perandl, opd2: O perandl, lbl: Label}

if Unop Operand goto Label
(kind: regunif, opr: Unop, opd: Operand, lbl: Label>

if Operand goto Label
(kind: regval if, opr: Operand, lbl: Label}

if Operandl Binop Operand! trap Integer
(kind: regbintrap, opr: Binop, opdl: O perandl, opd2: O perandl,
trapno: Integer}

if Unop Operand trap Integer
(kind: reguntrap, opr: Unop, opd: Operand, trapno: Integer}

if Operand trap Integer
(kind: regvaltrap, opr: Operand, trapno: Integer}

call ProcName, RegName
kind: callreg, proc: ProcName, rreg: RegName}

call RegNam el, RegNamel
(kind: callreg2, creg: RegN am el,rreg: RegNam el}

(continued)

90 Intermediate Representations

TABLE 4.9 (continued)

RegNamel <- ca ll ProcName, RegName2
<kind: callregasgn, l e f t : RegNamel, proc: ProcName, rreg : RegNamel>

RegNamel <- ca ll RegNamel ,RegName3
<kind: callreg3, l e f t : RegNamel, creg: RegNamel, rreg : RegName3 >

return
<kind:return)

return Operand
<kind: re tv a l, opd: Operand>

sequence
<kind: sequence)

RegName
<kind: regno, v a l: RegName>

Const (includes Integer)
<kind: const,v a l: Const>

TypeName
<kind: type, v a l: TypeName>

LIRKind = enum {
label, regbin, regun, regval, regcond,
regelt, stormem, loadmem, goto, gotoaddr,
regbinif, regunif, regvalif, regbintrap, reguntrap
regvaltrap, callreg, callreg2, callregasgn, callreg3,
return, retval, sequence}

LIROpdKind = enum {regno,const,type}
LIRExpKind = enum {binexp,unexp,noexp}
LIR.Exp.Kind: LIRKind — > LIRExpKind
LIR_Has_Left: LIRKind — > boolean

LIR_Exp_Kind := {
{label,noexp),
<regun,unexp>,
{regcond,unexp),
{stormem,unexp),
{goto,noexp>,
{regbinif,binexp),
{regvalif,unexp),
{reguntrap,unexp),
{callreg,noexp),
{callregasgn,noexp>,
{return,noexp),
{sequence,noexp)}

{regbin,binexp),
{regval,unexp),
{reg e lt ,unexp),
{loadmem,noexp),
{gotoaddr,noexp),
{regunif,unexp),
{regbintrap,binexp),
{regvaltrap,unexp),
{callreg2,noexp),
{callreg3,noexp),
{re tv a l,unexp),

FIG. 4.11 ican data types and functions to determine properties of lir instructions.

Section 4.7 Representing MIR, HIR, and LIR in ICAN 91

LIR_Has_Left := {
<label,false),
<regun,true>,
<regcond,false),
<stormem,false),
<goto,false),
<regbinif,false),
<regvalif,false),
<reguntrap,false),
<callreg,false),
<callregasgn,true>
<return,false),
<sequence,false)}

FIG. 4.11 (continued)

<regbin,true>,
<regval,true>,
< re g e lt ,fa lse) ,
<loadmem,true>,
<gotoaddr, f a l s e) ,
<regunif, f a l s e) ,
< regb in trap ,fa lse),
<regvaltrap, f a l s e) ,
<callreg2 , f a l s e) ,
< ca llreg 3 , true >,
< r e tv a l,fa lse) ,

TABLE 4.10 Representation of memory addresses (denoted by trail (MemAddr) in Table 4.9).

[RegNamel (Length)
<kind: addr l r , reg : RegName, len : Length>

[RegNamel+RegName2] (Length)
<kind: addr2r, re g : RegNamel, reg2: RegNamel, len : Length>

[RegName+Integer] (Length)
<kind: addrrc, re g : RegName, d isp : Integer, len : Length>

LI: rl <- [r7+4]
r2 [r7+r8]
r3 <- rl + r2
r4 <-- r3
if r3 > 0 goto L2
r5 <-(r9) rl
[r7-8](2) <- r5

L2: return r4
FIG. 4.12 An example of lir code to be represented by ican tuples.

Inst [1]
Inst [2]

Inst[3]

Inst[4]

<kind:label,lbl:"LI">
<kind:loadmem,left:"rl",
addr:<kind:addrrc,reg:"r7",disp:4,len:4>>
<kind:loadmem,left:"r2",
addr:<kind:addr2r,reg:"r7",reg2:"r8",len:4>>
<kind:regbin,left:"r3",opr:add,opdl:<kind:regno,
val:"rl"),opd2:<kind:regno,val:"r2">>

(continued)

FIG. 4.13 The sequence of ican tuples corresponding to the lIr code in Figure 4.12.

9 2 Interm ediate R epresen tation s

Inst[5]

Inst [6]

Inst[7]

Inst[8]

Inst [9]
Inst [10]

<kind:regun,left:"r4",opr:neg,
opd:<kind:regno,val:"r3"> >
<kind:regbinif,opr:grtr,
opdl:<kind:regno,val:"r3">,
opd2:<kind:const,val:0 >,lbl:"L2">
<kind:regcond,left:"r5",sel:"r9",
opd:<kind:regno,val:"r1"> >
<kind:stormem,
addr:<kind:addrrc,reg:"r7",disp:-8,len:2>,
opd:<kind:regno,val:"r5"> >
<kind:label,lbl:"L2">
<kind:retval,opd:<kind:regno,val:"r4"> >

FIG. 4 .13 (continuedj

4 .8 ICAN Naming of Data Structures and
Routines that Manipulate Intermediate Code
From here on in the text, in alm ost every case, we view a procedure as consisting of
several data structures, as follows:

1. ProcName: P rocedu re, the name of the procedure.

2. n b lo c k s : in te g e r , the number of basic blocks m aking up the procedure.

3. n i n s t s : a r r a y [1 • ‘ n b lo ck s] o f in t e g e r , an array such that for i = 1 , . . . ,
n b lo ck s, n in s t s [/] is the number o f instructions in basic block /.

4. B lo c k , L B lo ck : a r r a y [1 • ‘ n b lo ck s] o f a r r a y [• •] o f I n s t r u c t io n , the array
o f arrays o f h ir or m ir instructions (for B lock) or lir instructions (for LBlock) that
m ake up the basic blocks, i.e., B lock [/] [1 • - n in s t s [/]] is the array o f instructions
in basic block /, and similarly for LB lock.

5. S u cc , P red : in t e g e r — > s e t o f in te g e r , the functions that m ap each basic block
index i to the sets o f indexes o f the successor and predecessor basic blocks, respec
tively, o f block i.

In a few instances, such as sparse conditional constant propagation (Section 12.6)
and basic-block scheduling (Section 17.1), where we focus on individual instruc
tions, rather than blocks, we use slightly different nam ing conventions.

The procedures

i n s e r t _b ef o re (/ , / , n i n s t s , B lo c k , inst)
i n s e r t . a f t e r U , / , n i n s t s , B lo c k , inst)
a p p en d .b lo c k (/ , n i n s t s , B lo c k , inst)

defined in Figure 4 .14 insert instruction inst before or after B lock [/] [/] or append
inst to B lo ck [/] and adjust the data structures accordingly. N ote that a request to
insert an instruction after the last instruction o f a block is handled specially if the
last instruction is a g o to or an i f — i.e., the instruction is inserted just before the
control-transfer instruction.

Section 4.8 Data Structures and Routines that Manipulate Intermediate Code 93

procedure insert_before(i,j,ninsts,Block,inst)
i, j: in integer
ninsts: inout array [••] of integer
Block: inout array [••] of array [••] of Instruction
inst: in Instruction

begin
I| insert an instruction after position j in block i
I| and adjust data structures accordingly
k: integer
for k := j to ninsts [i] do

Block[i][k+1] := Block[i][k]
od
ninsts[i] += 1
Block[i][j] := inst

end || insert_before

procedure insert_after(i,j,ninsts,Block,inst)
i, j: in integer
ninsts: inout array [••] of integer
Block: inout array [••] of array [••] of Instruction
inst: in Instruction

begin
I I insert an instruction after position j in block i
I I and adjust data structures accordingly
k: integer
if j = ninsts[i] & Control.Transfer(Block[i][j]) then

ninsts[i] := j += 1
Block[i] [j] := Block[i] [j-1]
Block[i] [j-1] := inst

else
for k := j+1 to ninsts[i] do

Block[i][k+1] := Block [i] [k]
od
ninsts[i] += 1
Block[i] [j+1] := inst

fi
end |I insert_after

procedure append_block(i,ninsts,Block,inst)
i: in integer
ninsts: inout array [••] of integer
Block: inout array [••] of array [••] of Instruction
inst: in Instruction

begin
I| add an instruction at the end of block i
insert_after(i,ninsts[i],Block,inst)

end I| append_block

fIG . 4.14 The ic a n routines in sert_before(), in se r t_ a fte r (), and append_block() that
insert an instruction into a basic block before or after a given position or append an
instruction to a block.

94 Intermediate Representations

procedure delete_inst(i,j,nblocks,ninsts,Block,Succ,Pred)
i, j: in integer
nblocks: inout integer
ninsts: inout array [••] of integer
Block: inout array [••] of array [••] of Instruction
Succ, Pred: inout integer — > set of integer

begin
I I delete instruction j from block i and adjust data structures
k: integer
for k := j to ninsts[i]—1 do

Block [i] [k] := Block [i] [k+1]
od
ninsts[i] -= 1
if ninsts[i] = 0 then

delete_block(i,nblocks,ninsts,Block,Succ,Pred)
fi

end I I delete_inst
FIG. 4 .1 5 The ican routine d e le te_ in st() that deletes an instruction at a given position from a

basic block.

procedure insert.block(i,j,nblocks,ninsts,Succ,Pred)
i, j: in integer
nblocks: inout integer
ninsts: inout array [••] of integer
Succ, Pred: inout integer — > set of integer

begin
I| insert a new block between block i and block j
nblocks += 1
ninsts[nblocks] := 0
Succ(i) := (Succ(i) u {nblocks}) - {j}
Succ(nblocks) :- {j}
Pred(j) := (Pred(j) u {nblocks}) - {i}
Pred(nblocks) := {i}

end I I insert.block
FIG. 4 .1 6 The ican routine insert_block() that splits an edge by inserting a block between the

two given blocks.

The procedure

delete.inst(/,/,nblocks,ninsts,Block,Succ,Pred)
defined in Figure 4.15 deletes instruction j from block i and adjusts the other data
structures that are used to represent programs.

The procedure

insert_block(/,/, nblocks, ninsts, Succ, Pred)
defined in Figure 4.16 splits the edge i / by inserting a new empty block between
block i and block /.

Section 4.8 Data Structures and Routines that Manipulate Intermediate Code 95

procedure delete_block(i,nblocks,ninsts,Block,Succ,Pred)
i: in integer
nblocks: inout integer
ninsts: inout array [••] of integer
Block: inout array [••] of array [••] of Instruction
Succ, Pred: inout integer — > set of integer

begin
I I delete block i and adjust data structures
j, k: integer
if i e Succ(i) then

Succ(i) -= {i>
Pred(i) -= {i}

fi
for each j e Pred(i) do

Succ(j) := (Succ(j) - {i}) u Succ(i)
od
for each j e Succ(i) do

Pred(j) := (Pred(j) - {i}) u Pred(i)
od
nblocks -= 1
for j := i to nblocks do

Block[j] := Block[j+l]
Succ(j) := Succ(j+1)
Pred(j) := Pred(j+1)

od
for j := 1 to nblocks do

for each k e Succ(j) do
if k > i then

Succ(j) := (Succ(j) - {k}) u {k-l>
fi

od
for each k e Pred(j) do

if k > i then
Pred(j) (Pred(j) - {k}) u {k-1}

fi
od

od
end I I delete.block

FIG. 4.17 The ican routine delete_block() that removes an empty basic block.

The procedure

delete.block(/, nblocks, ninsts, Block, Succ, Pred)

defined in Figure 4.17 deletes basic block i and adjusts the data structures that
represent a program.

96 Intermediate Representations

4.9 Other Intermediate-Language Forms
In this section, we describe several alternative representations of the instructions
in a basic block of medium-level intermediate code (namely, triples; trees; directed
acyclic graphs, or DAGs; and Polish prefix), how they are related to mir, and their
advantages and disadvantages relative to it. In the output of a compiler’s front end,
the control structure connecting the basic blocks is most often represented in a form
similar to the one we use in mir, i.e., by simple explicit gotos, i f s , and labels. It
remains for control-flow analysis (see Chapter 7) to provide more information about
the nature of the control flow in a procedure, such as whether a set of blocks forms
an if-then-else construct, a while loop, or whatever.

Two further important intermediate-code forms are static single-assignment
form and the program dependence graph, described in Sections 8.11 and 9.5.

First, note that the form we are using for mir and its relatives is not the
conventional one for quadruples. The conventional form is written with the operator
first, followed by the three operands, usually with the result operand first, so that our

t l <r- X + 3

would typically be written as

+ t l , x , 3

We have chosen to use the infix form simply because it is easier to read. Also,
recall that the form shown here is designed as an external or printable notation,
while the corresponding ican form discussed above can be thought of as an internal
representation, although even it is designed for reading convenience—if it were truly
an internal form, it would be a lot more compact and the symbols would most likely
be replaced by pointers to symbol-table entries.

It should also be noted that there is nothing inherently medium-level about any
of the alternative representations in this section—they would function equally well
as low-level representations.

Figure 4.18(a) gives an example mir code fragment that we use in comparing
mir to the other code forms.

4.9.1 Triples
Triples are similar to quadruples, except that the results are not named explicitly in
a triples representation. Instead, the results of the triples have implicit names that
are used in other triples when they are needed as operands, and an explicit store
operation must be provided, since there is no way to name a variable or storage
location as the result of a triple. We might, for example, use “a sto fe” to mean
store b in location a and “a * s to bn for the corresponding indirect store through a
pointer. In internal representations, triple numbers are usually either pointers to or
index numbers of the triples they correspond to. This can significantly complicate
insertion and deletion of triples, unless the targets of control transfers are nodes in a
representation of the basic-block structure of the procedure, rather than references
to specific triples.

Section 4.9 Other Intermediate-Language Forms 97

i <- i + 1 (i) i + 1
(2) i sto (1)

tl i + 1 (3) i + 1
t2 <- p + 4 (4) p + 4
t3 <- *t2 (5) *(4)
p <- t2 (6) p sto (4)
t4 <- tl < 10 (7) (3) < 10
*r <- t3 (8) r *sto (5)
if t4 goto LI (9) if (7), (1)

(b)
FIG. 4.18 (a) A mir code fragment for comparison to other intermediate-code forms, and (b) its

translation to triples.

<-

/ \i add

/ \
i 1

(a)

FIG. 4.19 Alternative forms of trees: (a) with an explicit assignment operator, and (b) with the
result variable labeling the root node of its computation tree.

i :add

i 1
(b)

In external representations, the triple number is usually listed in parentheses at
the beginning of each line and the same form is used to refer to it in the triples,
providing a simple way to distinguish triple numbers from integer constants. Fig
ure 4.18(b) shows a translation of the mir code in Figure 4.18(a) to triples.

Translation back and forth between quadruples and triples is straightforward.
Going from quadruples to triples requires replacing temporaries and labels by triple
numbers and introducing explicit store triples. The reverse direction replaces triple
numbers by temporaries and labels and may absorb store triples into quadruples that
compute the result being stored.

Using triples has no particular advantage in optimization, except that it simpli
fies somewhat the creation of the DAG for a basic block before code generation (see
Section 4.9.3), performing local value numbering (see Section 12.4.1) in the process.
The triples provide direct references to their operands and so simplify determining
the descendants of a node.

4.9.2 Trees
To represent intermediate code by trees, we may choose either to have explicit assign
ment operators in the trees or to label the root node of an expression computation
with the result variable (or variables), as shown by Figure 4.19(a) and (b), respec
tively, a choice somewhat analogous to using quadruples or triples. We choose to use

98 Intermediate Representations

the second form, since it corresponds more closely than the other form to the DAGs
discussed in the following section. We label the interior nodes with the operation
names given in Figure 4.6 that make up the ican type IROper.

Trees are almost always used in intermediate code to represent the portions of
the code that do non-control-flow computation, and control flow is represented in
a form that connects sequences of trees to each other. A simple translation of the
(non-control-flow) mir code in Figure 4.18(a) to tree form is shown in Figure 4.20.
Note that this translation is, in itself, virtually useless—it provides one tree for each
quadruple that contains no more or less information than the quadruple.

A more ambitious translation would determine that the t l computed by the
second tree is used only as an operand in the sixth tree and that, since t l is a
temporary, there is no need to store into it if the second tree is grafted into the sixth
tree in place of the occurrence of t l there. Similar observations apply to combining
the third tree into the fifth. Notice, however, that the fourth tree cannot be grafted
into the seventh, since the value of p is changed between them. Performing these
transformations results in the sequence of trees shown in Figure 4.21.

This version of the tree representation has clear advantages over the quadruples:
(1) it has eliminated two temporaries (t l and t2) and the stores to them; (2)
it provides the desired input form for the algebraic simplifications discussed in
Section 12.3.1; (3) locally optimal code can be generated from it for many machine
architectures by using Sethi-Ullman numbers, which prescribe the order in which
instructions should be generated to minimize the number of registers used; and (4) it
provides a form that is easy to translate to Polish-prefix code (see Section 4.9.4) for
input to a syntax-directed code generator (see Section 6.2).

Translating from quadruples to trees can be done with varying degrees of effort,
as exemplified by the sequences of trees in Figures 4.20 and 4.21. Translation to
the first form should be obvious, and achieving the second form can be viewed as
an optimization of the first. The only points about which we need to be careful are
that, in grafting a tree into a later one in the sequence, we must make sure that there

i:add tl:add t2:add t3:ind p:t2 t4:less riindasgn

i 1 i 1 p 4 p tl 10 t3
FIG. 4.20 Translation of the (non-control-flow) mir code in Figure 4.18(a) to a sequence of simple

trees.

t4:less

i l p p 4 i l t3
FIG. 4.21 Minimized tree form of the (non-control-flow) mir code in Figure 4.18(a).

Section 4.9 Other Intermediate-Language Forms 99

b:add

a: add a: add

a l a 1
FIG. 4.22 Result of trying to translate the mir instructions a <- a + 1; b ^ a + a to a single

tree.

t4:less

add 10
t5:add t4:less

i 1 t5 10

t5 <- i + 1
t4 <- t5 < 10

i 1

FIG. 4.23 Example of translation from minimized tree form to mir code.

are no uses of any of the result variables that label nodes in the first one between
its original location and the tree it is grafted into and that its operands are also not
recomputed between the two locations.

Note that a sequence of m ir instructions may not correspond to a single tree
for two distinct reasons— it may not be connected, or it may result in evaluating an
instruction several times, rather than once. As an example of the latter situation,
consider the code sequence

a <r- a + 1
b <- a + a

This would result in the tree shown in Figure 4.22, which corresponds to evaluating
the first instruction twice. We could, however, remove the label from the second
“ a : add” node.

Translation from trees to quadruples is simple. We may proceed by either a pre
order traversal or a postorder one. In the first case, we perform a preorder traversal
of each tree, in the order they appear. For each interior node (i.e., non-leaf node)
with at least one descendant that is an interior node, we create a new temporary and
divide the tree into two (call them the “ upper tree” and the “ lower tree”) along the
edge connecting the two interior nodes. We label the root of the lower tree with the
new temporary, and insert the pair of trees in sequence (with the lower tree first) in
place of the one we are dividing. We repair the upper tree by putting the new tempo
rary in place of the lower tree. An example from Figure 4.21 appears in Figure 4.23.
When we no longer have any interior nodes with interior-node descendants, each
tree corresponds to a single m ir instruction, and the remainder of the translation is
obvious.

100 Intermediate Representations

t4:less r:indasgn

/\
tl:add 10
/ \

t3:ind

/ \ p:add

/ \ J /\
i 1 P 4

FIG. 4.24 DAG for the non-control-flow code of mir code in Figure 4.18(a).

In the second approach to translating from trees to m ir , we perform a postorder
traversal of the given tree, generating a mir instruction for each subtree that con
tains only a single operator and replacing its root by the left-hand side of the mir
instruction.

4.9.3 Directed Acyclic Graphs (DAGs)
The DAG representation of a basic block can be thought of as compressing the
minimal sequence of trees that represents it still further. The leaves of such a DAG
represent the values of the variables and constants available on entry to the block
that are used within it. The other nodes of the DAG all represent operations and
may also be annotated with variable names, indicating values computed in the
basic block. We draw DAG nodes like the tree nodes in the preceding section. As
an example of a DAG for a basic block, see Figure 4.24, which corresponds to
the first seven instructions in Figure 4.18(a). In the DAG, the lower left “ add”
node represents the m ir assignment “ i <- i + 1” , while the “ add” node above it
represents the computation of “ i + 1” that is compared to 10 to compute a value
for t4 . Note that the DAG reuses values, and so is generally a more compact
representation than either trees or the linear notations.

To translate a sequence of m ir assignment instructions to a DAG, we process
the instructions in order. For each one, we check whether each operand is already
represented by a DAG node. If it is not, we make a DAG leaf for it. Then we
check whether there is a parent of the operand node(s) that represents the current
operation; if not, we create one. Then we label the node representing the result with
the name of the result variable and remove that name as a label of any other node in
the DAG.

Figure 4.25 is a sequence of mir instructions and the graphic form of the
corresponding DAG is shown in Figure 4.26. Note that, in the DAG, the neg node
is an operator node that has no labels (it is created for instruction 4 and labeled d,
but that label is then moved by instruction 7 to the mul node), so no code need be
generated for it.

As mentioned above, the DAG form is useful for performing local value num
bering, but it is a comparatively difficult form on which to perform most other
optimizations. On the other hand, there are node-listing algorithms that guide code
generation from DAGs to produce quite efficient code.

Section 4.10 Wrap-Up 101

1 c <- a
2 b <- a + 1
3 c <- 2 * a
4 d <- -c
5 c <- a + 1
6 c <- b + a
7 d <- 2 * a
8 b <— c

FIG. 4.25 Example basic block of mir code to be converted to a DAG.

neg b,c:add

FIG. 4.26 Graphic form of the DAG corresponding to the mir code in Figure 4.25.

binasgn i add i 1
unasgn t3 ind p
binasgn p add p 4
binasgn t4 less add i 1 10
indasgn r t3

FIG. 4.27 Polish-prefix form of the trees in Figure 4.21 divided into instructions.

4.9.4 Polish-Prefix Notation
Polish-prefix notation is essentially the result of a preorder traversal of one tree
form or another. Translation between it and trees in both directions is a quite
straightforward recursive process.

For the minimal tree form given in Figure 4.21, the Polish-prefix form is the code
shown in Figure 4.27 (note that we assume that the one descendant of a unary node
is its left child). The second line, for example, represents a unary assignment with t3
as its left-hand side and the result of indirecting through p as its right-hand side.

Polish-prefix notation is most useful as input to syntax-directed code generators
(see Section 6.2). On the other hand, it is of little use in optimization because its
recursive structure is only implicit.

4.10 Wrap-Up
In this chapter, we have discussed the design of intermediate-code representa
tions; compared and contrasted several, including abstract syntax trees, quadruples,

102 Intermediate Representations

triples, trees, DAGs, and Polish-prefix notation; and selected three to use in our ex
amples in the rest of the book. We have chosen to use hir, mir, and lir and have
given both an external ascii form and an internal ican structure form for each.

The concerns in selecting an intermediate-code form include expressiveness (the
ability to represent the relevant concepts), appropriateness for the tasks to be per
formed on it, compactness and speed of access (so as not to waste space and/or
time), ease of translating from source code to intermediate code and subsequently
to relocatable machine language or another lower-level form, and development cost
(whether it is already implemented or what it will cost to implement it).

The basic mir is suitable for most optimizations (as is lir), while the higher-
level hir is used for dependence analysis (Chapter 9) and for some of the code
transformations based on it, and the lower-level lir is used for optimizations that
require that registers and addressing be explicit.

Two other important intermediate code forms, static single-assignment (SSA)
form and program dependence graphs, are discussed in Sections 8.11 and 9.5, re
spectively. We use the former in several optimizations, such as global value number
ing (Section 12.4.2) and sparse conditional constant propagation (Section 12.6).

4.11 Further Reading
Sethi-Ullman numbers are discussed first in [SetU70] and more recently in [AhoS86].

The primary description of Hewlett-Packard’s compilers for pa-risc is
[CouH86].

4.12 Exercises
4.1 Construct an abstract syntax tree that represents the C function

double sumorprod(a,n,i)
double a[100];
int n;
int i;

{ double acc;
int j ;
if (i == 0)
{ acc = 0.0;

for (j = 0; j < 100; j++)
acc += a[j];

} else
{ acc = 1.0;

for (i = 99; j >= 0; j—)
if (a[j] != 0.0)

acc *= a[j];
}
return acc;

>

Section 4.12 Exercises 103

4.2 Construct a h ir representation of the C function in Exercise 4.1.

4.3 Construct a m ir representation of the C function in Exercise 4.1.

4.4 Construct a lir representation of the C function in Exercise 4.1.

4.5 Construct the ican representation of the m ir code in Exercise 4.3.

4.6 Translate the m ir representation of the C function in Exercise 4.3 into (a) triples, (b)
trees, (c) DAGs, and (d) Polish-prefix notation.

4.7 Write an ican routine M IR _ to _ T r ip le s (n ,In st ,T In st) that translates the array
In s t [1], . . . , In s t [n] of m ir instructions to the array T In st [1], . . . , T In st [m]
of triples and returns m as its value. Assume that triples are represented by records
similar to those used for m ir instructions, except that (1) the additional k inds s to r e
and in d sto re correspond, respectively, to the operators s t o and * s t o discussed in
Section 4.9.1, (2) the other kinds of triples have no l e f t fields, and (3) there is
an additional type of operand < k in d :t r p l ,v a l :m *r a > that names the result o f the
triple that is stored in T In st \nuni\ .

4.8 Write an ican routine M IR _ to _ T re es(n ,In st , Root) that translates the array
I n s t [l] , . . . , In s t [n] of m ir instructions to a collection of trees whose roots it
stores in Root [1], . . . , Root [m] and that returns m as its value. A tree node is an
element of the type Node defined by

Leaf = re co rd {k in d : enum { v a r ,c o n s t } ,
v a l : Var u C on st,
names: s e t o f V ar}

I n t e r io r = re co rd {k in d : IROper,
I t , r t : Node,
names: s e t o f V ar}

Node = L eaf u In t e r io r

If an interior node’s k ind is a unary operator, its operand is its I t field and its r t
field is n i l .

4.9 Write an ican routine P re fix _ to _ M IR (P P ,In st) that translates the sequence
PP of Polish-prefix operators and operands to an array I n s t [l] , . . . , In s t [n]
of m ir instructions and returns n as its value. Assume PP is of type sequence of
(MIRKind u IROper u Var u C on st), and Polish-prefix code is written as shown in
Figure 4.27.

4.10 Write an ican routine DAG_to_MIR(R,Inst) that translates the DAG with set of
roots R to an array In s t [1], . . . , In s t [n] of m ir instructions and returns n as its
value. Assume that nodes in a DAG are represented by the type Node defined above
in Exercise 4.8.

CHAPTER 5

Run-Time Support

In this chapter, we undertake a quick review of the basic issues involved in sup
porting at run time the concepts commonly embodied in higher-level languages.
Since most of these concepts are covered well and in considerable detail in in
troductory texts on compilers, we do not explore most of them in great detail. Our

main purpose is to remind the reader of the issues and alternatives, to suggest appro
priate ways of handling run-time issues, and to provide references for further reading
where they may be useful. Some of the more advanced concepts, such as position-
independent code and heap storage management, are discussed in the final sections
of this chapter.

In general, our concerns in this chapter are the software conventions necessary to
support various source languages, including data representation, storage allocation
for the various storage classes of variables, visibility rules, procedure calling, entry,
exit, and return, and so on.

One issue that helps determine1 the organization of many run-time data struc
tures is the existence of Application Binary Interface (ABI) standards for many archi
tectures. Such standards specify the layout and characteristics of numerous aspects
of the run-time environment, thus easing the task of software producers by mak
ing interoperability much more likely for software that satisfies the standards. Some
examples of such documents are the unix System V ABI and its processor-specific
supplements for various architectures, such as sparc and the Intel 386 architecture
family.

We begin by considering data types and approaches to representing them effi
ciently at run time in Section 5.1. Next, we briefly discuss register usage and ele
mentary methods for managing it in Section 5.2 (approaches to globally optimizing
register usage are discussed in Chapter 16), and we discuss the structure of the stack
frame for a single procedure in Section 5.3. This is followed by a discussion of the

1. Some would say “ hinders creativity in determining.”

105

106 Run-Time Support

overall organization of the run-time stack in Section 5.4. In Sections 5.5 and 5.6,
we discuss issues involved in supporting parameter passing and procedure calls. In
Section 5.7, we discuss support for code sharing by means of dynamic linking and
position-independent code. Finally, in Section 5.8, we discuss support for dynamic
and polymorphic languages.

5.1 Data Representations and Instructions
To implement a higher-level language, we must provide mechanisms to represent
its data types and data-structuring concepts and to support its storage-management
concepts. The fundamental data types generally include at least integers, characters,
and floating-point values, each with one or more sizes and formats, enumerated
values, and Booleans.

We expect integer values to be mapped to an architecture’s fundamental integer
type or types. At least one size and format, usually 32-bit signed two’s-complement,
is supported directly by loads, stores, and computational operations on each of the
real-world target architectures. Most also support 32-bit unsigned integers, either
with a complete set of computational operations or very nearly so. Byte and half
word signed and unsigned integers are supported either by loads and stores for those
lengths or by loads and stores of word-sized data and extract and insert opera
tions that create word-sized values, appropriately sign- or zero-extended, and the
corresponding fundamental integer operations. Operations on longer integer types
generally require multiple loads and stores (except, for some architectures, for dou
bleword quantities) and are generally supported by add with carry and subtract with
borrow operations, from which the full set of multiple-precision arithmetic and re
lational operations can be constructed.

Characters, until recently, have generally been byte-sized quantities, although
there is now, more frequently, support for halfword character representations, such
as Unicode, that encompass syllabic writing systems such as Katakana and Hiragana
and logographic systems such as Chinese and Kanji. The support needed for individ
ual characters consists of loads, stores, and comparisons, and these operations are
provided by the corresponding integer (signed or unsigned) byte and halfword loads
and stores (or their constructed equivalents), integer comparisons, and occasionally
by more complex instructions such as power’s load signed byte and compare in
dexed instruction. While many ciscs have some built-in support for one character
representation or another (e.g., ascii for the DEC VAX series and ebcdic for the
IBM System/370), more modern architectures generally do not favor a particular
character set and leave it to the programmer to craft the appropriate operations in
software.

Floating-point values generally have two or three formats corresponding to
ansi/ieee Std 754-1985—single, double, and (less frequently) extended precision,
that generally occupy a word, a doubleword, and from 80 bits to a quadword, re
spectively. In all cases, the hardware directly supports single-precision loads and
stores and, in most cases, double-precision ones as well, although extended loads
and stores are usually not supported. Most current architectures, with the notable

Section 5.1 Data Representations and Instructions 107

exception of power and the Intel 386 architecture family, provide a full complement
of arithmetic and comparison operations for single- and double-precision values, ex
cept that some omit the square root operation, and some, such as sparc Version 8,
include the quad-precision operations also, power provides only double-precision
operations and converts single-precision values to and from double in the process
of performing loads and stores,2 respectively, although PowerPC supports both
single- and double-precision formats directly. The Intel 386 architecture supports an
80-bit format in its floating-point registers. Operations may round to single or dou
ble according to the setting of a field in a control register. Loads and stores may
convert single- and double-precision values to and from that format or load and store
80-bit values. For most architectures, the complex system of exceptions and excep
tional values mandated by the standard requires some amount of software assis
tance, and in some cases, such as Alpha, it requires a lot.

Enumerated values are generally represented by consecutive unsigned integers
and the only operations required on them are loads, stores, and comparisons, except
for Pascal and Ada, which allow one to iterate over the elements of an enumerated
type. Booleans may be an enumerated type, as in Pascal, Modula-2, and Ada;
integers, as in C; or simply a separate type, as in Fortran 77.

Arrays of values generally may have more than one dimension and, depending
on the source language, may have elements that are of a fundamental type or almost
any type. In either case, they may be thought of as ^-dimensional rectangular solids
with each of the n dimensions corresponding to a subscript position. They are most
often represented by conceptually slicing them either in row-major order (as in most
languages), or vice versa, in column-major order (as in Fortran), and then assigning
a storage block to each element according to its position in the slicing. Thus, for
example, a Pascal array declared var a : a r ra y [1. .1 0 ,0 . .5] of in teger occupies
(10 - 1 + 1) x (5 — 0 + 1) = 60 words of storage, with, e.g., a [l ,0] in the zeroth
word, a [1,1] in the first, a [2,0] in the sixth, and a [10,5] in the 59th. In general,
for a Pascal array exam declared

var exam: array [/o j. . bi\ , loi • • h ii , . . . , lon. . hin'] of type

the address of element exam[sub\ ySubi, . . . ,swfe„] is
n n

base(exam) + size(type) • — loj)]~~[(hij - h j + 1)
i = i /=/*+1

where base(exam) is the address of the first element of the array and size(type) is
the number of bytes occupied by each element.3 Similar formulas apply for other
languages, except that for Fortran the product runs from / = 1 to / = i — 1.

Some architectures provide instructions that simplify processing of multiple
arrays. For example, the Intel 386 architecture family provides loads and stores (and
memory-to-memory moves) that use a base register, an index register scaled by 1, 2,

2. power also has a fused multiply and add that uses the full-length product as an operand of the
add.
3. Actually, for the sake of time efficiency, the compiler may round the size of each element up to a
unit that can be efficiently accessed in memory.

10 8 Run-Time Support

struct si {
int large1;
short int small1;

>;
(a)

struct s2 {
int large2: 18;
int small2: 10;

>;
(b)

FIG. 5.1 Two C structs, one unpacked in (a) and the other packed in (b).

large1 small1
32 16 16

(a)

large2 small2
18 10 4

(b)

FIG. 5.2 Representation of the structures in Figure 5.1.

4, or 8, and a displacement. Some architectures, such as power and pa-risc, provide
loads and stores with base-register updating and, in the case of pa-risc, scaling, that
simplify access to consecutive array elements and to parallel arrays with different
sized elements.

Records consisting of multiple named fields are generally not supported directly
by machine operations. In most higher-level languages that provide them, they may
be either packed, i.e., with consecutive elements stored directly adjacent to each
other without regard to boundaries that would make access to them more efficient,
or unpacked, taking alignment into account. As an example, in C the structure
declarations in Figure 5.1(a) and (b), where the numbers after the colons represent
lengths in bits, would require a doubleword and a word, respectively. An object
of type stru c t s i would be stored as shown in Figure 5.2(a), while an object of
type stru c t s2 would be stored as shown in (b). Obviously, fields whose sizes and
boundary alignments correspond to implemented loads and stores can be accessed
and manipulated more easily than packed fields, which may require multiple loads
and stores to access an element and either shift and mask or extract and insert
operations, depending on the machine architecture.

Pointers generally occupy a word or a doubleword and are supported by loads,
stores, and comparisons. The object referenced by a pointer is usually accessed by
loading the pointer into an integer register and specifying that register to be used to
form the address in another load or a store instruction. Some languages, such as C
and C++, provide addition and subtraction of integers from a pointer to access array
elements.

Character strings are represented in various ways, depending on the source lan
guage. For example, the Pascal and PL/I representations of a character string include

Section 5.2 Register Usage 109

type color = set of (red, orange, yellow, green,
blue, indigo, violet);

var primary: color;

primary := [red, yellow, blue]
FIG. 5.3 An example of sets in Pascal.

a count of the number of characters it contains, while C strings are terminated
with a null character, i.e., one with the value 0. The Intel 386 architecture provides
move, compare, and scan string instructions. Of R is e architectures, only p o w e r and
PowerPC provide instructions specifically designed for string operations, namely,
the load and store string (lsx , l s i , s t s x , and s t s i) and load string and compare
(lscbx) instructions that use multiple registers and a byte offset to indicate the begin
ning address of the string. The others provide less support, such as m ips ’s unaligned
load and store instructions, or only the basic load and store instructions.

Sets are generally represented by bit strings, with each bit indicating whether
a particular element is in a set value or not. Thus, for example, given the Pascal set
type co lo r and variable prim ary in Figure 5.3, the representation of prim ary would
usually be a word with the hexadecimal value 0x54, i.e., the third, fifth, and seventh
bits from the right would be ones. An alternate representation is sometimes used if
the sets are expected to be sparse, that is, to have many more possible elements
than actual elements. In this representation, the set is a list of the bit positions
that are ones, usually sorted in increasing order. Our example set would consist of
four storage units, the first containing 3 (the number of elements) and the others
containing the values 3, 5, and 7; the size of the storage units might be chosen based
on the number of elements in the set type or might always be a word.

Various higher-level languages provide a series of other types that can be repre
sented in terms of the types and type constructors we have discussed. For example,
complex numbers can be represented as records consisting of two floating-point
components, one each for the real and imaginary parts; and rationals can be rep
resented as records consisting of two integers, one each for the numerator and
denominator, usually with the proviso that the greatest common factor of the two
integers be one. Of course, languages with rich sets of type constructors can provide
vast collections of types.

The representations discussed above all assume that types are associated
with variables and are known at compile time. Some languages, such as lisp and
Smalltalk, associate types with data objects rather than variables, and may require
type determination at run time. We leave consideration of this issue to Section 5.8.

.2 Register Usage
The use of registers is among the most important issues in designing a compiler
for any machine in which access to registers is faster than access to other levels
of the memory hierarchy—a category that includes all current machines we are

110 Run-Time Support

aware of and most of the machines that have ever been built. Ideally, we would
allocate all objects to registers and avoid accessing memory entirely, if that were
possible. While this objective applies to almost all c iscs, it is even more important
for recent c isc implementations such as the Intel Pentium and its successors, which
are biased toward making Rise-style instructions fast, and for Rises, since almost all
operations in a Rise require their operands to be in registers and place their results
in registers. Unfortunately, registers are always comparatively few in number, since
they are among the most expensive resources in most implementations, both because
of the area and interconnection complexity they require and because the number of
registers affects the structure of instructions and the space available in instructions
for specifying opcodes, offsets, conditions, and so on. In addition, arrays require
indexing, a capability not supported by most register-set designs, so they cannot
generally be held in registers.

Of course, it is rarely the case that all data can be kept in registers all the time,
so it is essential to manage carefully use of the registers and access to variables that
are not in registers. In particular, there are four issues of concern:

1. to allocate the most frequently used variables to registers for as much of a program’s
execution as possible;

2. to access variables that are not currently in registers as efficiently as possible;

3. to minimize the number of registers used for bookkeeping, e.g., to manage access to
variables in memory, so as to make as many registers as possible available to hold
variables’ values; and

4. to maximize the efficiency of procedure calls and related operations, such as entering
and exiting a scoping unit, so as to reduce their overhead to a minimum.

Of course, these objectives usually conflict with each other. In particular, efficient
access to variables that are not in registers and efficient procedure calling may require
more registers than we might otherwise want to devote to them, so this is an area
where careful design is very important and where some architectural support may
be appropriate. Very effective techniques for allocating frequently used variables to
registers are covered in Chapter 16, so we will not consider that topic here.

Among the things that may contend for registers are the following:

stack pointer
The stack pointer points to the current top of the run-time stack, which is usually
what would be the beginning of the next procedure invocation’s local storage (i.e.,
its stack frame) on the run-time stack.

frame pointer
The frame pointer (which may not be necessary) points to the beginning of the
current procedure invocation’s stack frame on the run-time stack.

dynamic link
The dynamic link points to the beginning of the preceding frame on the run-time
stack (or, if no frame pointer is used, to the end of the preceding frame) and is used
to reestablish the caller’s stack frame when the current procedure invocation returns.

Section 5.3 The Local Stack Frame 111

Alternatively this may be an integer in an instruction that represents the distance
between the current and previous frame pointers, or, if frame pointers are not used,
stack pointers.

static link
The static link points to the stack frame for the closest invocation of the lexically
enclosing scope and is used to access nonlocal variables (some languages, such as C
and Fortran, do not require static links).

global offset table pointer
The global offset table pointer points to a table used in code shared among multiple
processes (see Section 5.7) to establish and access private (per process) copies of
external variables (this is unnecessary if such sharing does not occur).

arguments
Arguments passed to a procedure called by the one currently active.

return values
Results returned by a procedure called by the one currently active.

frequently used variables
The most frequently used local (and possibly nonlocal or global) variables.

temporaries
Temporary values computed and used during expression evaluation and other short
term activities.

Each of these categories will be discussed in the sections that follow.
Depending on the design of the instruction set and registers, some operations

may require register pairs or quadruples. Integer register pairs are frequently used
for the results of multiply and divide operations, in the former case because the
length of a product is the sum of the lengths of its operands and in the latter to
provide space for both the quotient and the remainder; and for double-length shift
operations, which some architectures, such as pa-risc , provide in place of the rotate
operations commonly found in ciscs.

The Local Stack Frame
Despite the desirability of keeping all operands in registers, many procedures require
an area in memory for several purposes, namely, 1

1 . to provide homes for variables that either don’t fit into the register file or may not
be kept in registers, because their addresses are taken (either explicitly or implicitly,
as for call-by-reference parameters) or because they must be indexable;

2 . to provide a standard place for values from registers to be stored when a procedure
call is executed (or when a register window is flushed); and

3. to provide a way for a debugger to trace the chain of currently active procedures.

112 Run-Time Support

Previous
stack
frame

Old sp -
Decreasing
memory
addresses

Current _________
stack a
frame

sp

Offset of a from sp

FIG. 5.4 A stack frame with the current and old stack pointers.

Since many such quantities come into existence on entry to a procedure and are no
longer accessible after returning from it, they are generally grouped together into an
area called a frame, and the frames are organized into a stack. Most often the frames
are called stack frames. A stack frame might contain values of parameters passed to
the current routine that don’t fit into the registers allotted for receiving them, some
or all of its local variables, a register save area, compiler-allocated temporaries, a
display (see Section 5.4), etc.

To be able to access the contents of the current stack frame at run time, we
assign them memory offsets one after the other, in some order (described below),
and make the offsets relative to a pointer kept in a register. The pointer may be
either the frame pointer f p, which points to the first location of the current frame,
or the stack pointer sp, which points to the current top of stack, i.e., just beyond the
last location in the current frame. Most compilers choose to arrange stack frames in
memory so the beginning of the frame is at a higher address than the end of it. In this
way, offsets from the stack pointer into the current frame are always non-negative,
as shown in Figure 5.4.

Some compilers use both a frame pointer and a stack pointer, with some vari
ables addressed relative to each (Figure 5.5). Whether one should choose to use the
stack pointer alone, the frame pointer alone, or both to access the contents of the
current stack frame depends on characteristics of both the hardware and the lan
guages being supported. The issues are (1) whether having a separate frame pointer
wastes a register or is free; (2) whether the short offset range from a single register
provided in load and store instructions is sufficient to cover the size of most frames;
and (3) whether one must support memory allocation functions like the C library’s
a l lo c a () , which dynamically allocates space in the current frame and returns a
pointer to that space. Using the frame pointer alone is generally not a good idea,
since we need to save the stack pointer or the size of the stack frame somewhere
anyway, so as to be able to call further procedures from the current one. For most
architectures, the offset field in load and store instructions is sufficient for most stack
frames and there is a cost for using an extra register for a frame pointer, namely,

Section 5.3 The Local Stack Frame 113

i
Previous
stack
frame

Decreasing
memory
addresses

fp (old sp) i

Current
stack
frame

Offset of a
from f p

a

s p ----- ► '----------------------

FIG. 5.5 A stack frame with frame and stack pointers.

saving it to memory and restoring it and not having it available to hold the value of
a variable. Thus, using only the stack pointer is appropriate and desirable if it has
sufficient range and we need not deal with functions like a l lo c a ().

The effect of a l lo c a () is to extend the current stack frame, thus making the
stack pointer point to a different location from where it previously pointed. This, of
course, changes the offsets of locations accessed by means of the stack pointer, so
they must be copied to the locations that now have the corresponding offsets. Since
one may compute the address of a local variable in C and store it anywhere, this
dictates that the quantities accessed relative to sp must not be addressable by the user
and that, preferably, they must be things that are needed only while the procedure
invocation owning the frame is suspended by a call to another procedure. Thus, sp-
relative addressing can be used for such things as short-lived temporaries, arguments
being passed to another procedure, registers saved across a call, and return values.
So, if we must support a l lo c a () , we need both a frame pointer and a stack pointer.
While this costs a register, it has relatively low instruction overhead, since on entry
to a procedure, we (1) save the old frame pointer in the new frame, (2) set the frame
pointer with the old stack pointer’s value, and (3) add the length of the current frame
to the stack pointer, and, essentially, reverse this process on exit from the procedure.
On an architecture with register windows, such as sparc, this can be done even more
simply. If we choose the stack pointer to be one of the out registers and the frame
pointer to be the corresponding in register, as the sparc Unix System V ABI specifies,
then the save and r e s to r e instructions can be used to perform the entry and exit
operations, with saving registers to memory and restoring left to the register-window
spill and fill trap handlers.

An alternative that increases the range addressable from sp is to make it point
some fixed distance below the top of the stack (i.e., within the current stack frame),
so that part of the negative offset range from it is usable, in addition to positive

114 Run-Time Support

offsets. This increases the size of stack frames that can be accessed with single load
or store instructions in return for a small amount of extra arithmetic to find the real
top of the stack in the debugger and any other tools that may need it. Similar things
can be done with fp to increase its usable range.

5.4 The Run-Time Stack
At run time we do not have all the symbol-table structure present, if any. Instead,
we must assign addresses to variables during compilation that reflect their scopes
and use the resulting addressing information in the compiled code. As discussed in
Section 5.3, there are several kinds of information present in the stack; the kind of
interest to us here is support for addressing visible nonlocal variables. As indicated
above, we assume that visibility is controlled by static nesting. The structure of the
stack includes a stack frame for each active procedure,4 where a procedure is defined
to be active if an invocation of it has been entered but not yet exited. Thus, there may
be several frames in the stack at once for a given procedure if it is recursive, and the
nearest frame for the procedure statically containing the current one may be several
levels back in the stack. Each stack frame contains a dynamic link to the base of the
frame preceding it in the stack, i.e., the value of f p for that frame.5

In addition, if the source language supports statically nested scopes, the frame
contains a static link to the nearest invocation of the statically containing procedure,
which is the stack frame in which to look up the value of a variable declared in that
procedure. That stack frame, in turn, contains a static link to the nearest frame for an
invocation of its enclosing scope, and so on, until we come to the global scope. To set
the static link in a stack frame, we need a mechanism for finding the nearest invocation
of the procedure (in the stack) that the current procedure is statically nested in. Note
that the invocation of a procedure not nested in the current procedure is itself a
nonlocal reference, and the value needed for the new frame’s static link is the scope
containing that nonlocal reference. Thus,

1 . if the procedure being called is nested directly within its caller, its static link points
to its caller’s frame;

2 . if the procedure is at the same level of nesting as its caller, then its static link is a copy
of its caller’s static link; and

3 . if the procedure being called is n levels higher than the caller in the nesting structure,
then its static link can be determined by following n static links back from the caller’s
static link and copying the static link found there.

An example of this is shown in Figures 5.6 and 5.7. For the first call, from f ()
to g (), the static link for g () is set to point to f () ’s frame. For the call from g()

4. We assume this until Chapter 15, where we optimize away some stack frames.
5. If the stack model uses only a stack pointer to access the current stack frame and no frame
pointer, then the dynamic link points to the end of the preceding frame, i.e., to the value of sp for
that frame.

Section 5.4 The Run-Time Stack 115

procedure f ()
begin

procedure g ()
begin

c a l l h()
end
procedure h()
begin

c a l l i ()
end
procedure i ()
begin

procedure j ()
beg in

procedure k ()
be g in

procedure 1 ()
begin

c a l l g ()
end
c a l l 1 ()

end
c a l l k ()

end
c a l l j ()

end
c a l l g ()

end

FIG. 5.6 An example of nested procedures for static link determination.

to h(), the two routines are nested at the same level in the same routine, so h() ’s
static link is a copy of g () ’s. Finally, for the call from l () t o g () , g () i s nested
three levels higher in f () than 1 () is, so we follow three static links back from
1 () ’s and copy the static link found there.

As discussed below in Section 5.6.4, a call to an imported routine or to one in a
separate package must be provided a static link along with the address used to call it.

Having set the static link for the current frame, we can now do up-level ad
dressing of nonlocal variables by following static links to the appropriate frame. For
now, we assume that the static link is stored at offset s l_ o f f from the frame pointer
fp (note that s l_ o f f is the value stored in the variable S ta ticL in k O ff s e t used in
Section 3.6). Suppose we have procedure h() nested in procedure g () , which in
turn is nested in f (). To load the value of f () ’s variable i at offset i_ o f f in its
frame while executing h(), we would execute a sequence of instructions such as the
following lir : I

r l <r- [fp + s l_ o f f]
r 2 <r- [r l+ s l_ o f f]
r3 <- [r2 + i_ o ff]

I I ge t frame p o in ter of g ()
I I ge t frame p o in ter of f ()
I I load value of i

116 Run-Time Support

FIG. 5.7 (a) Static nesting structure of the seven procedures and calls among them in Figure 5.6,
and (b) their static links during execution (after entering g() from 1 ()).

While this appears to be quite expensive, it isn’t necessarily. First, accessing nonlocal
variables is generally infrequent. Second, if nonlocal accesses are common, a mecha
nism called a display can amortize the cost over multiple references. A display keeps
all or part of the current sequence of static links in either an array of memory loca
tions or a series of registers. If the display is kept in registers, nonlocal references are
no more expensive than references to local variables, once the display has been set
up. Of course, dedicating registers to holding the display may be disadvantageous,
since it reduces the number of registers available for other purposes. If the display is
kept in memory, each reference costs at most one extra load to get the frame pointer
for the desired frame into a register. The choice regarding whether to keep the display
in memory or in registers, or some in each, is best left to a global register allocator,
as discussed in Chapter 16.

5.5 Parameter-Passing Disciplines
There are several mechanisms for passing arguments to and returning results from
procedures embodied in existing higher-level languages, including (1) call by value,
(2) call by result, (3) call by value-result, (4) call by reference, and (5) call by
name. In this section, we describe each of them and how to implement them, and
mention some languages that use each. In addition, we discuss the handling of label

Section 5.5 Parameter-Passing Disciplines 117

parameters, which some languages allow to be passed to procedures. We use the
term arguments or actual arguments to refer to the values or variables being passed
to a routine and the term parameters or formal parameters to refer to the variables
they are associated with in the called routine.

Conceptually, call by value passes an argument by simply making its value
available to the procedure being called as the value of the corresponding formal
parameter. While the called procedure is executing, there is no interaction with the
caller’s variables, unless an argument is a pointer, in which case the callee can use it
to change the value of whatever it points to. Call by value is usually implemented
by copying each argument’s value to the corresponding parameter on entry to the
called routine. This is simple and efficient for arguments that fit into registers, but
it can be very expensive for large arrays, since it may require massive amounts of
memory traffic. If we have the caller and callee both available to analyze when we
compile either of them, we may be able to determine that the callee does not store
into a call-by-value array parameter and either it does not pass it on to any routines it
calls or the routines it calls also do not store into the parameter (see Section 19.2.1);
in that case, we can implement call by value by passing the address of an array
argument and allowing the callee to access the argument directly, rather than having
to copy it.

Versions of call by value are found in C, C++, Algol 60, and Algol 68. In C,
C++, and Algol 68, it is the only parameter-passing mechanism, but in all three, the
parameter passed may be (and for some C and C++ types, always is) the address of
an object, so it may have the effect of call by reference, as discussed below. Ada in
parameters are a modified form of call by value—they are passed by value, but are
read-only within the called procedure.

Call by result is similar to call by value, except that it returns values from the
callee to the caller rather than passing them from the caller to the callee. On entry
to the callee, it does nothing; when the callee returns, the value of a call-by-result
parameter is made available to the caller, usually by copying it to the actual argument
associated with it. Call by result has the same efficiency considerations as call by
value. It is implemented in Ada as out parameters.

Call by value-result is precisely the union of call by value and call by result. On
entry to the callee, the argument’s value is copied to the parameter and on return,
the parameter’s value is copied back to the argument. It is implemented in Ada as
inout parameters and is a valid parameter-passing mechanism for Fortran.

Call by reference establishes an association between an actual argument and
the corresponding parameter on entry to a procedure. At that time, it determines
the address of the argument and provides it to the callee as a means for access
ing the argument. The callee then has full access to the argument for the duration
of the call; it can change the actual argument arbitrarily often and can pass it on
to other routines. Call by reference is usually implemented by passing the address
of the actual argument to the callee, which then accesses the argument by means
of the address. It is very efficient for array parameters, since it requires no copy
ing, but it can be inefficient for small arguments, i.e., those that fit into registers,
since it precludes their being passed in registers. This can be seen by considering

118 Run-Time Support

a call-by-reference argument that is also accessible as a global variable. If the argu
ment’s address is passed to a called routine, accesses to it as a parameter and as a
global variable both use the same location; if its value is passed in a register, ac
cess to it as a global variable will generally use its memory location, rather than the
register.

A problem may arise when a constant is passed as a call-by-reference parameter.
If the compiler implements a constant as a shared location containing its value that is
accessed by all uses of the constant in a procedure, and if it is passed by reference to
another routine, that routine may alter the value in the location and hence alter the
value of the constant for the remainder of the caller’s execution. The usual remedy is
to copy constant parameters to new anonymous locations and to pass the addresses
of those locations.

Call by reference is a valid parameter-passing mechanism for Fortran. Since C,
C++, and Algol 68 allow addresses of objects to be passed as value parameters, they,
in effect, provide call by reference also.

The semantics of parameter passing in Fortran allow either call by value-result
or call by reference to be used for each argument. Thus, call by value-result can be
used for values that fit into registers and call by reference can be used for arrays,
providing the efficiency of both mechanisms for the kinds of arguments for which
they perform best.

Call by name is the most complex parameter-passing mechanism, both con
ceptually and in its implementation, and it is really only of historical significance
since Algol 60 is the only well-known language that provides it. It is similar to
call by reference in that it allows the callee access to the caller’s argument, but
differs in that the address of the argument is (conceptually) computed at each ac
cess to the argument, rather than once on entry to the callee. Thus, for example,
if the argument is the expression a [i] and the value of i changes between two
uses of the argument, then the two uses access different elements of the array.
This is illustrated in Figure 5.8, where i and a [i] are passed by the main pro
gram to procedure f (). The first use of the parameter x fetches the value of a [l] ,
while the second use sets a [2] . The call to out in teger () prints 5 5 2 . If call by
reference were being used, both uses would access a [l] and the program would
print 5 5 8 . Implementing call by name requires a mechanism for computing the
address of the argument at each access; this is generally done by providing a pa
rameterless procedure called a thunk. Each call to an argument’s thunk returns its
current address. This, of course, can be a very expensive mechanism. However,
many simple cases can be recognized by a compiler as identical to call by refer
ence. For example, passing a simple variable, a whole array, or a fixed element
of an array always results in the same address, so a thunk is not needed for such
cases.

Labels may be passed as arguments to procedures in some languages, such
as Algol 60 and Fortran, and they may be used as the targets of got os in the
procedures they are passed to. Implementing this functionality requires that we pass
both the code address of the point marked by the label and the dynamic link of the
corresponding frame. A goto whose target is a label parameter executes a series of

Section 5.6 Procedure Prologues, Epilogues, Calls, and Returns 119

begin
in te ge r array a [1 :2] ; in te ge r i ;
procedure f (x , j) ;

in te ge r x , j ;
begin in te ge r k;

k := x;
J := j + 1;
x = j ;
f := k;

end;
i := 1;
a [1] := 5;
a [2] := 8;
out in te ge r (a [1] , f (a [i] , i) , a [2]) ;

end

FIG. 5.8 Call by name parameter-passing mechanism in Alg o l 60.

one or more return operations, until the appropriate stack frame (indicated by the
dynamic link) is reached, and then executes a branch to the instruction indicated by
the label.

5.6 Procedure Prologues, Epilogues, Calls,
and Returns
Invoking a procedure from another procedure involves a handshake to pass control
and argument values from the caller to the callee and another to return control and
results from the callee to the caller. In the simplest of run-time models, executing a
procedure consists of five major phases (each of which, in turn, consists of a series
of steps), as follows:

1. The procedure call assembles the arguments to be passed to the procedure and
transfers control to it.
(a) Each argument is evaluated and put in the appropriate register or stack location;

“evaluation” may mean computing its address (for reference parameters), its
value (for value parameters), etc.

(b) The address of the code for the procedure is determined (or, for most languages,
was determined at compile time or at link time).

(c) Registers that are in use and saved by the caller are stored in memory.
(d) If needed, the static link of the called procedure is computed.
(e) The return address is saved in a register and a branch to the procedure’s code is

executed (usually these are done by a single c a l l instruction).

2. The procedure’s prologue, executed on entry to the procedure, establishes the ap
propriate addressing environment for the procedure and may serve other functions,
such as saving registers the procedure uses for its own purposes.

120 Run-Time Support

(a) The old frame pointer is saved, the old stack pointer becomes the new frame
pointer, and the new stack pointer is computed.

(b) Registers used by the callee and saved by the callee are stored to memory.
(c) If the run-time model uses a display, it is constructed.

3. The procedure does its work, possibly including calling other procedures.

4. The procedure’s epilogue restores register values and the addressing environment of
the caller, assembles the value to be returned, and returns control to the caller.
(a) Registers saved by the callee are restored from memory.
(b) The value (if any) to be returned is put in the appropriate place.
(c) The old stack and frame pointers are recovered.
(d) A branch to the return address is executed.

5. Finally, the code in the caller following the call finishes restoring its execution
environment and receives the returned value.
(a) Registers saved by the caller are restored from memory.
(b) The returned value is used.

Several issues complicate this model, including: how the parameter-passing
mechanism varies with the number and types of arguments, dividing up the regis
ters into sets saved by the caller, saved by the callee, or neither (“ scratch” registers);
the possibility of calling a procedure whose address is the value of a variable; and
whether a procedure is private to the process containing it or shared (discussed in
Section 5.7).

Managing registers efficiently across the procedure call interface is essential to
achieving high performance. If the caller assumes that the callee may use any regis
ter (other than those dedicated to particular purposes, such as the stack pointer) for
its own purposes, then it must save and restore all the registers it may have use
ful values in—potentially almost all the registers. Similarly, if the callee assumes
that all the undedicated registers are in use by the caller, then it must save and
restore all the registers the caller may have useful values in—again, potentially al
most all the registers. Thus, it is very important to divide the register set in an
optimal way into four classes, namely, (1) dedicated (manipulated only by the call
ing conventions), (2) caller-saved, (3) callee-saved, and (4) scratch (not saved across
procedure calls at all). Of course, the optimal division depends on architectural fea
tures, such as register windows, as in sparc; sharing one register set for integer
and floating-point data, as in the Motorola 88000; and architectural restrictions,
such as the Intel 386 architecture family’s small number of registers and their in
homogeneity. The optimal division may vary from program to program. Interpro
cedural register allocation, as described in Section 19.6, can mitigate the impact of
the variation from one program to another. Lacking that, experiment and experi
ence are the best guides for determining a satisfactory partition. Some examples
of ways to divide the register set are provided in the unix ABI processor supple
ments.

Section 5.6 Procedure Prologues, Epilogues, Calls, and Returns 121

Note that both of the methods that pass parameters in registers need to incor
porate a stack-based approach as well— if there are too many parameters to pass in
the available registers, they are passed on the stack instead.

5.6.1 Parameters Passed in Registers: Flat Register File

In architectures with large general-purpose register files, parameters are usually
passed in registers. A sequence of integer registers and a sequence of floating-point
registers are designated to contain the first ia integer arguments and the first fa
floating-point arguments, for some small values of ia and fa,6 with the arguments
divided in order between the two register sets according to their types, and the
remaining arguments, if any, passed in storage at an agreed point in the stack.
Suppose we have a call f (i , x , j) with parameters passed by value, where the first
and third parameters are integers and the second is a single-precision floating-point
value. Thus, for our example, the arguments i and j would be passed in the first
two integer parameter registers, and x would be passed in the first floating-point
parameter register. The procedure-invocation handshake includes making the code
generated for f () receive its parameters this way (this example is used in Exercises
5 .4-5 .6 in Section 5.11).

This mechanism is adequate for value parameters that fit into single registers or
into pairs of registers and for all reference parameters. Beyond that size, another con
vention is typically used for value parameters, namely, the address of the argument
is passed to the called procedure and it is responsible for copying the parameter’s
value into its own stack frame or into other storage. The size of the argument may
also be passed, if needed.

If more than ia integer arguments or more than fa floating-point arguments are
passed, the additional ones are typically passed on the stack just beyond the current
stack pointer and, hence, can be accessed by the called routine with non-negative
offsets from the new frame pointer.

Returning a value from a procedure is typically done in the same way that
arguments are passed, except that, in most languages, there may not be more than
one return value and some care is required to make procedures reentrant, i.e.,
executable by more than one thread of control at the same time. Reentrancy is
achieved by returning values that are too large to fit into a register (or two registers)
in storage provided by the caller, rather than storage provided by the callee. To make
this work, the caller must provide, usually as an extra hidden argument, a pointer
to an area of storage where it will receive such a value.7 The callee can then put it
there, rather than having to provide storage for the value itself.

6. Weicker found that the average number of arguments passed to a procedure is about 2, and other
studies have substantially agreed with that result, so the value of n is typically in the range 5 to 8.
However, some system specifications allow many more; in particular, the unix System V ABI for
the Intel i860 makes available 12 integer and 8 floating-point registers for parameter passing.
7. If the caller also provides the size of the area as a hidden argument, the callee can check that the
value it returns fits into the provided area.

122 Run-Time Support

fp
fp - 4

fp - 8

fp -1 2

fp -5 6

fp -6 0

fp -1 1 2

fp -1 1 6

fp -1 2 8

sp+100

sp+60

sp+56

sp+4

sp

Old fp

Static link

Return address

Callee-saved g rs
(12 words)

Callee-saved f r s
(14 words)

Local variables
(4 words)

Caller-saved g rs
(11 words)

Caller-saved f rs
(14 words)

FIG. 5 .9 Structure of the stack frame for the procedure-calling example with parameters passed
in registers.

A typical register usage might be as follows:

Registers Usage

rO 0

r l — r5 Parameter passing
r 6 Frame pointer
r7 Stack pointer
r 8 — r l 9 Caller-saved
r20— r30 Callee-saved
r31 Return address

fO— f4 Parameter passing
f 5— f 18 Caller-saved
f 19— f 31 Callee-saved

and might return a result in r l or fO, according to its type. We choose the stack
structure shown in Figure 5.9, where we assume that the local variables occupy four
words and that g r and f r abbreviate “ general register” and “ floating-point register,”

Section 5.6 Procedure Prologues, Epilogues, Calls, and Returns 123

respectively. Were it necessary to pass some parameters on the stack because there
are too many of them to all be passed in registers or if the called routine were to
traverse the parameter list, space would be allocated between fp-128 and sp+104
to accommodate them. Exercise 5.4 requests that you produce code for a procedure
call, prologue, parameter use, epilogue, and return for this model.

5.6.2 Parameters Passed on the Run-Time Stack
In the stack-based model, the arguments are pushed onto the run-time stack and used
from there. In a machine with few registers and stack-manipulation instructions,
such as the VAX and the Intel 386 architecture, we use those instructions to store
the arguments in the stack. This would, for example, replace

r l <- 5 II put th ird argument on stack
sp <r- sp - 4

by

pushl 5 ; push th ird argument onto stack

for the Intel 386 architecture family. Also, we would not need to adjust the stack
pointer after putting the arguments on the stack—the pushes would do it for us. The
return value could either be passed in a register or on the stack; we use the top of
the floating-point register stack in our example.

For the Intel 386 and its successors, the architecture provides eight 32-bit integer
registers. Six of the registers are named eax, ebx, ecx, edx, e s i , and edi and are,
for most instructions, general-purpose. The other two, ebp and esp, are the base
(i.e., frame) pointer and stack pointer, respectively. The architecture also provides
eight 80-bit floating-point registers known as s t (0) (or just s t) through s t (7)
that function as a stack, with s t (0) as the current top of stack. In particular, a
floating-point return value is placed in s t (0). The run-time stack layout is shown in
Figure 5.10.

Exercise 5.5 requests that you produce code for a procedure call, prologue,
parameter use, epilogue, and return for this model.

5.6.3 Parameter Passing in Registers with Register Windows
Register windows, as provided in sparc, simplify the process of passing arguments
to and returning results from procedures. They also frequently result in a significant
reduction in the number of loads and stores executed, since they make it possible
to provide a much larger register file without increasing the number of bits required
to specify register numbers (typical sparc implementations provide seven or eight
windows, or a total of 128 or 144 integer registers) and take advantage of locality
of procedure calls through time.

The use of register windows prescribes, in part, the division of the integer
registers into caller- and callee-saved: the caller’s local registers are not accessible to
the callee, and vice versa for the callee’s local registers; the caller’s out registers are
the callee’s in registers and so are primarily dedicated (including the return address

124 Run-Time Support

ebp+20

ebp+16

ebp+12

ebp+8

ebp+4

ebp

ebp-4

eb p -16

esp+8

esp+4

esp

FIG. 5.10 Structure of the stack frame for the procedure-calling example with parameters passed
on the run-time stack for the Intel 386 architecture family.

3rd argument

2nd argument

1st argument

Static link

Return address

Caller’ s ebp

Local variables
(4 words)

Caller’ s e d i

Caller’s e s i

Caller’ s ebx

and the caller’s stack pointer, which becomes the callee’s frame pointer) or used for
receiving parameters; the callee’s out registers can be used as temporaries and are
used to pass arguments to routines the callee calls. Saving values in the windowed
registers to memory and restoring them is done by the window spill and fill trap
handlers, rather than by user code. Figure 5.11 shows the overlapping relationships
among three routines’ register windows.

When a procedure call is executed, out registers oO through o5 conventionally
contain integer arguments that are being passed to the current procedure (floating
point arguments are passed in the floating-point registers). The stack pointer sp is
conventionally in 0 6 and the frame pointer fp is in i 6 , so that a save executed in a
called procedure causes the old sp to become the new fp. Additional arguments, if
any, are passed on the run-time stack, as in the flat register model. When a procedure
returns, it places its return value in one (or a pair) of its in registers if it is an integer
value or in floating-point register fO if it is a floating-point value. Then it restores
the caller’s stack pointer by issuing a r e s to r e instruction to move to the previous
register window.

Figure 5.12 shows a typical stack frame layout for sparc. The 16 words of
storage at sp through sp+60 are for use by the register-window spill trap handler,
which stores the contents of the current window’s ins and locals there. Because of
this, sp must always point to a valid spill area; it is modified only by the indivisible
save and r e s to r e instructions. The former can be used to advance to a new window
and to allocate a new stack frame at once and the latter reverses this process. The
word at sp+64 is used to return structures and unions to the caller. It is set up by the
caller with the address of the area to receive the value.

Section 5.6 Procedure Prologues, Epilogues, Calls, and Returns 125

Caller’s window

r7 (g7)
• g lo b a ls

r l (g l)

rO (gO) 0

FIG. 5.11 s p a r c r e g i s t e r w i n d o w s f o r t h r e e s u c c e s s i v e p r o c e d u r e s .

The first six w ords o f integer argum ents are passed in registers. Succeeding argu
ments are passed in the stack fram e. If it should be necessary to traverse a variable-
length argum ent list, the entry-point code stores the first six argum ents beginning at
sp+68 . The area beginning at sp +92 is used to hold additional argum ents and tem
poraries and to store the global and floating-point registers when they need to be
saved. For our exam ple, b in Figure 5 .12 is 32 , so the size o f the entire stack fram e
is 148 bytes.

Exercise 5 .6 requests that you produce code for a procedure call, prologue,
param eter use, epilogue, and return for this m odel.

126 Run-Time Support

fp
fp -4

fp -8

fp -2 0

sp+92+b

sp+92

sp+88

sp+68

sp+64

sp+60

sp

Static link

Local variables
(four words)

Temporaries, global
and floating-point
register save area,
arguments 7 ,8 , . . .

Storage for arguments
1 through 6

s/u return pointer

Register window
save area
(16 words)

FIG. 5.12 Structure of the stack frame for the procedure-calling example with register windows
(s/u means structure or union).

4

0

FIG. 5.13 A procedure descriptor containing a procedure’s address and its static link.

5 .6 .4 Procedure-Valued Variables

Calling a procedure that is the value of a variable requires special care in setting
up its environment. If the target procedure is local, it must be passed a static link
that is appropriate for it. This is best handled by making the value of the variable
not be the address of the procedure’s code, but rather a pointer to a procedure
descriptor that includes the code address and the static link. We show such a de
scriptor in Figure 5.13. Given this descriptor design, the “ call” code, regardless of
the parameter-passing model, must be modified to get the static link and address
of the called routine from the descriptor. To call the procedure, we load the address
of the procedure into a register, load the static link into the appropriate register, and
perform a register-based call. Alternately, since this code sequence is short and in
variant, we could make one copy of it, do all calls to procedure variables by calling
it, and replace the register-based call that terminates it by a register-based branch,
since the correct return address is the one used to call this code sequence.

Static link

Procedure’s address

Section 5.7 Code Sharing and Position-Independent Code 127

Code Sharing and Position-Independent Code
We have implicitly assumed above that a running program is a self-contained
process, except possibly for calls to operating system services, i.e., any library rou
tines that are called are linked statically (before execution) with the user’s code, and
all that needs to be done to enable execution is to load the executable image of the
program into memory, to initialize the environment as appropriate to the operating
system’s standard programming model, and to call the program’s main procedure
with the appropriate arguments. There are several drawbacks to this model, hav
ing to do with space utilization and the time at which users’ programs and libraries
are bound together, that can all be solved by using so-called shared libraries that
are loaded and linked dynamically on demand during execution and whose code is
shared by all the programs that reference them. The issues, presented as advantages
of the shared library model, are as follows:

1. A shared library need exist in the file system as only a single copy, rather than as part
of each executable program that uses it.

2. A shared library’s code need exist in memory as only one copy, rather than as part
of every executing program that uses it.

3. Should an error be discovered in the implementation of a shared library, it can be
replaced with a new version, as long as it preserves the library’s interface, without re
quiring programs that use it to be relinked—an already executing program continues
to use the copy of the library that was present in the file system when it demanded
it, but new invocations of that program and others use the new copy.

Note that linking a program with a nonshared library typically results in acquir
ing only the routines the program calls, plus the transitive closure of routines they
call, rather than the whole library, but this usually does not result in a large space
savings—especially for large, complex libraries such as those that implement win
dowing or graphics systems—and spreading this effect over all programs that link
with a given library almost always favors shared libraries.

A subtle issue is the need to keep the semantics of linking the same, as much as
possible, as with static linking. The most important component of this is being able
to determine before execution that the needed routines are present in the library, so
that one can indicate whether dynamic linking will succeed, i.e., whether undefined
and/or multiply defined external symbols will be encountered. This functionality is
obtained by providing, for each shared library, a table of contents that lists its entry
points and external symbols and those used by each routine in it (see Figure 5.14
for an example). The first column lists entry points and externally known names in
this shared library and the second and third columns list entry points and externals
they reference and the shared libraries they are located in. The pre-execution linking
operation then merely checks the tables of contents corresponding to the libraries
to be linked dynamically, and so can report the same undefined symbols that static
linking would. The run-time dynamic linker is then guaranteed to fail if and only
if the pre-execution static linker would. Still, some minor differences may be seen

128 Run-Time Support

Entry Points and Shared Entry Points and
External Symbols Library External Symbols
Provided Used Used

entry1 libraryl externl

entry2

library2 entry3

entry2 library l entry1

library2 entry4

entry5

externl

FIG. 5.14 An example of a shared library’s table of contents.

when one links a dynamic library ahead of a static library, when both were originally
linked statically.

Also, the code that is shared need not constitute a library in the sense in which
that term has traditionally been used. It is merely a unit that the programmer chooses
to link in at run time, rather than in advance of it. In the remainder of this section,
we call the unit a shared object rather than a shared library, to reflect this fact.

Shared objects do incur a small performance impact when a program is running
alone, but on a multiprogrammed system, this impact may be balanced entirely or
nearly so by the reduced working set size, which results in better paging and cache
performance. The performance impact has two sources, namely, the cost of run-time
linking and the fact that shared objects must consist of position-independent code,
i.e., code that can be loaded at different addresses in different programs, and each
shared object’s private data must be allocated one copy per linked program, resulting
in somewhat higher overhead to access it.

We next consider the issues and non-issues involved in supporting shared ob
jects. Position independence must be achieved so that each user of a shared object
is free to map it to any address in memory, possibly subject to an alignment condi
tion such as the page size, since programs may be of various sizes and may demand
shared objects in any order. Accessing local variables within a shared object is not an
issue, since they are either in registers or in an area accessed by means of a register,
and so are private to each process. Accessing global variables is an issue, since they
are often placed at absolute rather than register-relative addresses. Calling a rou
tine in a shared object is an issue, since one does not know until the routine has been
loaded what address to use for it. This results in four problems that need to be solved
to make objects position-independent and hence sharable, namely, (1) how control
is passed within an object, (2) how an object addresses its own external variables,
(3) how control is passed between objects, and (4) how an object addresses external
variables belonging to other objects.

In most systems, transferring control within an object is easy, since they provide
program-counter-relative (i.e., position-based) branches and calls. Even though the

Section 5.7 Code Sharing and Position-Independent Code 129

object as a whole needs to be compiled in such a way as to be positioned at any
location when it is loaded, the relative offsets of locations within it are fixed at
compile time, so PC-relative control transfers are exactly what is needed. If no PC-
relative call is provided by the architecture, it can be simulated by a sequence of
instructions that constructs the address of a call’s target from its offset from the
current point, as shown below.

For an instance of a shared object to address its own external variables, it needs
a position-independent way to do so. Since processors do not generally provide PC-
relative loads and stores, a different technique must be used. The most common
approach uses a so-called global offset table, or GOT, that initially contains offsets
of external symbols within a so-called dynamic area that resides in the object’s data
space. When the object is dynamically linked, the offsets in the GOT are turned
into absolute addresses within the current process’s data space. It only remains for
procedures that reference externals to gain addressability to the GOT. This is done
by a code sequence such as the following lir code:

gp <- G 0T _off - 4
c a l l n e x t ,r 3 1

n e x t : gP gp + r3 1

where G0T_of f is the address of the GOT relative to the instruction that uses it. The
code sets the global pointer gp to point to the base of the GOT. Now the procedure
can access external variables by means of their addresses in the GOT; for example,
to load the value of an external integer variable named a, whose address is stored at
offset a_of f in the GOT, into register r3, it would execute

r2 <r- [g p + a _ o ff]
r3 <- [r2]

The first instruction loads the address of a into r2 and the second loads its value into
r3. Note that for this to work, the GOT can be no larger than the non-negative part
of the range of the offset in load and store instructions. For a Rise, if a larger range
is needed, additional instructions must be generated before the first load to set the
high-order part of the address, as follows:

r3 <r- h ig h _ p a r t (a _ o f f)
r2 <r- gp + r3
r2 <r- [r2 + lo w _ p a rt (a _ o f f)]
r3 <- [r2]

where h igh .p art () and low .part () provide the upper and lower bits of their ar
gument, divided into two contiguous pieces. For this reason, compilers may provide
two options for generating position-independent code—one with and one without
the additional instructions.

Transferring control between objects is not as simple as within an object, since
the objects’ relative positions are not known at compile time, or even when the
program is initially loaded. The standard approach is to provide, for each routine
called from an object, a stub that is the target of calls to that routine. The stub is
placed in the calling object’s data space, not its read-only code space, so it can be

130 Run-Time Support

modified when the called routine is invoked during execution, causing the routine to
be loaded (if this is its first use in the called object) and linked.

There are several possible strategies for how the stubs work. For example, each
stub might contain the name of the routine it corresponds to and a call to the
dynamic linker, which would replace the beginning of the stub with a call to the
actual routine. Alternately, given a register-relative branch instruction, we could
organize the stubs into a structure called a procedure linkage table, or PLT, reserve
the first stub to call the dynamic linker, the second one to identify the calling object,
and the others to each construct the index of the relocation information for the
routine the stub is for, and branch to the first one (thus invoking the dynamic linker).
This approach allows the stubs to be resolved lazily, i.e., only as needed, and versions
of it are used in several dynamic linking systems. For sparc, assuming that we have
stubs for three procedures, the form of the PLT before loading and after the first
and third routines have been dynamically linked are as shown in Figure 5.15(a) and
(b), respectively. Before loading, the first two PLT entries are empty and each of the
others contains instructions that compute a shifted version of the entry’s index in the
PLT and branch to the first entry. During loading of the shared object into memory,
the dynamic linker sets the first two entries as shown in Figure 5.15(b)—the second
one identifies the shared object and the first creates a stack frame and invokes the
dynamic linker—and leaves the others unchanged, as shown by the .PLT3 entry.
When the procedure, say f (), corresponding to entry 2 in the PLT is first called,
the stub at .PLT2—which still has the form shown in Figure 5.15(a) at this point—
is invoked; it puts the shifted index computed by the se th i in g l and branches to
. PLTO, which calls the dynamic linker. The dynamic linker uses the object identifier
and the value in g l to obtain the relocation information for f (), and modifies entry
.PLT2 correspondingly to create a jmpl to the code for f () that discards the return
address (note that the se th i that begins the next entry is executed—harmlessly—in
the delay slot of the jmpl). Thus, a call from this object to the PLT entry for f ()
henceforth branches to the beginning of the code for f () with the correct return
address.

Accessing another object’s external variables is essentially identical to accessing
one’s own, except that one uses that object’s GOT.

A somewhat subtle issue is the ability to form the address of a procedure at run
time, to store it as the value of a variable, and to compare it to another procedure
address. If the address of a procedure in a shared object, when computed within the
shared object, is the address of its first instruction, while its address when computed
from outside the object is the address of the first instruction in a stub for it, then we
have broken a feature found in C and several other languages. The solution is simple:
both within shared code and outside it, we use procedure descriptors (as described in
the preceding section) but we modify them to contain the PLT entry address rather
than the code’s address, and we extend them to include the address of the GOT for
the object containing the callee. The code sequence used to perform a call through a
procedure variable needs to save and restore the GOT pointer, but the result is that
such descriptors can be used uniformly as the values of procedure variables, and
comparisons of them work correctly.

Section 5.8 Symbolic and Polymorphic Language Support 131

PLTO: unimp .PLTO: save sp ,-64 ,sp
unimp c a ll dyn_linker
unimp nop

PLT1: unimp .PLT1: .word object_id
unimp unimp
unimp unimp

PLT2: sethi (.-.PLT 0),g l .PLT2: sethi (. - . PLTO),gl
ba,a .PLTO sethi °/0h i (f) ,g l
nop jmpl gl+°/0lo (f) ,r0

PLT3: sethi (.-.PLT 0),g l .PLT3: sethi (. - . PLTO),gl
ba,a .PLTO ba,a .PLTO
nop nop

PLT4: sethi (.-.PLT 0),g l .PLT4: seth i (.-.PLTO),gl
ba,a .PLTO sethi #/,hi (h) ,g l
nop jmpl gl+7,lo(h) ,r0
nop nop

(a) (b)

FIG. 5.15 sparc PLT (a) before loading, and (b) after two routines have been dynamically linked.

5.8 Symbolic and Polymorphic Language Support
Most of the compiler material in this book is devoted to languages that are well
suited to compilation: languages that have static, compile-time type systems, that do
not allow the user to incrementally change the code, and that typically make much
heavier use of stack storage than heap storage.

In this section, we briefly consider the issues involved in compiling programs
written in more dynamic languages, such as lisp , M L, Prolog, Scheme, self ,
Smalltalk, sn o bo l , Java, and so on, that are generally used to manipulate symbolic
data and have run-time typing and polymorphic operations. We refer the reader
to [Lee91] for a more expansive treatment of some of these issues. There are five
main problems in producing efficient code for such a language, beyond those con
sidered in the remainder of this book, namely,

1. an efficient way to deal with run-time type checking and function polymorphism,

2. fast implementations of the language’s basic operations,

3. fast function calls and ways to optimize them to be even faster,

4. heap storage management, and

5. efficient ways of dealing with incremental changes to running programs.

Run-time type checking is required by most of these languages because they
assign types to data, not to variables. Thus, when we encounter at compile time an
operation of the form “ a + b ” , or “ (p lu s a b) ” , or however it might be written in
a particular language, we do not, in general, have any way of knowing whether the

132 Run-Time Support

operation being performed is addition of integers, floating-point numbers, rationals,
or arbitrary-precision reals; whether it might be concatenation of lists or strings;
or whether it is some other operation determined by the types of its two operands.
So we need to compile code that includes type information for constants and that
checks the types of operands and branches to the appropriate code to implement
each operation. In general, the most common cases that need to be detected and
dispatched on quickly are integer arithmetic and operations on one other data type,
namely, list cells in lisp and ML, strings in snobol, and so on.

Architectural support for type checking is minimal in most systems, sparc, how
ever, provides tagged add and subtract instructions that, in parallel with performing
an add or subtract, check that the low-order two bits of both 32-bit operands are
zeros. If they are not, either a trap or a condition code setting can result, at the user’s
option, and the result is not written to the target register. Thus, by putting at least
part of the tag information in the two low-order bits of a word, one gets a very in
expensive way to check that an add or subtract has integer operands. Some other
Rises, such as mips and pa-risc , support somewhat slower type checking by pro
viding compare-immediate-and-branch instructions. Such instructions can be used
to check the tag of each operand in a single instruction, so the overhead is only two
to four cycles, depending on the filling of branch-delay slots.

The low-order two bits of a word can also be used to do type checking in sparc
for at least one more data type, such as list cells in lisp. Assuming that list cells are
doublewords, if one uses the address of the first word plus 3 as the pointer to a list
cell (say in register r l) , then word accesses to the car and edr fields use addresses
of the form r l - 3 and r l + 1, and the addresses are valid if and only if the pointers
used in loads or stores to access them have a 3 in the low-order two bits, i.e., a tag
of 3 (see Figure 5.16). Note that this leaves two other tag values (1 and 2) available
for another type and an indicator that more detailed type information needs to be
accessed elsewhere.

The odd-address facet of the tagging scheme can be used in several other R is e

architectures. Other efficient means of tagging data are discussed in Chapter 1
of [Lee91].

The work discussed in Section 9.6 concerns, among other things, software
techniques for assigning, where possible, types to variables in languages in which,
strictly speaking, only data objects have types.

Fast function calling is essential for these languages because they strongly en
courage dividing programs up into many small functions. Polymorphism affects
function-calling overhead because it causes determination at run time of the code
to invoke for a particular call, based on the types of its arguments. Rises are ideal

r l 503

500
edr

504

FIG. 5.16 A lisp list cell and a sparc tagged pointer to it.

Section 5.9 Wrap-Up 133

in this regard, since they generally provide fast function calls by branch-and-link in
structions, pass arguments in registers, and, in most cases, provide quick ways to
dispatch on the type of one or more arguments. One can move the type of an argu
ment into a register, convert it to an offset of the proper size, and branch into a table
of branches to code that implements a function for the corresponding type.

Dynamic and symbolic languages generally make heavy use of heap storage,
largely because the objects they are designed to operate on are very dynamic in size
and shape. Thus, it is essential to have a very efficient mechanism for allocating heap
storage and for recovering it. Storage recovery is uniformly by garbage collection,
not by explicit freeing. The most efficient method of garbage collection for general
use for such languages is generation scavenging, which is based on the principle that
the longer an object lives, the longer it is likely to live.

Finally, the ability to incrementally change the code of a running program is a
characteristic of most of these languages. This is usually implemented in compiled
implementations by a combination of run-time compilation and indirect access to
functions. If the name of a function in a running program is the address of a cell
that contains the address of its code, as in the procedure descriptors discussed
in Sections 5.6 and 5.7, then one can change the code and its location, at least
when it is not active, by changing the address in the indirect cell to point to the
new code for the function. Having the compiler available at run time also enables
on-the-fly recompilation, i.e., the ability to recompile an existing routine, perhaps
because one had previously cached a compiled copy of the routine that assumed
that its arguments had particular types and that information no longer applies. This
approach was used to good advantage in Deutsch and Schiffman’s implementation
of Smalltalk-80 for a Motorola M68000-based system [DeuS84] and has been used
repeatedly since in other polymorphic-language implementations.

The above discussion only scratches the surface of the issues involved in de
signing an efficient implementation of a dynamic language. See Section 5.10 for
references to further sources in this area.

Wrap-Up
In this chapter, we have reviewed the basic issues in supporting the concepts that
are commonly embodied in higher-level languages at run time, including data types
and approaches to representing them efficiently at run time, storage allocation and
addressing methods, visibility and scope rules, register usage and elementary meth
ods for managing it, the structure of a single procedure’s stack frame and the overall
organization of the run-time stack, and the issues involved in supporting parameter
passing and procedure calling, entry, exit, and return.

Since most of this material is covered well in introductory texts on compilers,
our purpose has been to remind the reader of the issues and of appropriate ways of
handling them and to provide references for further reading. More advanced con
cepts, such as position-independent code and support for dynamic and polymorphic
languages, are discussed in the final sections in greater detail.

134 Run-Time Support

The existence of Application Binary Interface standards for many architectures
determines how some of these issues must be handled (if it is necessary for a project
to conform to the standard), and thus eases the task of achieving interoperability
with other software.

In the latter sections of the chapter, we have discussed issues that are generally
not covered in introductory courses at all. In Section 5.7, we provided a detailed
account of how to support code sharing between processes, by means of position-
independent code and dynamic linking. Finally, in Section 5.8, we surveyed the issues
in supporting dynamic and polymorphic languages, a subject that could easily take
another whole volume if it were covered in detail.

5.10 Further Reading
The Unix System V ABI documents referred to at the beginning of this chapter are
the general specification [uNix90a], and its processor-specific supplements for, e.g.,
sparc [unix90c], the Motorola 88000 [uNix90b], and the Intel 386 architecture
family [unix93]. Hewlett-Packard’s [HewP91] specifies the stack structure and call
ing conventions for pa-risc .

The Unicode specification, which encompasses 16-bit character representations
for the Latin, Cyrillic, Arabic, Hebrew, and Korean (Hangul) alphabets; the al
phabets of several languages spoken in India; Chinese and Kanji characters; and
Katakana and Hiragana is [Unic90].

The idea of using thunks to compute the addresses of call-by-name parameters
is first described in [Inge61].

Weicker’s statistics on the average number of arguments passed to a procedure
are given in [Weic84], along with the code for the original version of the dhrystone
benchmark.

Statistics on the power of register windows to reduce the number of loads and
stores executed in a R i s e architecture are given in [CmeK91].

[GinL87] gives an exposition of the advantages of shared libraries or objects
and an overview of their implementation in a specific operating system, SunOS for
sparc. It also describes the minor differences that may be observed between loading
a program statically and dynamically.

The symbolic and polymorphic languages mentioned in Section 5.8 are described
in detail in [Stee84] (lisp), [MilT90] (ML), [CloM87] (Prolog), [CliR91] (Scheme),
[UngS91] (self), [Gold84] (Smalltalk), [GriP68] (snobol), and [GosJ96] (Java).

The generation scavenging approach to garbage collection is described in
[Unga87] and [Lee89].

The first published description of on-the-fly compilation is Deutsch and Schiff-
man’s implementation of Smalltalk-80 [DeuS84] for a Motorola M68000-based
system. Other issues in implementing dynamic and polymorphic languages, such as
inferring control- and data-flow information, are discussed in [Lee91] and in numer
ous papers in the proceedings of the annual programming languages and functional
programming conferences.

Section 5.11 Exercises 135

5.11 Exercises
5.1

5.2

5.3

5.4

5.5

ADV 5.6

5.7

5.8

5.9

ADV 5.10

5.11

Suppose that lir contained neither byte nor halfword loads and stores, (a) Write an
efficient lir routine that moves a byte string from the byte address in register r l to
the byte address in r2 with the length in r3. (b) Now assume the C convention that
a string is terminated by a null character, i.e., 0x00, and rewrite the routines to move
such strings efficiently.

Determine how one of the compilers in your computing environment divides up
register usage. This may require simply reading a manual, or it may require a series
of experiments.

Suppose we have a call f (i , x , j) , with parameters passed by value, where the first
and third parameters are integers and the second is a single-precision floating-point
value. The call is executed in the procedure g (), which is nested within the same
scope as f () , so they have the same static link. Write lir code that implements
the procedure-calling and return handshake, assuming that parameters are passed in
registers with a flat register file, as discussed in Section 5.6.1. The answer should have
five parts, as follows: (1) the call, (2) f () ’s prologue, (3) use of the first parameter,
(4) f () ’s epilogue, and (5) the return point.

Write either lir code or Intel 386 architecture family assembly language for the
preceding exercise, assuming that parameters are passed on the run-time stack, as
discussed in Section 5.6.2.

Write lir code for the preceding exercise, assuming that parameters are passed in
registers with register windowing, as discussed in Section 5.6.3.

Devise a language extension to Pascal or a similar language that requires (some)
stack frames to be preserved, presumably in heap storage, independent of the origi
nal calling conventions. Why might such a language extension be useful?

Write a lir version of the routine a l lo c a () described in Section 5.3.

Write a (single) program that demonstrates that all the parameter-passing disciplines
are distinct. That is, write a program in a language of your choice and show that
using each of the five parameter-passing methods results in different output from
your program.

Describe (or write in ican) a procedure to be used at run time to distinguish which
of a series of methods with the same name is to be invoked in Java, based on the
overloading and overriding found in the language.

Write sample code for the procedure-calling handshake for a language with call by
name. Specifically, write lir code for a call f (n ,a [n]) where both parameters are
called by name.

Describe and give code examples for an approach to handling shared objects that
uses only a GOT and no PLTs.

136 Run-Time Support

RSCH 5.12 Explore the issues involved in supporting a polymorphic language by mixing on-the-
fly compilation (discussed briefly in Section 5.8) with interpretation of an interme
diate code. The issues include, for example, transfers of control between interpreted
and compiled code (in both directions), how to tell when it is worthwhile to com
pile a routine, and how to tell when to recompile a routine or to switch back to
interpreting it.

CHAPTER 6

Producing Code Generators
Automatically

In this chapter, we explore briefly the issues involved in generating machine or
assembly code from intermediate code, and then delve into automatic methods
for generating code generators from machine descriptions.
There are several sorts of issues to consider in generating code, including

1. the register, addressing, and instruction architecture of the target machine,

2. software conventions that must be observed,

3. a method for binding variables to memory locations or so-called symbolic registers,

4. the structure and characteristics of the intermediate language,

5. the implementations of intermediate-language operators that don’t correspond di
rectly to target-machine instructions,

6. a method for translating from intermediate code to machine code, and

7. whether to target assembly language or a directly linkable or relocatable version of
machine code.

The importance of and choices made for some of these issues vary according to
whether we are writing a compiler for a single language and target architecture; for
several languages for one architecture; for one language for several architectures; or
for several languages and several architectures. Also, it is usually prudent to take
into account that a given compiler may need to be adapted to support additional
source languages and machine architectures over its lifetime.

If we are certain that our job is to produce compilers for a single architecture,
there may be no advantage in using automatic methods to generate a code generator
from a machine description. In such a case, we would use a hand-crafted approach,
such as those described in the typical introductory compiler text. If, on the other
hand, we expect to be producing compilers for several architectures, generating

137

138 Producing Code Generators Automatically

code generators automatically from machine descriptions may be of great value. It
is generally easier to write or modify a machine description than to produce a code
generator from scratch or to adapt an existing code generator to a new architecture.

The machine architecture needs to be understood for obvious reasons—although
some reasons may not be so obvious. It is the target that the code we generate must
aim for—if we miss it, the code simply will not run. Less obviously, there may not
be a good match between some language features and the target architecture. For
example, if we must handle 64-bit integer arithmetic on a machine with a 32-bit
word length, we need to write open or closed routines (i.e., in-line code or subrou
tines) to perform the 64-bit operations. A similar situation arises almost universally
for complex numbers. If the machine has PC-relative conditional branches with a
displacement too short to cover the sizes of programs, we need to devise a means
for branching to locations far enough away to cover the class of expected programs,
perhaps by branching on the negation of a condition around an unconditional jump
with a broader range.

The software conventions have a similar importance. They must be designed to
support the source language’s features and to coincide with any published standard
that must be adhered to, such as an Application Binary Interface (ABI) definition (see
the beginning of Chapter 5), or the generated code will not meet its requirements.
Understanding the details of the software conventions and how to implement code
that satisfies them efficiently is essential to producing efficient code.

The structure of the intermediate language we are working from is not essential
to determining whether we are generating correct code, but it is a major determining
factor in selecting the method to use. There are code-generation approaches designed
to work on DAGs, trees, quadruples, triples, Polish-prefix code, and several other
forms, including several different representations of control structure.

Whether to target assembly language or a relocatable binary form of object
code is mostly a question of convenience and the importance of compilation-time
performance. Generating assembly code requires that we include an assembly phase
in the compilation process, and hence requires additional time (both for running the
assembler and for writing and reading the assembly code), but it makes the output
of the code generator easier to read and check, and it allows us to leave to the
assembler the handling of such issues as generating a branch to a currently unknown
future location in the code by producing a symbolic label now and leaving it to the
assembler to locate it in the code later. If, on the other hand, we generate linkable
code directly, we generally need a way to output a symbolic form of the code for
debugging anyway, although it need not be full assembly language and it might be
generated from the object code by a disassembler, as IBM does for its power and
PowerPC compilers (see Section 21.2.2).

6.1 Introduction to Automatic Generation
of Code Generators
While hand-crafted code generators are effective and fast, they have the disadvantage
of being implemented by hand and so are much more difficult to modify and port
than a code generator that is automatically generated. Several approaches have been

Section 6.2 A Syntax-Directed Technique 139

developed that construct a code generator from a machine description. We describe
three of them to varying levels of detail here. All begin with a low-level intermediate
code that has addressing computations exposed.

In all three cases, the code generator does pattern matching on trees, although
that will not be immediately apparent in the first two—they both work on a Polish-
prefix intermediate representation. Of course, as noted in Section 4.9.4, Polish
prefix results from a preorder tree traversal, so the tree is simply hidden in a linear
presentation.

A Syntax-Directed Technique
Our first approach to generating a code generator from a machine description is
known as the Graham-Glanville method after its originators. It represents machine
operations by rules similar to those in a context-free grammar, along with cor
responding machine instruction templates. When a rule matches a substring of a
Polish-prefix intermediate-code string (which represents a preorder traversal of a se
quence of trees) and its associated semantic constraints are met, the part matched is
replaced by an instantiation of the left-hand symbol of the rule and a corresponding
instantiation of the instruction template is emitted.

A Graham-Glanville code generator consists of three components, namely,
intermediate-language transformations, the pattern matcher, and instruction gen
eration. The first transforms, as necessary, the output of a compiler front end into
a form suitable for pattern matching; for example, source-language operators not
representable by machine operations might be transformed into subroutine calls,
and calls are transformed into sequences of explicit state-changing instructions. The
second component actually does the pattern matching, determining what sequence
of reductions is appropriate to consume an input string of intermediate code. The
third, which is meshed with the second in its execution, actually generates an appro
priate sequence of instructions and performs register allocation. In the remainder of
this section, we concentrate on the pattern-matching phase and, to a lesser degree,
on instruction generation.

As an example, consider the subset of lir instructions in Figure 6.1(a), where
each argument position is qualified with a number that is used to match intermediate-
code substrings with code-generation rules and instruction templates. The corre
sponding rules and sparc instruction templates are shown in Figure 6.1(b) and (c).
In the figure, “ r.w ” denotes a register, “k.w” a constant, and “e” the empty string.
The numbers are used both to coordinate matching with code emission and to ex
press syntactic restrictions in the rules—for example, if the first and second operands
in a string must be the same register for the match to succeed, then they would both
have the same number.

We use “ T” to denote a load, to denote a store, and mov to denote a register-
to-register move in the Polish-prefix code.

As an example, suppose we have the lir code shown in Figure 6.2. Then,
assuming r3 and r4 are dead at the end of this code sequence, there is no need to
include them explicitly in the tree representation, as shown in Figure 6.3, but we do
need to retain r l and r2. The resulting Polish-prefix form is

140 Producing Code Generators Autom atically

r .2 <- r . 1 r .2 r . l or r . 1 ,0 ,r .2
r .2 <- k .l r .2 => k .l or 0 ,k .1, r .2
r .2 <- r . l r . 2 ==> mov r . 2 r . l or r . 1 ,0 ,r .2

r .3 <- r . l + r .2 r .3 => + r . l r .2 add r . l , r . 2 , r .3
r . 3 <- r . l + k.2 r .3 => + r . l k.2 add r . l ,k .2 ,r .3
r .3 <- k .2 + r . l r .3 => + k.2 r . l add r . l ,k .2 ,r .3

r .3 <- r . l - r .2 r .3 => - r . l r .2 sub r . l , r . 2 , r .3
r .3 <- r . l - k.2 r .3 => - r . l k.2 sub r . l ,k .2 ,r .3

r . 3 <- [r .l+ r .2] r .3 => t + r . l r .2 Id [r . l , r . 2] , r .3
r .3 <- [r.l+k .2] r .3 => t + r . l k.2 Id [r . l ,k .2] , r .3
r . 2 <- [r .l] € ==> t r .2 r . l Id [r . l] , r .2

[r ,2 + r ..3] r . l € => <- + r .2 r .3 r . l St r.l,[r.2,r.3]
[r.2+k..1] <- r.l € = > < - + r.2 k.l r.l St r.l, [r.2,k.l]
[r2] <--r.l € => <- r.2 r.l St r.l,[r.2]
(a) (b) (c)

FIG* 6.1 (a) lir instructions, (b) Graham-Glanville machine-description rules, and (c)
corresponding sparc instruction templates.

r2 [r8]
r l <- [r8+4]
r3 <- r2 + r l
[r8+8] <- r3
r4 r l - 1
[r8+4] <- r4

FIG. 6.2 A lir code sequence for Graham-Glanville code generation.

T r2 r8 <- + r8 8 + r2 T rl + r8 4 <- + r8 4 - rl 1
The pattern matching that occurs during its parsing is shown in Figure 6.4, along
with the sparc instructions generated for it. The underlining indicates the portion
of the string that is matched, and the symbol underneath it shows what replaces
the matched substring; for loads and arithmetic operators, the resulting register is
determined by the register allocator used during code generation.

6.2.1 The Code Generator
The code generator is essentially an SLR (l) parser that performs the usual shift
and reduce actions, but that emits machine instructions instead of parse trees or
intermediate code. In essence, the parser recognizes a language whose productions
are the machine-description rules with “ e ” replaced by a nonterminal N and the
additional production S => N *. There are, however, a few important differences from
SLR parsing.

Section 6.2 A Syntax-Directed Technique 141

t

<7-

add add

r2 r8 r8 8 r2 T add sub

rl add r8 rl

r8 4
FIG. 6.3 Trees corresponding to the lir code sequence in Figure 6.2.

<- + r8 8 + r2 T rl + r8 4 <- + r8 4 - rl 1
rl

<- + r8 8 + r2 rl <- + r8 4 - rl 1
r3

<r- + r8 4 r3 <- + r8 4 - rl 1
e
<r- + r8 4 - rl 1

r4
<r- + r8 4 r4
€

(a)

1 - rl
Id

1
[r8,0],r2

Id [r8,4],rl

add r2,rl,r3

St r3, [r8,4]

sub rl,1,r4

St
(b)

r4,[r8,4]

FIG. 6*4 (a) Parsing process and (b) emitted instructions for the trees in Figure 6.3.

Rules with “ e” on the left-hand side are allowed, and the “ e” is treated as a
nonterminal symbol. Unlike in parsing, machine-description grammars are almost
always ambiguous. The ambiguities are resolved in two ways. One is by favoring
shift actions over reduce actions (i.e., the algorithm is greedy or maximal munch)
and longer reductions over shorter ones, so as to match the longest possible string.
The other is by ordering the rules when the parsing tables are produced so that
the code generator picks the first rule that matches when it performs a reduction
during code generation. Thus, in specifying the rules, one can bias code generation
to particular choices by ordering the rules in a particular way or by building a cost
evaluation into the code generator.

142 Producing Code Generators Autom atically

The code-generation algorithm uses seven global data types, a stack, and two
functions that are constructed by the code-generator generator, as follows:

Vocab = Terminal u Nonterminal
ExtVocab = Vocab u {•e1,'$1}
VocabSeq = sequence of Vocab
ActionType = enum {Shift,Reduce,Accept,Error}
I I type of machine grammar rules
Rule = record {It: Nonterminal u {'e'},

rt: VocabSeq}
I I type of parsing automaton items that make up its states
Item = record {It: Nonterminal u {'e'},

rt: VocabSeq,
pos: integer}

ActionRedn = ActionType x set of Item
Stack: sequence of (integer u ExtVocab)
Action: State x ExtVocab — > ActionRedn
Next: State x ExtVocab — > State

Note that the sets of terminal and nonterminal symbols in a machine grammar
almost always have a nonempty intersection.

The code generator takes as input a Polish-prefix intermediate-code string
InterCode, which must be a sequence of members of Terminal. An element of type
ActionRedn is a pair <<z,r> consisting of members a of ActionType and r in set of
Item such that r ^ 0 if and only if a — Reduce. The algorithm is shown in Figure 6.5.
Get .Symbol () returns the first symbol in its argument, and Discard.Symbol()
removes that symbol.

The function Emit_Instrs {reduction , left, right) selects a rule from among
those encoded in reduction, emits one or more corresponding instructions using
the information on the stack to instantiate the corresponding template, sets left to
the instantiated symbol on the left-hand side of the rule used, and sets right to the
length of the rule’s right-hand side. To understand why Emit.Instrs () needs to use
information on the stack to decide what instruction sequence to emit, consider the
second rule in Figure 6.1. There is no problem with using it, as long as the constant
matched by k . l fits into the 13-bit signed immediate field found in most s p a r c

instructions. If it doesn’t fit, Emit.Instrs() needs to generate a sethi and an or
to construct the constant in a register, followed by the corresponding three-register
instruction given in the first rule in Figure 6.1. We can introduce this alternative into
the rules by providing the additional rule and instruction template

(empty) r.2 => k.l sethi °/0hi(k. 1) ,r.2
or °/0lo(k. 1) ,r.2,r.2

However, we would still need to check the lengths of constant operands, since
otherwise this rule would not be used when needed— it matches a shorter substring
than does any rule that includes an operator and a constant operand, so we would
always shift on finding a constant operand, rather than reduce.

Section 6.2 A Syntax-Directed Technique 143

procedure Generate(InterCode) returns boolean
Intercode: in VocabSeq

begin
state := 0, right: integer
action: ActionType
reduction: set of Item
left, lookahead: ExtVocab
Stack := [0]
lookahead := Lookahead(InterCode)
while true do

action := ActionCstate,lookahead)11
reduction := ActionCstate,lookahead)12
case action of

Shift: Stack ®= [lookahead]
state := Next(state,lookahead)
Stack ®= [state]
Discard_Symbol(InterCode)
if InterCode = [] then

lookahead := '$'
else

lookahead := Get_Symbol(InterCode)
fi

Reduce: Emit_Instrs(reduction,left,right)
for i := 1 to 2 * right do

Stack ©= -1
od
state := Stackl-1
if left * then

Stack ®= [left]
state := Next(state,left)
Stack ®= [state]

fi
Accept: return true
Error: return false

esac
od

end I I Generate
FIG . 6 .S The code-generation algorithm.

144 Producing Code Generators Automatically

Another issue hidden in E m it_ I n s t r s () is register allocation. It can be handled
by the method described in Section 3 .6 , or preferably by assigning scalar variables
and tem poraries to an unlimited set o f sym bolic registers that the register allocator
(see Section 16.3) will eventually assign to machine registers or storage locations.

6.2.2 The Code-Generator Generator
The code-generator generator, shown in Figures 6.6 and 6.7 , is based on the sets-
of-items construction used in building SLR parsing tables (where an item is a pro
duction in the gram m ar with a dot in its right-hand side), but with several
m odifications. Items are represented by the global type Item declared above; an item
[/ => r\ . . . r\ • rz+i . . . rw] corresponds to the record < l t : / , r t : n . . . rn, p o s :/> .
The main routine G en _T ab les() returns t r u e if the set o f rules in MGrammar is
uniform (see Figure 6.7) and all syntactic blocks (see Subsection 6.2.4) could be re
paired; and f a l s e otherwise. The global variables in Figure 6.6 are global to all the

MaxStateNo: integer
MGrammar: set of Rule
ItemSet: array [••] of set of Item

procedure Gen_Tables() returns boolean
begin

StateNo := 0: integer
unif: boolean
item: Item
rule: Rule
I| remove cycles of nonterminals from machine grammar
Elim_Chain_Loops()
MaxStateNo := 0
I| generate action/next tables
ItemSet[0] := Closure({<lt:rule.It,rt:rule.rt,pos:0>

where rule e MGrammar & rule.lt = 'c'})
while StateNo ̂MaxStateNo do

Successors(StateNo)
I| process fails if some state is not uniform
if !Uniform(StateNo) then

return false
fi
StateNo += 1

od
I I process fails if some syntactic blockage is not repairable
unif := Fix.Synt.Blocks()
Action(0,'$') := <Accept,0>
return unif

end I I Gen.Tables
FIG. 6 .6 Constructing the SLR (l) parsing tables.

Section 6.2 A Syntax-Directed Technique 145

procedure Successors(s)
s: in integer

begin
Nextltems: set of Item
v: Vocab
x: ExtVocab
j: integer
item, iteml: Item
for each v e Vocab do

II if there is an item [x => in ItemSet [s] ,
I| set action to shift and compute next state
if Bitem e ItemSet [s] (v = item.rtl(item.pos+1)) then

Action(s,v) := <Shift,0>
Nextltems := Closure(Advance({iteml e Itemset[s]

where v =iteml.rtl(iteml.pos+1)}))
if 3j e integer (ItemSet [j] = Nextltems) then

Next(s,v) := j
else

MaxStateNo += 1
ItemSet[MaxStateNo] :* Nextltems
Next(s,v) := MaxStateNo

fi
II if there is an item [x a*] in ItemSet[s],
I I set action to reduce and compute the reduction
elif Bitem e ItemSet[s] (item.pos = I item.rt1+1) then

Reduction := {item e ItemSet [s] where item.pos = I item.rt1+1
& (item.lt = V (v e Follow(item.It)
& Viteml e ItemSet[s] (iteml = item V Iiteml.rtI ^ litem.rtl

V iteml.pos ^ litem.rtl V v ^ Follow(iteml.It))))}
Action(s,v) := {Reduce,Reduction)

I| otherwise set action to error
else

Action(s,v) := {Error,0>
fi

od
end || Successors

FIG . 6 .6 (continued)

routines in this section. The array Ite m S e t [] is indexed by state num bers and is
used to hold the sets o f items as they are constructed. Vocab is the vocabulary o f
terminal and nonterm inal sym bols that occurs in the rules. Like a parser generator,
the code-generator generator proceeds by constructing sets o f items and associatin g
each o f them with a state. The function S u c c e s s o r s () com putes the sets o f items
corresponding to the successors o f each state and fills in the A c t io n () and N ext ()
values for each transition.

The functions E lim _C h ain _L o op s() and F ix _ S y n t .B lo c k s () are described
below. The function U n iform () determ ines whether the set o f rules satisfies a

1 4 6 Producing Code G enerators A u tom atically

procedure Uniform(s) returns boolean
s: in integer

begin
u, v, x: Vocab
item: Item
for each item e ItemSet[s] (item.pos ^ I item.rtI) do

if item.pos * 0 then
x := Parent(item.rtlitem.pos,item.rt)
if Left_Child(item.rtlitem.pos,item.rt) then

for each u e Vocab do
if Action(s,u) = <Error,0>

& (Left_First(x,u) V Right_First(x,u)) then
return false

fi
od

fi
fi

od
return true

end I I Uniform

procedure Closure(S) returns set of Item
S: in set of Item

begin
OldS: set of Item
item, s: Item
repeat

I I compute the set of items [x => av#/J]
I | such that [x => is in S
OldS := S
5 u= {item e Item where 3s e S (s.pos < Is.rtl

& s.(s.pos+l) e Nonterminal
& item.lt = s.(s.pos+l) & item.pos = 0)}

until S = OldS
return S

end |I Closure

procedure Advance(S) returns set of Item
S: in set of Item

begin
s, item: Item
I| advance the dot one position in each item
I I that does not have the dot at its right end
return {item e Item where 3s e S (item.lt = s.lt

6 s.pos ^ Is.rtl & item.rt = s.rt
& item.pos = s.pos+1)}

end I I Advance
F IG . 6 .7 The functions U n iform () ,C l o s u r e () , and A dvance() used in constructing the SL R (l)

parsing tables.

Section 6.2 A Syntax-Directed Technique 147

property called uniformity defined as follows: a set of rules is uniform if and only if
any left operand of a binary operator is a valid left operand of that operator in any
Polish-prefix string containing the operator, and similarly for right operands and
operands of unary operators. To be suitable for Graham-Glanville code generation,
the set of rules must be uniform. The procedure Uniform() uses two functions
that are defined below, namely, Parent () and Left_Child() and two functions
that are defined from the relations discussed in the next two paragraphs, namely,
Left.First (x ,u) and Right .First (x,w), which return true if x Left First u and
x Right First u, respectively, and false otherwise.

The function

Parent: Vocab x Prefix — > Vocab

where Prefix is the set of prefixes of sentences generated by the rules, returns the
parent of its first argument in the tree form of its second argument, and the function

Left_Cbild : Vocab x Prefix — > boolean

returns a Boolean value indicating whether its first argument is the leftmost child of
its parent in the tree form of its second argument.

The relations used in the algorithm and in defining the functions and relations
used in it are as follows (where BinOp and UnOp are the sets of binary and unary
operator symbols and the lowercase Greek letters other than € stand for strings of
symbols, respectively):

Left c (BinOp U UnOp) x Vocab
x Left y if and only if there is a rule r => axyfi, where r may be e.

Right c BinOp x Vocab
x Right y if and only if there is a rule r => otxfiyy for some p / e, where r may be c.

First c Vocab x Vocab
x First y if and only if there is a derivation x ^ ya, where a may be c.

Last c Vocab x Vocab
x Last y if and only if there is a derivation x ay, where a may be e.

EpsLast c Vocab
EpsLast = {x | 3 a rule c => ay and y Last x).

RootOps c BinOp U UnOp
RootOps = [x | 3 a rule c =» xa and x e BinOp U UnOp}.

The function Follow : Vocab — > Vocab can be defined from the auxiliary
function Follow 1 : Vocab — ► Vocab and sets EpsLast and RootOps as follows:

Followl{u) = [v | 3 a rule r =» axyfi such that x Last u and y First v}

Follow(u) = Follow\(u) U RootOps
Follow\(u)

if u e EpsLast
otherwise

148 Producing Code Generators Automatically

r.2 <- r.l

r .3 <- r . l + r .2
r.3 <- r.l + k.2

r.2 <- [r.l]

[r2] <- r.l

(a)

r.2 => r.l

r.3 => + r.l r.2
r.3 => + r.l k.2

r.2 => t r.l

€ => <- r.2 r.l

(b)

or r.1,0,r.2

add r.1,r.2,r.3
add r.1,k.2,r.3

Id [r.l],r.2

st r.l,[r.2]

(C)

FIG. 6.8 (a) l i r instructions, (b) Graham-Glanville machine-description rules, and (c)
corresponding s p a r c instruction templates.

As an example of a Graham-Glanville code generator, consider the very
simple machine-description rules in Figure 6.8. In the example, we write
items in their traditional notation, that is, we write Lx => a *y !3] in place of
< l t : x , r t :cry/?,pos: |a|>. First, the Left, Right, and so on relations, sets, and func
tions are as given in Figure 6.9. Next, we trace several stages of
G en_Tables() for the given grammar. Initially we have StateNo = MaxStateNo = 0
and Item Set[0] = { [e r r] >. Next we call S u cce sso rs (0), which sets
v = ' e ' , computes Act ion (0 , ') = < S h ift ,0 > , and sets Next Items to

C losure(A dvance({ [e => • <r- r r] »)

which evaluates to

Nextltem s = { [e =*• • r r] , [r • r] , [r => • + r r] ,
[r => • + r k] , [r => • T r] }

Now MaxStateNo is increased to 1, Item Set [1] is set to the value just computed for
N extltem s, and Next (0 , ' <r- ') is set to 1.

Next we compute U niform (l). All items in Item Set [1] have the dot at the
beginning, so this is vacuously tru e . In the following steps, Uniform() always
returns tru e .

Next, StateN o is set to 1 and we call S u c c e sso r s (1). It first sets v = ' r ' ,
computes Act ion (1 , ' r ') = < S h ift ,0) , and sets Nextltem s to

C losure(A dvance({ [c • r r] , [r => • r] }))

which evaluates to

N extltem s = { [e => <- r • r] , [r => r •] , [r => • r] ,
[r => • + r r] , [r => • + r k] , [r => • t r] >

Now MaxStateNo is increased to 2, Item Set [2] is set to the value just computed for
N extltem s, and N e x t(l , ' r ') is set to 2.

Next, S u cce sso rs (1) sets v = ' + ', computes Act ion (1 , ’ + ’) = < S h ift ,0>, and
sets N extltem s to

C losure (Advance ({ [r • + r r] , [r => • + r k] »)

Section 6.2 A Syntax-Directed Technique 149

+' Left ' r ' *T■ Left ' r ' Left '

+ ' Right ' r ' ' +' Right ' k 1 Right

r ' First ' r ' ' r ' First ' +' ' r ' First 1T'

r ' Last ' r ' ' r ' Last 'k'

EpsLast = { ' r ' , ' k ' } RootOps = { ' < - ' }

Followl (' € ') * { ' r ',
Followl (' r ') = { ' r ' , , ' t ' ,
Followl (' k ') = { ' r ' , . ' T ■ ,
Followl (' + ') = { ' r ' , . ' f .
Followl (' t ') = 0
Followl (' < - ') = 0

FollowC € ') = +
F o IIo w (' t ') = { ' r ' . ' + ' . ' T*
Follow C k ') = { ' r ' . ' + ' . ' t ' , ' < - • >
Follow(' + ') = { ' r ' j ' + ' / t '
Follow (' t ') = 0
Follow (' < - ') = 0

FIG. 6.9 Relations, sets, and functions for our example machine-description grammar in
Figure 6.8.

which evaluates to

N extltem s = { [r => + • r r] , [r => + • r k] , [r =*• • r] ,
[r => • + r r] , [r => • + r k] , [r => • T r] >

N ow M axStateNo is increased to 3, Item Set [3] is set to the value just com puted for
N extltem s, and Next (1 , ' + ') is set to 3.

The code-generator generator continues producing S h i f t actions until it reaches
MaxStateNo = 9, for which Item Set [9] is { [e => + r k •] , [r k •] } , which
results in a Reduce action, namely,

< R ed u ce ,{[> + r k •] > >

The resulting Action/Next table is shown in Figure 6 .10 and a graphic presen
tation of the parsing autom aton appears in Figure 6.11. In both the table and the
diagram , only non-error transitions are shown. The entries in the table that contain
a number correspond to shift actions, e.g., in state 3 with lookahead ' r ' , we shift
and go to state 6. The entries for reduce actions are given as the set o f items to re
duce by, e.g., in state 5 for lookahead ' ' , ' T ', ' + ' , or ' r ', reduce by the item
set { [e => r r •] } . In the diagram , a shift transition is represented by an arrow
from one state to another labeled with the corresponding lookahead symbol. Thus,

150 Producing Code Generators Autom atically

State Lookahead Symbol
Number <- t + r k $
0 1 Accept
1 4 3 2
2 4 3 5
3 4 3 6
4 4 3 7
5 {[e =*> «- r r •]}
6 4 3 8 9
7 {[r =* t r •]>
8 {[r=» + rr •]>
9 {[r =*• + r k •]}

FIG. 6.10 Action/Next table for the machine-description grammar given in Figure 6.8.

for example, the arrow from state 3 to state 6 labeled with an ' r ' corresponds to
the transition just described for the tabular form.

Next, we trace the action of the code generator with the above Action/Next table
on the intermediate-code string

< - + r l 2 + T r 3 3 $
The process begins by setting s t a t e to 0, pushing 0 onto the stack, and fetching the
symbol ' < - ' as the value of lookahead. The action for 1 < - ' in state 0 is to shift, so
the symbol is pushed onto the stack, the next state is fetched from the Action/Next
table and pushed onto the stack, the lookahead symbol is discarded from the input
string, and the lookahead symbol is set to the next symbol, namely, ' + '. The stack
now has the contents

1 0

The action for ' + ' in state 1 is to shift and the next state is 3. The resulting stack is

3 ' + ' 1 0

The action for lookahead r l in state 3 is to shift and enter state 6, so the stack
becomes

6 r l 3 ' + ' 1 0

Two more shift actions put the parser in state 9, with the lookahead set to ' + ' and
the stack

9 2 6 r l 3 ■ + ' 1 0

Section 6.2 A Syntax-Directed Technique 151

Reduce
{ [€ <- r r •]>

FIG. 6.11 The code-generation automaton produced for the machine-description grammar in
Figure 6.8.

The appropriate action in state 9 is to reduce by the set o f items { [r = » + r k *] } ,
so E m it_ In s tr s () is called. It allocates a register for the result o f the addition
operation, namely, r2 , and outputs the instruction

add r l , 2 , r 2

The value of l e f t is set to r2 and r ig h t is set to 3, so six items are popped off
the stack and discarded, and r2 and the next state (2) are pushed onto the stack,
resulting in

2 r2 1 * + ' 0

We leave it to the reader to continue the process and to verify that the following
sequence of instructions is produced, assuming registers r4 and r5 are allocated as
shown:

add r l , 2 , r 2
Id [r 3] ,r 4
add r 4 , 3 , r5
s t r 2 , [r 5]

152 Producing C ode G en erators A u tom atically

6 .2 .3 Elim inating Chain Loops

In a parsing gram mar, it is relatively rare to find chain loops, i.e., sets o f nonterminals
such that each o f them can derive the others. On the other hand, such loops are
extremely com m on in machine descriptions. As an exam ple o f the effect o f chain
loops, consider the simple gram m ar consisting o f the following rules (the fact that
the language generated by this gram m ar is empty is irrelevant— adding productions
that generate terminals does not affect the presence o f the chain loop):

r T r
r s
s => t
t => r
6 => <- s t
The parsing autom aton for this gram m ar is shown in Figure 6.12. Now, if we

take as input the intermediate-code string <- r l t r2 , then, after processing r l ,
the autom aton is in state 1, the stack is

1 0

and the lookahead symbol is ' T '. From this state, the code generator emits a register-
to-register move and returns to the sam e state, stack, and lookahead— i.e., it’s stuck.

Eliminating loops can be done as a preprocessing step applied to the machine-
description gram m ar or during construction o f the Action/Next table. The code
in Figure 6.13 provides a way to do this as a gram m ar preprocessor. The proce
dure Elim _C hain_Loops () finds productions < l t : /, r t : r> in MGrammar that have a

{ [r =* t r •]> { [r =* s •]> { [* =» s t •]>

FIG . 6 .12 Parsing automaton for the example grammar that has a chain loop.

Section 6.2 A Syntax-Directed Technique 153

procedure Elim_Chain_Loops()
begin

rl, r2: Rule
C, MG: set of Rule
R: set of Nonterminal
MG := MGrammar
for each rl e MG do

if rl.lt * € & Irl.rtl = 1 then
if Close(r1,C,R) then

for each r2 e C do
MGrammar := (MGrammar - {r2})

u Replace(R,r2,rl.It)
od

fi
fi
MG -= {rl}

od
end |I Elim_Chain_Loops

procedure Close(rule,C,R) returns boolean
rule: in Rule
C: out set of Rule
R: out set of Nonterminal

begin
rl: Rule
I I determine set of grammar rules making up a chain loop
R := Reach(rule.rt)
if rule.lt e R then

Prune(rule.It,R)
fi
C := 0
for each rl e MGrammar do

if rl.lt e R & Irl.rtl = 1 & rl.rt e R then
C u= {rl}

fi
od
return C * 0

end |I Close
FIG. 6.13 The procedure Elim_Chain_Loops() to eliminate chain loops of nonterminals and the

procedure Close () used by this procedure.

single nonterminal on both the left-hand and right-hand sides. For each of them, it
uses C lose (< l t : / , r t :r>, C ,R) to determine whether the set of nonterminals deriv
able from r is a loop; if so, C lose () returns in R the set of nonterminals in the
loop and in C the set of productions making it up. C lose () uses the procedures
Reach () and Prune () defined in Figure 6.14 to determine the set of nonterminals
reachable from its argument and to prune nonterminals from which the initial non
terminal is not reachable, respectively. Elim_Chain_Loops() then removes all but
one of the nonterminals in the loop from the grammar, removes the rules making up

154 P rodu cin g C ode G en era to rs A u to m atica lly

procedure Reach(r) returns set of Nonterminal
r: in Nonterminal

begin
rl: Rule
R := {r>, oldR: set of Nonterminal
I| determine the set of nonterminals reachable from r
I| without generating any terminal symbols
repeat

oldR := R
for each rl e MGrammar do
if rl.lt e R & Irl.rtl = 1 & rl.rtll e Nonterminal & rl.rtll ^ R then

R u= {rl.rt}
fi

od
until R = oldR
return R

end I I Reach

procedure Prune(1,R)
1: in Nonterminal
R: inout set of Nonterminal

begin
r: Nonterminal
I| prune from R the set of nonterminals from which
I| the initial nonterminal is not reachable
for each r e R do

if 1 ^ Reach(r) then
R -= {r}

fi
od

end I I Prune
FIG. 6.14 The procedures Reach() and Prune () used by Close ().

the loop, and modifies the remaining rules to use the remaining nonterminal in place
of the others. The function R ep lac e (R ,r ,x) replaces all occurrences of symbols in
R in the rule r by the symbol x , and returns a set containing only the resulting rule,
except that if the resulting rule has identical left and right sides, it returns 0 instead.

There are situations in which chain loops might seem to be desirable, such as
for moving values between the integer and floating-point registers in either direction.
Such situations can easily be accommodated by explicit unary operators.

6.2.4 Eliminating Syntactic Blocks
There are usually also situations in which the greedy strategy of always preferring to
shift rather than to reduce can result in the code generator’s blocking, i.e., entering

Section 6.2 A Syntax-Directed Technique 155

€ => <- a r
s ==> r
r => T a
r => + r s
r => * r s
r => c
a => r
a => + r r
a => + r * 2 r
a => + r * 4 r
a => + r * 8 r

FIG. 6.15 Fragment of a machine-description grammar for Hewlett-Packard’s pa-risc addressing
modes.

r s
FIG. 6.16 Derivation sequence for the tree form of t + r * c

T

+

r *

r r

t

+

r *

c r

the E rror state unnecessarily. For example, consider the machine-description frag
ment in Figure 6.15, which focuses on an addressing mode of Hewlett-Packard’s pa-
risc, and in which c represents an arbitrary integer constant. The addressing mode
uses a base register plus an index register whose value may be left shifted by 0, 1, 2,
or 3 bit positions (represented by the last four lines in the figure). Blocking occurs
for this grammar fragment in the states containing the items [s T + r * • n r]
(where n = 2, 4, and 8) for any input symbol other than 2, 4, or 8. However, an ad
dress of the form + r * c r , for an arbitrary c, or + r * r r is legal— it just requires a
series of instructions to compute it, rather than one instruction. In particular, in tree
form, we have the derivation shown in Figure 6.16 for the first case, corresponding
to performing a multiply, followed by an add, followed by a fetch. To achieve this
in the code generator, we need to add transitions out of the states containing the
items [s => T + r * • n r] that shift on an arbitrary constant or a register, rather
than just on 2, 4, or 8. In accord with the derivation above, we add a transition on
r to a new state and another shift transition from there under s to another new state
that reduces by [s = > T + r * r s •] and generates the corresponding sequence of
instructions.

F ix .S y n t .B lo c k s () and auxiliary routines to repair syntactic blocking are
given in Figure 6.17. F ix .S y n t .B lo c k s () acts by generalizing the symbol that
causes the blocking by following the inverses of chain productions as long as it can.

156 P rod u cin g C od e G e n e ra to rs A u to m atica lly

procedure Fix.Synt.Blocks() returns boolean
begin

i, j: integer
x, y: Nonterminal
item, iteml: Item
Nextltems, I: set of Item
i := 1
while i ^ MaxStateNo do
I := ItemSet [i]

for each item e I do
I| if there is a derivation that blocks for some inputs and
I I not for others similar to it, attempt to generalize it by
I I adding states and transitions to cover all similar inputs
if 3x e Nonterminal

(Derives([x],1, [item.rtl(item.pos+1)])
k Action(i,item.rtl(item.pos+1)) = <Error,0>
k Derives([item.lt],0,Subst(item.rt,item.pos+l,x))
k Vy € Nonterminal (!Derives([y],1,[x]))

V !Derives([item.It],0,
Subst(item.rt,item.pos+1,[y]))) then

item := Generalize(<lt:item.lt,
rt:Subst(item.rt,item.pos+1,x),pos:item.pos>,
item.pos+1,1 item.rtI)

if item = nil then
return false

f i
ItemSet[i] u= {item}
Action(i,x) := {Shift,0>
Nextltems := Closure(Advance({iteml e ItemSet[i]

where iteml.lt = item.lt k iteml.rt = Subst(item.rt,pos+1,x)
k iteml.pos = item.pos}))

if 3j e integer (ItemSet[j] = Nextltems) then
Next(i,x) := j

I| add new states and transitions where needed
else

StateNo := i
MaxStateNo += 1
ItemSet[MaxStateNo] := Nextltems
Next(StateNo,x) := MaxStateNo

FIG. 6.17 Routines to repair syntactic blocking by generalizing one or more nonterminals.

This algorithm may result in an item that needs further repair, as in this particular
case, for which the final symbol also needs to be generalized to prevent blocking.
Note that it is essential to the correct operation of Derives () that wfe have already
eliminated chain loops—otherwise it could recurse forever for some inputs.

As an example of the action of F ix .S y n t .B lo c k s(), suppose that the item
[s => T + r * • 2 r] discussed above is in ItemSet [26] and that MaxStateNo is 33.
Code generation blocks in state 26 for any lookahead other than 2, so we apply the

Section 6.2 A Syntax-Directed Technique 1 5 7

while StateNo <= MaxStateNo do
Successors(StateNo)
if !Uniform(StateNo) then

return false
fi

od
fi

else
return false

fi
I -= {item}

od
i += 1

od
return true

end I I Fix_Synt.Blocks

procedure Generalize(item,lo,hi) returns Item
item: in Item
lo, hi: in integer

begin
i : integer
1, x, y: Nonterminal
I I attempt to find a generalization of the blocking item
for i := lo to hi do

if 3x e Nonterminal (Derives([x],1,[item.rtli])
& Derives([item.It],0,Subst(item.rt,i,x))

& Vy e Nonterminal (!Derives([y],1,[x])
V !Derives([item.lt],0,Subst(item.rt,i,y)))) then

item.rtli := x
fi

od
return item

end || Generalize

FIG. 6.17 (continued)

(continued)

routine to discover whether other nonblocking actions are possible. The routine sets
x to r and determines that there is a derivation s 2̂ , T + r * r r. So it calls

G eneralize([s T + r * • r r] ,6 ,6)

which returns [s => T + r * • r s] . That item becomes the value of item and is
added to Item Set[26]. Now Act ion (26, r) is set to { S h if t , 0> and Next Items
becomes

{ [s = ^ T + r * r • s] , [s => • r] }

MaxStateNo is increased to 34, ItemSet [34] is set to the above set, and
Next (2 6 ,r) is set to 34. Finally, the routine uses Su ccesso rs() and Uniform() to

158 Producing Code Generators Autom atically

procedure Derives(x,i,s) returns boolean
x, s: in VocabSeq
i: in integer

begin
j: integer
if i = 0 & x = s then

return true
fi
for each rule e MGrammar do

for j := 1 to |x| do
if rule.lt = xlj then

return Derives(rule.rt,0,s)
fi

od
od
return false

end I I Derives

procedure Subst(s,i,x) returns VocabSeq
s: in VocabSeq
i: in integer
x: in Vocab

begin
t := [] : VocabSeq
j: integer
for j := 1 to IsI do

if j - i then
t ®= [x]

else
t ©= [slj]

fi
od
return t

end I I Subst
FIG. 6.17 (continued)

produce the additional states and transitions necessary to process the new item and
to ensure uniformity of the new states.

6.2.5 Final Considerations
One issue that was a problem for early Graham-Glanville code generators is that the
Action/Next tables for machines with many instruction types and addressing modes
were huge (for the VAX, about 8,000,000 rules resulted). Henry [Henr84] devised
methods for significantly compressing the tables and, in any case, the problem is
nowhere near as severe for the typical Rise machine because of the small number of
addressing modes provided by most of them.

Section 6.3 Introduction to Semantics-Directed Parsing 159

Introduction to Semantics-Directed Parsing
In this section, we give an overview of a second, more powerful, and more complex
approach to code generation from Polish-prefix intermediate code, namely, the at
tribute- or affix-grammar method developed by Ganapathi and Fischer, which adds
semantics to the code-generation rules through the use of attributes. We sketch the
idea here and leave it to the reader to consult the literature for the details.

We assume familiarity with the basics of attribute grammars. We denote inher
ited attributes by preceding them with a down arrow “ i ” and synthesized attributes
with an up arrow “ t ” . Attribute values are written after the arrows. In addition
to passing values up and down in the code-generation process, attributes are used
to control code generation and to compute new attribute values and produce side
effects. Control is achieved through attributes written in capitalized italics (e.g.,
IsShort in the example below) that represent predicates. A rule is applicable in a
given situation if and only if it syntactically matches the subject string and all its
predicates are satisfied. Actions, written in uppercase typewriter font (e.g., EMIT3
in the example), compute new attribute values and produce side effects. The most
important side effect in an affix-grammar code generator is, of course, emitting code.

Thus, for example, the Graham-Glanville rules for addition of the contents of a
register and a constant from Figure 6.1

r.3 + r.l k.2 add r .1 ,k .2 ,r .3
r.3 + k .2 r.l add r .1 ,k .2 ,r .3

can be turned into affix-grammar rules that check that the constant is within the
allowed range and that subsume code emission and register allocation in the rules,
as follows:

r t r2 + r l rl k i k l IsShort(kl) ALL0C(r2) EMIT3("add" ,r l ,k l ,r2)
r t r2 => + k i k\ r i rl IsShort(kl) ALL0CO2) EMIT3(nadd" ,r l , k l ,r2)

The first of these should be read as follows: Given a Polish-prefix string of the form
+ r k with the register number having the value rl and the constant k l, if the
constant satisfies the predicate IsShort(k 1), then allocate a register r2 to hold the
result, emit the three-operand add instruction obtained by substituting the values
associated with the registers and the constant, reduce the string to r, and pass the
value r2 upward as a synthesized attribute of the nonterminal r.

In addition to generating code from a low-level intermediate language, affix
grammars can be used to do storage binding (i.e., to generate code from a medium-
level intermediate form), to integrate several kinds of peephole optimizations into
code generation, and to factor machine-description rule sets so as to significantly
reduce their size. Since affix grammars can do storage binding, we could start with
a somewhat higher-level intermediate code, such as a Polish-prefix translation of
m ir. In fact, since the predicates and functions may be coded arbitrarily, they can be
used to do virtually anything a compiler back end can do—for example, one could
accumulate all the code to be emitted as the value of some attribute until the entire
input string has been reduced and then do essentially any transformation on it for

160 Producing Code Generators Automatically

which sufficient information is available (and one could accumulate that information
during the code-generation process, also).

Ganapathi and Fischer report having built three affix-grammar-based code
generator generators (one from the unix parser generator YACC, the second from
ECP, and a third ab initio) and have used them to produce code generators in
compilers for Fortran, Pascal, basic, and Ada for nearly a dozen architectures.

6.4 Tree Pattern Matching and Dynamic
Programming
In this section, we give an introduction to a third approach to automatically generat
ing code generators that was developed by Aho, Ganapathi, and Tjiang [AhoG89].
Their approach uses tree pattern matching and dynamic programming. The resulting
system is known as twig.

Dynamic programming is an approach to decision making in a computational
process that depends on an optimality principle that applies to the domain under
consideration. The optimality principle asserts that if all subproblems have been
solved optimally, then the overall problem can be solved optimally by a particular
method of combining the solutions to the subproblems. Using dynamic program
ming contrasts sharply with the greedy approach taken by Graham-Glanville code
generators—rather than trying only one way to match a tree, we may try many, but
only those that are optimal for the parts already matched, since only they can be
combined to produce code sequences that are optimal overall, given an applicable
optimality principle.

When twig matches a subtree with a pattern, it generally replaces it by another
tree. The sequence of subtrees rewritten in a matching process that succeeds in
reducing a tree to a single node is called a cover of the tree. A minimal-cost cover
is a cover such that the sum of the costs (see below for details) for the matching
operations that produced the cover is as small as it can be. Code emission and
register allocation are performed as side effects of the matching process.

The input for twig consists of tree-rewriting rules of the form

label: pattern [{cost}] [= {action}]

where label is an identifier that corresponds to the nonterminal on the left-hand side
of a grammar rule; pattern is a parenthesized prefix representation of a tree pattern;
cost is C code to be executed by the code generator when a subtree matches the
pattern, and that both returns a cost for use by the dynamic programming algorithm
and determines whether the pattern meets the semantic criteria for matching the
subtree; and action is C code to be executed if the pattern match succeeds and the
dynamic programming algorithm determines that the pattern is part of the minimal-
cost cover of the overall tree. The action part may include replacing the matched
subtree with another, emitting code, or other actions.

The cost and action parts are both optional, as indicated by the brackets around
them. If the cost is omitted, a default cost specified elsewhere is returned and the
pattern is assumed to match. If the action is omitted, the default is to do nothing.

Section 6.4 Tree Pattern Matching and Dynamic Programming 161

Rule Number Rewriting Rule

1 reg. / => con. c
Cost

IsShort(c) ; 1

2

3

4

reg./=>
reg. j reg. A:

1

reg./ IsShort(c) ; 1

<-

reg./ reg.7 reg.A

FIG. 6.18

5

6

e
reg./ reg .7 con .c

+
reg.As

reg./ reg .7
A simple tree-rewriting system.

IsShortic) ; 1

1

Instruction

or c, rO, r/

Id [r7, rA] ,r/

Id [r7,c] ,r/

st r/, [r7,rA]

st r/, [r7,c]

add r i tr j trk

As an example of the pattern-matching process, consider the tree-rewriting sys
tem in Figure 6.18, which includes the tree forms of some of the rules in Figure 6.1.
The predicate IsShort{) determines whether its argument fits into the 13-bit con
stant field in sparc instructions. The corresponding twig specification is shown in
Figure 6.19. The prologue implements the function IsShort(). The la b e l declara
tion lists all the identifiers that can appear as labels, and the node declaration lists
all the identifiers that can occur in the patterns, in addition to those listed as labels.1
The string $$ is a pointer to the root of the tree matched by the pattern, and a string
of the form $/$ points to the zth child of the root. ABORT causes pattern matching to
be aborted, in effect by returning an infinite cost. NODEPTR is the type of nodes, and
g e tre g () is the register allocator. The various e m i t () routines emit particular
types of instructions.

Now, suppose we are generating code for the parenthesized prefix expression

s t (add(I d (r 8 , 8) , a d d (r2 , I d (r 8 ,4))))

which is designed to resemble the second tree in Figure 6.3, but using only the
operations defined in Figure 6.19. The pattern matcher would descend through the
tree structure of the expression until it finds that pattern 1 matches the subexpression
“ 8” and pattern 3 matches ul d (r 8 ,8) ” . Using the first of these matches would

1. Alphabetic identifiers are used instead of symbols such as “ T” and “ +” because tw ig is not
designed to handle the latter.

162 Producing Code Generators Autom atically

prologue { int IsShort(NODEPTR p);
{ return value(p) >= -4096 && value(p) <= 4095; } }

node con Id st add;
label reg no.value;

reg : con
{ if (IsShort($$)) cost = 1;
else ABORT; >

= { NODEPTR regnode * getreg();
emit_3("or",$$,"rO",regnode);
return regnode; >

reg : ld(reg,reg,reg)
{ cost = 1; }
- { NODEPTR regnode = getregC);

emit_ld(2,3,regnode);
return regnode; }

reg : ld(reg,reg,con)
{ cost = 1; }
= { NODEPTR regnode = getregC);

emit_ld(2,3,regnode);
return regnode; }

no_value : st(reg,reg,reg)
{ cost = 1; }
= { emit.st(1,2,3);

return NULL; >

no.value : st(reg,con,reg)
{ cost = 1; >
= { emit_st(1,2,3);

return NULL; }

reg : add(reg,reg,reg)
{ cost = 1; >
= { NODEPTR regnode = getregC);

emit_3("add",1,2,regnode);
return regnode; >

FIG. 6.19 Specification in twig corresponding to the tree-rewriting system in Figure 6.18.

result in a subtree that matches pattern 2, but its cost would be 2, rather than the 1
resulting from using pattern 3 alone, so pattern 3 would be used. The subexpression
“ ld (r 8 ,4) ” would be matched similarly. However, neither of the implied reductions
would be done immediately, since there might be alternative matches that would
have lower cost; instead, an indication of each match would be stored in the node
that is the root of the matched subexpression. Once the matching process has been
completed, the reductions and actions are performed.

Section 6.4 Tree Pattern Matching and Dynamic Programming 163

Path String Rules
c 1
t 1 r 2,3
t 2 r 2
t 2 c 3
<- 1 r 4,5
+- 2 r 4,5
<- 3 r 4
<— 3 c 5
+ 1 r 6
+ 2 r 6

FIG. 6.20 Tree-matching path strings for the rules in Figure 6.18.

The method twig uses to do code generation is a combination of top-down tree
pattern matching and dynamic programming, as indicated above. The basic idea
is that a tree can be characterized by the set of labeled paths from its root to its
leaves, where the labeling numbers the descendants of each node consecutively. A
path string alternates node identifiers with integer labels. For example, the third tree
in Figure 6.3 can be represented uniquely by the path strings

<- 1 + 1 r8
< - 1 + 2 4
<- 2 - 1 rl
+ 2 - 2 1

and similar sets of strings can be constructed for the tree patterns. The path strings
for a set of tree patterns can, in turn, be used to construct a pattern-matching
automaton that is a generalization of a finite automaton. The automaton matches
the various tree patterns in parallel and each accepting state indicates which paths
through which tree patterns it corresponds to. A subtree matches a tree pattern if
and only if there is a traversal of the automaton that results in an accepting state for
each path string corresponding to the tree pattern.

As an example of such an automaton, we construct one for the rules in Fig
ure 6.18. The path strings and the rules they correspond to are listed in Figure 6.20,
and the resulting automaton is shown in Figure 6.21. The initial state is 0, the
states with double circles are accepting states, and each non-accepting state has an
additional unshown transition, namely, for “ other,” go to the error state (labeled
“ error”). The labels near the accepting states give the numbers of the rules for which
some path string produces that state. Thus, for example, the pattern in rule 5 is
matched if and only if running the automaton in parallel results in halting in states
9, 11, and 14. Details of the construction of the automaton and how it is turned into
code can be found in the literature.

The dynamic programming algorithm assumes that it is given a uniform register
machine with n interchangeable registers r i and instructions of the form r i <- E,
where E is an expression consisting of operators, registers, and memory locations.
The cost associated with a sequence of instructions is the sum of the costs of the

164 Producing Code Generators Automatically

2,3

6 6
FIG* 6.21 Tree-matching automaton for the rules in Figure 6.18.

individual instructions. The algorithm partitions the code-generation problem for
an expression E into subproblems, one for each of E ’s subexpressions, and solves
the subproblems recursively. The key to making dynamic programming applicable is
to evaluate each expression contiguously, i.e., first those of its subtrees that need to
have their values stored in memory locations are evaluated, and then the expression
is evaluated either in the order left subtree, right subtree, root; or right subtree, left
subtree, root. Thus, there is no oscillation between the subtrees of an operator once
the parts of the expression that have to be stored to memory have been evaluated.
Then for any sequence of instructions for the uniform register machine that evaluates
a given expression, there is a sequence that evaluates the same expression at no
greater cost, with a minimal number of registers, and is contiguous.

Note that most real machines do not have uniform registers. In particular, they
have operations that use even-odd register pairs, and one can give examples of
expressions whose optimal evaluation sequences require arbitrary numbers of oscil
lations between their subexpressions. However, such examples are very unusual in

Section 6.5 Wrap-Up 165

that the size of the expressions grows at least linearly with the number of oscillations
required, and expressions in practice are generally not very big. Thus, contiguity is
only mildly violated, and the algorithm produces near-optimal instruction sequences
almost all the time in practice.

Aho and Johnson’s algorithm [AhoJ76] (1) computes bottom-up, for each node
N of an expression tree, entries in a table of costs c[N, /] for computing the tree
rooted at N, using at most i registers; (2) uses the cost table to determine which
subtrees must have their values stored to memory; and (3) recursively determines a
sequence of instructions that does an optimal evaluation of the tree.

Experience with twig shows that it is relatively easy to write and modify twig
specifications, and that it produces code generators that compare favorably in both
code quality and performance with code generators designed to be easily retargeted,
such as the one in the pcc2 portable C compiler.

Bottom-up tree matching can also be used to automatically produce, from ma
chine descriptions, code generators that generate optimal code. One such approach
was developed by Pelegri-Llopart and is based on bottom-up rewriting systems,
or BURS.

Wrap-Up
In this chapter, we have briefly discussed the issues in generating machine code from
intermediate code, and then we have explored automatic methods for generating
code generators from machine descriptions.

The basic issues include the architecture of the target machine, software con
ventions that must be observed, the structure and characteristics of the intermediate
language, the implementations of intermediate-language operations that don’t corre
spond directly to target-machine instructions, whether to target assembly language
or relocatable machine code, and the approach to translating intermediate code to
the chosen target-code form.

Whether we are writing a compiler for a single language and a single target
architecture, or multiple source languages, multiple target architectures, or both
determine the importance of the choices made for most of these issues. In particular,
the more target architectures involved, the more important it is to use automated
methods.

While hand-crafted code generators are effective and fast, they have the (ob
vious) disadvantage of being implemented by hand and so are usually much more
difficult to modify or port than a code generator that is automatically generated
from a machine description.

Several approaches have been developed that produce a code generator from a
machine description. We have described three of them in varying levels of detail. All
begin with a low-level intermediate code that has addressing computations exposed,
and in all cases the code generator does pattern matching on trees, either explicitly
in one case or implicitly in the other two cases, namely, on Polish-prefix intermediate
code that represents a preorder traversal of a sequence of trees.

Producing Code Generators Automatically

Further Reading
The first significantly successful project to generate code generators automatically is
reported in [Catt79].

The Graham-Glanville approach to code generation is first described in
[GlaG78] and developed further in [AigG84] and [Henr84]. Other implementations
of Graham-Glanville code-generator generators are described in [GraH82], [Bird82],
[LanJ82], and [ChrH84].

The attribute-grammar approach to code generation was developed by Gana-
pathi and Fischer and is described in [GanF82], [GanF84], and [GanF85], among
other papers. The ECP error-correcting parser, which served as the basis of one of
Ganapathi and Fischer’s implementations, is described in [MauF81].

An excellent introduction to tree automata and their uses can be found in
[Enge75]. The tree-pattern matching approach to code generation developed by
Aho, Ganapathi, and Tjiang is described in [AhoG89]. The tree pattern matcher
is a generalization of a linear-time string-matching algorithm due to Aho and Cora-
sick [AhoC75], incorporating some ideas from Hoffman and O’Donnell [Hof082]
that extend it to trees. The dynamic programming algorithm is based on one de
veloped by Aho and Johnson [AhoJ76]. The pcc2 portable C compiler that Aho,
Ganapathi, and Tjiang compared twig to is described in [John78]. Pelegri-Llopart’s
approach to generating locally optimal code by bottom-up tree matching is described
in [Pele88] and [PelG88]. A tree-automata-based approach to code generation that
begins with a high-level intermediate code is described in [AhaL93].

Henry and Damron ([HenD89a] and [HenD89b]) provide an excellent overview
of about a dozen approaches to automatically generating code generators from
machine descriptions, giving detailed discussions and evaluations of eight of them
and a comparison of their performance, both in terms of the speed of the code
generators they produce and the quality of the resulting code.

6.1 Write an ican version of E m it_In strs() (see Section 6.2.1) sufficient for the gram
mar in Figure 6.8, including distinguishing short constants.

6.2 (a) Construct the Graham-Glanville parsing tables for the machine-description rules
and machine instructions below, where f r .n denotes a floating-point register.

Exercises

f r .2 => f r . l
f r .2 => mov f r .2 f r . l

fmov f r . l , f r . 2
fmov f r . l , f r . 2

r .3 => + r . l r .2
r .3 => - r . l r .2

add r .1 , r .2 , r .3
sub r .1 , r .2 , r .3

f r .3 => +f f r . l f r .2
f r .3 => - f f r . l f r .2
f r .3 => * f f r . l f r .2

fadd f r .1 , f r .2 , f r .3
fsub f r .1 , f r . 2 , f r .3
fmuls f r . l , f r . 2 , f r . 3

Section 6.7 Exercises 167

fr.3 => /f fr.l fr.2 f divs fr.1,fr.2,fr.3
fr.2 => sqrt fr.l fsqrts fr.l,fr.2

fr.2 => cvti fr.l fr.2 f stoi fr.l,fr.2
fr.2 => cvtf fr.l fr.2 f itos fr.l,fr.2

fr.3 => T + r.l r.2 ldf [r.1,r.2],fr.3
fr.3 => T + r.l k.2 ldf [r.1,k.2],fr.3
fr.2 => T r.l ldf [r.l],fr.2

6 => <- + r.2 r .3 fr.l stf fr.l, [r.2,r .3]
6 => <- + r.2 k.l fr.l stf fr.1,[r.2,k.3]

(b) Check your parsing automaton by generating code for the Polish-prefix sequence

<- + rl 4 cvti -f fr2
mov fr2 *f fr3 t + rl 8
<r- + rl 12 sqrt T + r7 0

6 3 Construct the relations (Left, Right, etc.) and functions (Parent(), Follow(), etc.)
for the grammar in the preceding exercise.

6.4 Give a more complex example of chain loops than that found at the beginning of
Section 6.2.3, and use the algorithm in Figure 6.13 to eliminate it.

6.5 Write a chain-loop eliminator that can be used during or after the Graham-Glanville
parsing tables have been constructed.

6.6 Give an example of the use of dynamic programming in computer science other than
the one in Section 6.4.

RSCH 6.7 Read Pelegri-Llopart and Graham’s article [PelG88] and write a BURS-based code
generator generator in ican .

CHAPTER 7

Control-Flow Analysis

O ptimization requires that we have compiler components that can construct
a global “ understanding” of how programs use the available resources.1
The compiler must characterize the control flow of programs and the
manipulations they perform on their data, so that any unused generality that would

ordinarily result from unoptimized compilation can be stripped away; thus, less
efficient but more general mechanisms are replaced by more efficient, specialized
ones.

When a program is read by a compiler, it is initially seen as simply a sequence
of characters. The lexical analyzer turns the sequence of characters into tokens, and
the parser discovers a further level of syntactic structure. The result produced by
the compiler front end may be a syntax tree or some lower-level form of intermedi
ate code. However, the result, whatever its form, still provides relatively few hints
about what the program does or how it does it. It remains for control-flow analysis
to discover the hierarchical flow of control within each procedure and for data-flow
analysis to determine global (i.e., procedure-wide) information about the manipula
tion of data.

Before we consider the formal techniques used in control-flow and data-flow
analysis, we present a simple example. We begin with the C routine in Figure 7.1,
which computes, for a given m > 0, the mth Fibonacci number. Given an input value
m, it checks whether it is less than or equal to 1 and returns the argument value if
so; otherwise, it iterates until it has computed the mth member of the sequence and
returns it. In Figure 7.2, we give a translation of the C routine into m i r .

Our first task in analyzing this program is to discover its control structure. One
might protest at this point that the control structure is obvious in the source code—

1. We put quotation marks around “understanding” because we feel it is important to guard against
anthropomorphizing the optimization process, or, for that matter, computing in general.

169

170 Control-Flow Analysis

unsigned int fib(m)
unsigned int m;

{ unsigned int fO = 0, fl = 1, f2, i;
if (m <= 1) {

return m;
>
else {

for (i = 2; i <= m; i++) {
f2 = fO + fl;
fO = fl;
fl = f2;

}
return f2;

>
}

FIG . 7.1 A C routine that computes Fibonacci numbers.

1 receive m (val)
2 fO < - 0
3 fl <- 1
4 if m <= 1 goto L3
5 i <- 2
6 LI: if i <= m goto L2
7 return f2
8 L2: f2 <- fO + fl
9 fO <- fl
10 fl <- f2
11 i <- i + 1
12 goto LI
13 L3: return m

FIG . 7.2 mir intermediate code for the C routine in Figure 7.1.

the routine’s body consists of an if- th e n -e lse with a loop in the e lse part; but this
structure is no longer obvious in the intermediate code. Further, the loop might have
been constructed of i f s and gotos, so that the control structure might not have been
obvious in the source code. Thus, the formal methods of control-flow analysis are
definitely not useless. To make their application to the program clearer to the eye,
we first transform it into an alternate visual representation, namely, a flowchart, as
shown in Figure 7.3.

Next, we identify basic blocks, where a basic block is, informally, a straight-line
sequence of code that can be entered only at the beginning and exited only at the
end. Clearly, nodes 1 through 4 form a basic block, which we call Bl, and nodes 8
through 11 form another, which we call B6. Each of the other nodes is a basic block

Control-Flow Analysis 171

unto itself; we make node 12 into B2, node 5 into B3, node 6 into B4, and node 7
into B5. Next we collapse the nodes that form a basic block into a node representing
the whole sequence of mir instructions, resulting in the so-called flowgraph of the
routine shown in Figure 7.4. For technical reasons that will become clear when we
discuss backward data-flow analysis problems, we add an entry block with the
first real basic block as its only successor, an e x it block at the end, and branches
following each actual exit from the routine (blocks B2 and B5) to the e x it block.

Next, we identify the loops in the routine by using what are called dominators.
In essence, a node A in the flowgraph dominates a node B if every path from the
entry node to B includes A. It is easily shown that the dominance relation on the
nodes of a flowgraph is antisymmetric, reflexive, and transitive, with the result that
it can be displayed by a tree with the entry node as the root. For our flowgraph in
Figure 7.4, the dominance tree is shown in Figure 7.5.

Now we can use the dominance tree to identify loops. A back edge in the
flowgraph is an edge whose head dominates its tail, for example, the edge from B6
to B4. A loop consists of all nodes dominated by its entry node (the head of the back
edge) from which the entry node can be reached (and the corresponding edges) and

172 Control-Flow Analysis

FIG. 7.4 Flowgraph corresponding to Figure 7.3.

FIGr. 7.5 Dominance tree for the flowgraph in Figure 7.4.

having exactly one back edge within it. Thus, B4 and B6 form a loop with B4 as its
entry node, as expected, and no other set of nodes in the flowgraph does.

We shall continue with this example in Chapter 8 as our initial example of
data-flow analysis. We now proceed to a more formal exposition of the concepts
encountered in the example and several elaborations of and alternatives to them.

7.1 Approaches to Control-Flow Analysis
There are two main approaches to control-flow analysis of single routines, both
of which start by determining the basic blocks that make up the routine and then

Section 7.1 Approaches to Control-Flow Analysis 173

constructing its flowgraph. The first approach uses dominators to discover loops
and simply notes the loops it finds for use in optimization. This approach is sufficient
for use by optimizers that do data-flow analysis by iteration, as in our example in
Section 8.1, or that concentrate their attention strictly on the loops in a routine.

The second approach, called interval analysis, includes a series of methods
that analyze the overall structure of the routine and that decompose it into nested
regions called intervals. The nesting structure of the intervals forms a tree called a
control tree, which is useful in structuring and speeding up data-flow analysis. The
most sophisticated variety of interval analysis, called structural analysis, classifies
essentially all the control-flow structures in a routine. It is sufficiently important
that we devote a separate section to it. The data-flow analysis methods based on
the use of intervals are generally called elimination methods, because of a broad
similarity between them and Gaussian elimination methods for problems in linear
algebra.

Most current optimizing compilers use dominators and iterative data-flow ana
lysis. And, while this approach is the least time-intensive to implement and is suf
ficient to provide the information needed to perform most of the optimizations
discussed below, it is inferior to the other approaches in three ways, as follows:

1. The interval-based approaches are faster at performing the actual data-flow analyses,
especially for structural analysis and programs that use only the simpler types of
structures.

2. The interval-based approaches (particularly structural analysis) make it easier to up
date already computed data-flow information in response to changes to a program
(changes made either by an optimizer or by the compiler user), so that such infor
mation need not be recomputed from scratch.

3. Structural analysis makes it particularly easy to perform the control-flow transfor
mations discussed in Chapter 18.

Thus, we feel that it is essential to present all three approaches and to leave it to
the compiler implementer to choose the combination of implementation effort and
optimization speed and capabilities desired.

Since all the approaches require identification of basic blocks and construction
of the flowgraph of the routine, we discuss these topics next. Formally, a basic block
is a maximal sequence of instructions that can be entered only at the first of them
and exited only from the last of them. Thus, the first instruction in a basic block may
be (1) the entry point of the routine, (2) a target of a branch, or (3) an instruction
immediately following a branch or a return.2 Such instructions are called leaders. To
determine the basic blocks that compose a routine, we first identify all the leaders,

2. If we consider Rise machine instructions, rather than intermediate-code instructions, we may
need to modify this definition slightly: if the architecture has delayed branches, the instruction in
the delay slot of a branch may be in the basic block ended by the preceding branch and may also
begin a new basic block itself, if it is the target of a branch. Branches with two delay slots, as in
mips-x, complicate this still further. Our intermediate codes do not include this complication.

174 Control-Flow Analysis

and then, for each leader, include in its basic block all the instructions from the leader
to the next leader or the end of the routine, in sequence.

In almost all cases, the above approach is sufficient to determine the basic-block
structure of a procedure. On the other hand, note that we have not indicated whether
a call instruction should be considered a branch in determining the leaders in a
routine. In most cases, it need not be considered a branch, resulting in longer and
fewer basic blocks, which is desirable for optimization. However, if a procedure call
has alternate returns as it may in Fortran, then it must be considered a basic-block
boundary. Similarly, in some special cases in C, a call needs to be considered a basic-
block boundary. The best-known example is C ’s se t jmp() function, which provides
a crude exception-handling mechanism. The problem with a setjm p() call is that,
not only does it return to just after where it was called from, but a later use of the
exception-handling mechanism, i.e., a call to longjmp(), also passes control from
wherever it is called to the return point of the dynamically enclosing setjm p() call.
This requires the call to setjm p() to be considered a basic-block boundary and,
even worse, introduces phantom edges into the flowgraph: in general, any call from
the routine that did the setjm p() needs a control-flow edge inserted from its re
turn point to the return point of the setjm p(), since potentially any of these calls
could return to that point by invoking longjmp(). In practice, this is usually han
dled by not attempting to optimize routines that include calls to setjm p(), but
putting in the phantom control-flow edges is a (usually very pessimistic) alterna
tive.

In Pascal, a goto that exits a procedure and passes control to a labeled statement
in a statically enclosing one results in similar extra edges in the flowgraph of the con
taining procedure. However, since such gotos can always be identified by processing
nested procedures from the innermost ones outward, they do not cause as serious a
problem as setjm p() does in C.

Some optimizations will make it desirable to consider calls as behaving like
basic-block boundaries also. In particular, instruction scheduling (see Section 17.1)
may need to consider calls to be basic-block boundaries to fill delay slots properly,
but may also benefit from having longer blocks to work on. Thus, calls may be desir
able to be considered to be both block boundaries and not in the same optimization.

Now, having identified the basic blocks, we characterize the control flow in a
procedure by a rooted, directed graph (hereafter called simply a graph) with a set of
nodes, one for each basic block plus two distinguished ones called entry and e x it ,
and a set of (control-flow) edges running from basic blocks to others in the same way
that the control-flow edges of the original flowchart connected the final instructions
in the basic blocks to the leaders of basic blocks; in addition, we introduce an edge
from entry to the initial basic block(s)3 of the routine and an edge from each final
basic block (i.e., a basic block with no successors) to e x it . The entry and e x it

3. There is usually only one initial basic block per routine. However, some language constructs,
such as Fortran 77’s multiple entry points, allow there to be more than one.

Section 7.1 Approaches to Control-Flow Analysis 175

blocks are not essential and are added for technical reasons—they make many of our
algorithms simpler to describe. (See, for example, Section 13.1.2, where, in the data
flow analysis performed for global common-subexpression elimination, we need to
initialize the data-flow information for the entry block differently from all other
blocks if we do not ensure that the entry block has no edges entering it; a similar
distinction occurs for the e x it block in the data-flow analysis for code hoisting in
Section 13.5.) The resulting directed graph is the flowgraph of the routine. A strongly
connected subgraph of a flowgraph is called a region.

Throughout the remainder of the book, we assume that we are given a flowgraph
G = (N, E) with node set N and edge set E c N x N , where entry € N and
e x it € N. We generally write edges in the form a^>b, rather than (a , b).

Further, we define the sets of successor and predecessor basic blocks of a basic
block in the obvious way, a branch node as one that has more than one successor,
and a join node as one that has more than one predecessor. We denote the set of
successors of a basic block b e N by Succ(b) and the set of predecessors by Pred(b).
Formally,

Succ(b) = {n e N \ 3e e E such that e = b^>n]

Pred(b) = [n e N \3e e E such that e = n^>b]

An extended basic block is a maximal sequence of instructions beginning with
a leader that contains no join nodes other than its first node (which need not be
a join node itself if, e.g., it is the entry node). Since an extended basic block has
a single entry and possibly multiple exits, it can be thought of as a tree with its
entry basic block as the root. We refer to the basic blocks that make up an extended
basic block in this way in some contexts. As we shall see in succeeding chapters,
some local optimizations, such as instruction scheduling (Section 17.1), are more
effective when done on extended basic blocks than on basic blocks. In our example in
Figure 7.4, blocks Bl, B2, and B3 make up an extended basic block that is not a basic
block.

An ican algorithm named Build_Ebb(r, Succ, Pred) that constructs the set of
indexes of the blocks in an extended basic block with block r as its root is given in
Figure 7.6. The algorithm Build_All_Ebbs(r, Succ, Pred) in Figure 7.7 constructs
the set of all extended basic blocks for a flowgraph with entry node r. It sets AllEbbs
to a set of pairs with each pair consisting of the index of its root block and the set
of indexes of blocks in an extended basic block. Together the two algorithms use
the global variable EbbRoots to record the root basic blocks of the extended basic
blocks.

As an example of Build_Ebb() and Build_All_Ebbs(), consider the flow-
graph in Figure 7.8. The extended basic blocks discovered by the algorithms are
{en try }, {B1,B2,B3}, {B4,B6>, {B5,B7>, and { e x i t } , as indicated by the dashed
boxes in the figure.

Similarly, a reverse extended basic block is a maximal sequence of instructions
ending with a branch node that contains no branch nodes other than its last node.

176 Control-Flow Analysis

EbbRoots: set of Node
AllEbbs: set of (Node x set of Node)

procedure Build_Ebb(r,Succ,Pred) returns set of Node
r: in Node
Succ, Pred: in Node — > set of Node

begin
Ebb := 0: set of Node
Add.Bbs(r,Ebb,Succ,Pred)
return Ebb

end I I Build_Ebb

procedure Add_Bbs(r,Ebb,Succ,Pred)
r: in Node
Ebb: inout set of Node
Succ, Pred: in Node — > set of Node

begin
x: Node
Ebb u= {r}
for each x e Succ(r) do

if |Pred(x)| = 1 & x £ Ebb then
Add.Bbs(x,Ebb,Succ,Pred)

elif x £ EbbRoots then
EbbRoots u= {x}

fi
od

end I I Add_Bbs

FIG. 7.6 A pair of routines to construct the set of blocks in the extended basic block with a given
root.

entry: Node

procedure Build_All_Ebbs(r,Succ,Pred)
r: in Node
Succ, Pred: in Node — > set of Node

begin
x: Node
s: Node x set of Node
EbbRoots := {r}
AllEbbs := 0

FIG. 7.7 A routine to construct all the extended basic blocks in a given flowgraph.

Section 7.2 Depth-First, Preorder, Postorder, and Breadth-First Searches 177

while EbbRoots * 0 do
x := ♦ EbbRoots
EbbRoots -= {x>
if Vs e AllEbbs (s@l * x) then

AllEbbs u= -[<x,Build_Ebb(x,Succ,Pred)»
fi

od
end || Build_All_Ebbs

begin
Build_All_Ebbs(entry,Succ,Pred)

end
FIG. 7.7 (continued)

FIG. 7.8 Flowgraph with extended basic blocks indicated by the dashed boxes.

.2 Depth-First Search, Preorder Traversal, Postorder
Traversal, and Breadth-First Search
This section concerns four graph-theoretic concepts that are important to several of
the algorithms we use below. All four apply to rooted, directed graphs and, thus, to

178 Control-Flow Analysis

FIG. 7.9 (a) A rooted directed graph, and (b) a depth-first presentation of it.

flowgraphs. The first is depth-first search, which visits the descendants of a node
in the graph before visiting any of its siblings that are not also its descendants. For
example, given the graph in Figure 7.9(a), Figure 7.9(b) is a depth-first presentation
of it. The number assigned to each node in a depth-first search is the node’s depth-
first number.

The algorithm in Figure 7.10 constructs a depth-first presentation of the graph.
The depth-first presentation includes all the graph’s nodes and the edges that make
up the depth-first order displayed as a tree (called a depth-first spanning tree) and the
other edges—the ones that are not part of the depth-first order—displayed in such a
way as to distinguish them from the tree edges (we use dashed lines instead of solid
lines for them). The edges that are part of the depth-first spanning tree are called tree
edges. The edges that are not part of the depth-first spanning tree are divided into
three classes called forward edges (which we label “F” in examples) that go from a
node to a direct descendant, but not along a tree edge; back edges (which we label
“B”) that go from a node to one of its ancestors in the tree; and cross edges (which
we label “C”) that connect nodes such that neither is an ancestor of the other.

Note that the depth-first presentation of a graph is not unique. For example,
the graph in Figure 7.11(a) has the two different depth-first presentations shown in
Figure 7.11(b) and (c).

The routine D epth_First_Search() in Figure 7.10 does a generic depth-first
search of a flowgraph and provides four points to perform actions:

1. Process_Bef ore() allows us to perform an action before visiting each node.

2. Process_A fter() allows us to perform an action after visiting each node.

3. Process_Succ_Before() allows us to perform an action before visiting each suc
cessor of a node.

4. Process_Succ_Af te r () allows us to perform an action after visiting each successor
of a node.

Section 7.2 Depth-First, Preorder, Postorder, and Breadth-First Searches 179

N: set of Node
r, i: Node
Visit: Node — > boolean

procedure Depth_First.Search(N,Succ,x)
N: in set of Node
Succ: in Node — > set of Node
x: in Node

begin
y: Node
Process.Before(x)
Visit(x) := true
for each y e Succ(x) do

if !Visit(y) then
Process_Succ_Before(y)
Depth.First.Search(N,Succ,y)
Process_Succ_After(y)

fi
od
Process.After(x)

end I I Depth_First_Search

begin
for each i e N do

Visit(i) := false
od
Depth.F irst.Search(N,Succ,r)

end
FIG. 7.10 A generic depth-first search routine.

A A A

D C D C D
(a) (b) (c)

FIG. 7.11 (a) A rooted directed graph and (b) and (c) two distinct depth-first presentations of it.

The second and third notions we need are two traversals of the nodes of a
rooted, directed graph and the orders they induce in the set of nodes of the graph.
Let G = (N, £ , r) be a rooted, directed graph. Let £ ' c £ be the set of edges in a
depth-first presentation of G without the back edges. Then a preorder traversal of
the graph G is a traversal in which each node is processed before its descendants,
as defined by £ '. For example, en try , Bl, B2, B3, B4, B5, B6, e x i t is a preorder

180 Control-Flow Analysis

N: set of Node
r, x: Node
i := 1, j := 1: integer
Pre, Post: Node — > integer
Visit: Node — > boolean
EType: (Node x Node) — > enum {tree,forward,back,cross}

procedure Depth_First_Search_PP(N,Succ,x)
N: in set of Node
Succ: in Node — > set of Node
x: in Node

begin
y: in Node
Visit(x) := true
Pre(x) := j
j + = 1
for each y e Succ(x) do

if !Visit(y) then
Depth_First_Search_PP(N,Succ,y)
EType(x -> y) := tree

elif Pre(x) < Pre(y) then
Etype(x -> y) :* forward

elif Post(y) = 0 then
EType(x -> y) := back

else
EType(x y) := cross

fi
od
Post(x) := i
i += 1

end I I Depth_First_Search_PP

begin
for each x e N do

Visit(x) := false
od
Depth_First_Search_PP(N,Succ,r)

end
FIG. 7.12 Computing a depth-first spanning tree, preorder traversal, and postorder traversal.

traversal of the graph in Figure 7.4. The sequence entry , Bl, B3, B2, B4, B6, B5,
e x i t is another preorder traversal of the graph in Figure 7.4.

Let G and £ ' be as above. Then a postorder traversal of the graph G is a traversal
in which each node is processed after its descendants, as defined by £'. For example,
e x i t , B5, B6, B4, B3, B2, Bl, en try is a postorder traversal of the graph in Figure 7.4,
and e x i t , B6, B5, B2, B4, B3, Bl, en try is another one.

The routine D epth_First_Search_PP() given in Figure 7.12 is a specific in
stance of depth-first search that computes both a depth-first spanning tree and

Section 7.3 Dominators and Postdominators 181

i := 2: integer
procedure Breadth_First(N,Succ,s) returns Node — > integer

N: in set of Node
Succ: in Node —> set of Node
s: in Node

begin
t: Node
T := 0: set of Node
Order: Node —> integer
Order(r) := 1
for each t e Succ(s) do

if Order(t) = nil then
Order(t) := i
i += 1
T u= {t}

fi
od
for each t e T do

Breadth.First(N,Succ,t)
od
return Order

end I I Breadth_First
FIG* 7*13 Computing a breadth-first order.

preorder and postorder traversals of the graph G = (N, E) with root r € N . Af
ter Depth_First_Search_PP() has been executed, the depth-first spanning tree is
given by starting at the root and following the edges e with Etype(e) = tree. The
preorder and postorder numbers assigned to the nodes are the integers stored into
Pre () and Post (), respectively.

The fourth notion is breadth-first search, in which all of a node’s immediate
descendants are processed before any of their unprocessed descendants. The order
in which nodes are visited in a breadth-first search is a breadth-first order. For our
example in Figure 7.9, the order 1, 2, 6, 3, 4, 5, 7, 8 is a breadth-first order.

The ican code in Figure 7.13 constructs a breadth-first ordering of the nodes of
a flowgraph when it is called as Breadth_First (N,Succ,r).

.3 Dominators and Postdominators
To determine the loops in a flowgraph, we first define a binary relation called
dominance on flowgraph nodes. We say that node d dominates node /, written
d dom /, if every possible execution path from entry to i includes d. Clearly, dom
is reflexive (every node dominates itself), transitive (if a dom b and b dom c, then
a dom c), and antisymmetric (if a dom b and b dom a , then b = a). We further
define the subrelation called immediate dominance (idom) such that for a ^ b,

182 Control-Flow Analysis

procedure Dom_Comp(N,Pred,r) returns Node — > set of Node
N: in set of Node
Pred: in Node — > set of Node
r: in Node

begin
D, T: set of Node
n, p: Node
change := true: boolean
Domin: Node —> set of Node
Domin(r) := {r}
for each n e N - {r} do

Domin(n) := N
od
repeat

change := false
* for each n e N - {r} do

T := N
for each p e Pred(n) do

T n= Domin(p)
od
D := {n} u T
if D * Domin(n) then

change := true
Domin(n) := D

fi
od

until !change
return Domin

end I I Dom_Comp
FIG* 7*14 A simple approach to computing all the dominators of each node in a flowgraph.

a idom b if and only if a dom b and there does not exist a node c such that c ^ a
and c ^ b for which a dom c and c dom b, and we write idom(b) to denote the
immediate dominator of b. Clearly the immediate dominator of a node is unique.
The immediate dominance relation forms a tree of the nodes of a flowgraph whose
root is the entry node, whose edges are the immediate dominances, and whose paths
display all the dominance relationships. Further, we say that d strictly dominates /,
written d sdom /, if d dominates i and d ± i.

We also say that node p postdominates node /, written p pdom /, if every possible
execution path from i to e x it includes p, i.e., i dom p in the flowgraph with all the
edges reversed and entry and e x it interchanged.

We give two approaches to computing the set of dominators of each node in
a flowgraph. The basic idea of the first approach is that node a dominates node b
if and only if a = fe, or a is the unique immediate predecessor of fe, or b has more
than one immediate predecessor and for all immediate predecessors c of b ,c ^ a and
a dominates c. The algorithm is Dom_Comp() given in Figure 7.14, which stores in

Section 7.3 Dominators and Postdominators 183

Domin (/) the set of all nodes that dominate node /. It is most efficient if the fo r loop
marked with an asterisk processes the nodes of the flowgraph in a depth-first order.

As an example of the use of Dom_Comp(), we apply it to the flowgraph in
Figure 7.4. The algorithm first initializes change = true, Domin(entry) = {entry},
and Domin(i) = {entry,B1 ,B2,B3,B4,B5,B6,exit> for each node i other than
entry. Then it enters the repeat loop, where it sets change = false and enters the for
loop within it. The for loop sets n = Bl and T = {entry ,B1 ,B2,B3,B4,B5,B6,exit}
and enters the inner for loop. The inner for loop sets p = entry (the only member
of Pred(Bl)) and so sets T = {entry}. The inner for loop then terminates, D is set
to {entry,Bl}, change to true, and Domin(Bl) = {entry,Bl}. Next the outer for
loop sets n = B2, T = {entry,B1 ,B2,B3,B4,B5,B6,exit}, and enters the inner for
loop. Since Pred(B2) = {Bl}, the inner for loop sets T to {entry,Bl}. Then D is set
to {entry, Bl, B2} and Domin(B2) = {entry, Bl, B2}. Continuing the process results
in the following:

i Domin(i)
entry {entry}
Bl {entry,B1}
B2 {entry,B1,B2}
B3 {entry,B1,B3}
B4 {entry,B1,B3,B4}
B5 {entry,Bl,B3,B4,B5}
B6 {entry,Bl,B3,B4,B6}
exit {entry,B1,exit}
If we need the immediate dominator of each node, we can compute it by the

routine given in Figure 7.15. As for the previous algorithm, the greatest efficiency
is achieved by having the for loop that is marked with an asterisk process the
nodes of the flowgraph in depth-first order. The algorithm can be implemented with
reasonable efficiency by representing the sets by bit vectors, with a running time that
is 0 (n 2e) for a flowgraph with n nodes and e edges. In essence, the algorithm first
sets TmpC/) to Domin(/) - {i} and then checks for each node / whether each element
in TmpC/) has dominators other than itself and, if so, removes them from TmpC/). As
an example of the use of Idom_Comp(), we apply it to the just computed dominator
sets for the flowgraph in Figure 7.4. The algorithm initializes the TmpC) array to the
following:

i Tmp(i)
entry 0
Bl {entry}
B2 {entry,B1}
B3 {entry,B1}
B4 {entry,B1,B3}
B5 {entry,Bl,B3,B4}
B6 {entry,B1,B3,B4}
exit {entry,B1}

184 Control-Flow Analysis

procedure Idom_Comp(N,Domin,r) returns Node — > Node
N: in set of Node
Domin: in Node — > set of Node
r: in Node

begin
n, s, t: Node
Tmp: Node — > set of Node
Idom: Node — > Node
for each n e N do

Tmp(n) := Domin(n) - {n}
od

* for each n e N - {r} do
for each s e Tmp(n) do

for each t e Tmp(n) - {s} do
if t e Tmp(s) then

Tmp(n) -= {t}
fi

od
od

od
for each n e N - {r} do

Idom(n) := ♦Tmp(n)
od
return Idom

end I I Idom_Comp
FIG* 7.15 Computing immediate dominators, given sets of dominators.

Next it sets n = B1 and s = entry and finds that Tmp(Bl) - {en try } = 0, so Tmp(Bl)
is left unchanged. Then it sets n = B2. For s = entry, Tmp (entry) is empty, so
Tmp(B2) is not changed. On the other hand, for s = Bl, Tmp(Bl) is {en try} and
it is removed from Tmp(B2), leaving Tmp(B2) = {Bl}, and so on. The final values of
TmpC) are as follows:

i Tmp(i)
entry 0
Bl {entry}
B2 {Bl}
B3 {Bl}
B4 {B3}
B5 {B4}
B6 {B4}
exit {Bl}

The last action of Idom_Comp() before returning is to set Idom(«) to the single
element of Tmp(«) for n ^ r .

Section 7.3 Dominators and Postdominators 185

The second approach to computing dominators was developed by Lengauer
and Tarjan [LenT79]. It is more complicated than the first approach, but it has the
advantage of running significantly faster on all but the smallest flowgraphs.

Note that, for a rooted directed graph (N, E, r), node v is an ancestor of node w
if v = w or there is a path from v to w in the graph’s depth-first spanning tree, and v
is a proper ancestor o iw iiv is an ancestor of w and v ^ w . Also, we use Dfn(v) to
denote the depth-first number of node v.

The algorithm Domin_Fast () is given in Figure 7.16, and Figures 7.17 and 7.18
contain auxiliary procedures. Given a flowgraph with its Succ() and Pred() func
tions, the algorithm ultimately stores in Idom(v) the immediate dominator of each
node v ^ r .

The algorithm first initializes some data structures (discussed below) and then
performs a depth-first search of the graph, numbering the nodes as they are encoun
tered, i.e., in a depth-first order. It uses a node nO £ N.

Next it computes, for each node w ^ r , a so-called semidominator of w and sets
Sdno(w) to the semidominator’s depth-first number. The semidominator of a node
w other than r is the node v with minimal depth-first number such that there is a
path from v = vq to w = v£, say • . . , V k -\^ vk’> such that Dfn(vj) < Dfn(w)
for 1 < i < k — 1.

Depth-first ordering and semidominators have several useful properties, as
follows:

1. For any two nodes v and w in a rooted directed graph with Dfn(v) < Dfn(w), any
path from v to tv must include a common ancestor of v and w in the flowgraph’s
depth-first spanning tree. Figure 7.19 shows the relationship between v and w for
Dfn(v) < Dfn(w) to be satisfied, where w may be in any of the positions of i/, a,
fc, or c, where b is a descendant of an ancestor u of v such that Dfn(b) > Dfn(v).
A dotted arrow indicates a possibly empty path, and a dashed arrow represents a
non-empty path. If w = v or a9 then v is the common ancestor. Otherwise, u is the
common ancestor.

2. For any node w ^ r , w9s semidominator is a proper ancestor of w and the immediate
dominator of w is an ancestor of its semidominator. 3 4

3. Let E' denote E with the non-tree edges replaced by edges from the semidominator
of each node to the node. Then the dominators of the nodes in (N, E', r) are the same
as the dominators in (N, E, r).

4. Let

V(w) = { Dfn(v) | v->w e E and Dfn{v) < Dfn(w)}

and
S(w) = {Sdno(u) | Dfn(u) > Dfn(w) and for some v € N , v^>w e E

and there is a path from u t o v e E }

Then the semidominator of w is the node with depth-first number min(V{w) U S(w)).

Note that we do not actually compute the semidominator of each node v> but,
rather, just its depth-first number Sdno(v).

186 Control-Flow Analysis

Label, Parent, Ancestor, Child: Node — > Node
Ndfs: integer — > Node
Dfn, Sdno, Size: Node — > integer
n: integer
Succ, Pred, Bucket: Node — > set of Node

procedure Domin_Fast(N,r,Idom)
N: in set of Node
r: in Node
Idom: out Node — > Node

begin
u, v, w: Node
i: integer
I| initialize data structures and perform depth-first search
for each v e N u {nO} do

Bucket(v) := 0
Sdno(v) := 0

od
Size(nO) := Sdno(nO) := 0
Ancestor(nO) := Label(nO) nO
n : = 0
Depth_First_Search_Dom(r)

*1 for i := n by -1 to 2 do
I| compute initial values for semidominators and store
I| nodes with the same semidominator in the same bucket
w := Ndfs(i)
for each v e Pred(w) do

u := Eval(v)
if Sdno(u) < Sdno(w) then

Sdno(w) := Sdno(u)
fi

od
Bucket(Ndfs(Sdno(w))) u= {w>
Link(Parent(w),w)
I| compute immediate dominators for nodes in the bucket
II of w’s parent

*2 while Bucket(Parent(w)) * 0 do
v :* ♦Bucket(Parent(w)); Bucket(Parent(w)) -= {v>
u := Eval(v)
if Sdno(u) < Sdno(v) then

Idom(v) := u
else

Idom(v) := Parent(w)
fi

od
od

FIG. 7.16 A more complicated but faster approach to computing dominators.

Section 7.3 Dominators and Postdominators 187

I I adjust immediate dominators of nodes whose current version of
I| the immediate dominator differs from the node with the depth-first
I| number of the node’s semidominator

*3 for i := 2 to n do
w :* Ndfs(i)
if Idom(w) * Ndfs(Sdno(w)) then

Idom(w) := Idom(Idom(w))
fi

*4 od
end || Domin_Fast

FIG. 7.16 (continuedj

procedure Depth_First_Search_Dom(v)
v: in Node

begin
w: Node
I I perform depth-first search and initialize data structures
Sdno(v) := n += 1
Ndfs(n) := Label(v) := v
Ancestor(v) := Child(v) := nO
Size(v) := 1
for each w e Succ(v) do

if Sdno(w) = 0 then
Parent(w) := v
Depth_First_Search_Dom(w)

fi
od

end || Depth_First_Search_Dom

procedure Compress(v)
v: in Node

begin
I| compress ancestor path to node v to the node whose
I I label has the maximal semidominator number
if Ancestor(Ancestor(v)) * nO then

Compress(Ancestor(v))
if Sdno(Label(Ancestor(v))) < Sdno(Label(v)) then

Label(v) := Label(Ancestor(v))
fi
Ancestor(v) := Ancestor(Ancestor(v))

fi
end || Compress

FIG. 7.17 Depth-first search and path-compression algorithms used in computing dominators.

188 Control-Flow Analysis

procedure Eval(v) returns Node
v: in Node

begin
I| determine the ancestor of v whose semidominator
I I has the minimal depth-first number
if Ancestor(v) = nO then

return Label(v)
else

Compress(v)
if Sdno(Label(Ancestor(v))) £ Sdno(Label(v)) then

return Label(v)
else

return Label(Ancestor(v))
fi

fi
end I I Eval

procedure Link(v,w)
v, w: in Node

begin
s := w, tmp: Node
I| rebalance the forest of trees maintained
I I by the Child and Ancestor data structures
while Sdno(Label(w)) < Sdno(Label(Child(s))) do

if Size(s) + Size(Child(Child(s)))
 ̂2*Size(Child(s)) then
Ancestor(Child(s)) := s
Child(s) := Child(Child(s))

else
Size(Child(s)) := Size(s)
s := Ancestor(s) := Child(s)

fi
od
Label(s) := Label(w)
Size(v) += Size(w)
if Size(v) < 2*Size(w) then

tmp := s
s := Child(v)
Child(v) := tmp

fi
while s * nO do

Ancestor(s) := v
s := Child(s)

od
end I I Link

FIG. 7 .18 Label evaluation and linking algorithms used in computing dominators.

Section 7.3 Dominators and Postdominators 189

u
i
i ^T
v b

i
i

T T
a c

FIG* 7.19 For v and tv to satisfy Dfn(v) < Dfn(w), w may be in any of the positions of z/, a , by or c,
where b is some descendant of u visited after all the tree descendants of v. A dotted arrow
represents a possibly empty path, and a dashed arrow represents a non-empty path.

After computing Sdno(v), for each non-root node z/, the algorithm implicitly
defines its immediate dominator as follows: Let u be a node whose semidominator
w has minimal depth-first number among all nodes u such that there is a non
empty path from w to u and a path from u to v, both in the depth-first spanning
tree. Then the immediate dominator Idom(v) of v is the semidominator of v if
Sdno(v) = Sdno{u), or else it is Idom(u).

Finally, the algorithm explicitly sets Idom(v) for each z/, processing the nodes in
depth-first order.

The main data structures used in the algorithm are as follows:

1. Ndfs(i) is the node whose depth-first number is /.

2. Succ (v) is the set of successors of node v.

3. Pred(z/) is the set of predecessors of node v.

4. Parent (z/) is the node that is the parent of node v in the depth-first spanning tree.

5. Sdno(z/) is the depth-first number of the semidominator of node v.

6. Idom(z/) is the immediate dominator of node v.

7. Bucket (z/) is the set of nodes whose semidominator is Ndf s (v) .

The routines Link() and Eval() maintain an auxiliary data structure, namely, a
forest of trees within the depth-first spanning tree that keeps track of nodes that
have been processed. Eval() uses Compress () to perform path compression on
paths leading from a node by means of the Ancestor () function (see below) to the
root of the depth-first spanning tree. It consists of two data structures, namely,

1. Ancestor (v) is an ancestor of v in the forest or is nO if v is a tree root in the forest,
and

2. Label (v) is a node in the ancestor chain of v such that the depth-first number of its
semidominator is minimal.

Finally, C h ild (v) and S ize (v) are two data structures that are used to keep the trees
in the forest balanced, and thus achieve the low time bound of the algorithm. With
the use of balanced trees and path compression, this dominator-finding algorithm
has a run-time bound of 0 (e • a(e ,«)) , where n and e are the numbers of nodes
and edges, respectively, in the graph, and a{) is a very slowly growing function—
essentially a functional inverse of Ackermann’s function. Without the use of balanced

190 Control-Flow Analysis

trees, the Link() and Eval() functions are significantly simpler, but the running
time is 0 (e • log n).

For a more detailed description of how this algorithm works, see Lengauer and
Tarj an [LenT79].

As an example of using the Domin_Fast () algorithm, we apply it to the flow-
graph in Figure 7.4.

After the call from Domin_Fast() to Depth_First_Search_Dom() has re
turned (i.e., at the point marked *1 in Figure 7.16), the values of Ndf s (), Sdom(),
and Idom() are as follows:

j N d fs(j) Sd n o(N d fs(j)) Idom (N dfs(j))

1 entry 1 nO
2 B1 2 nO
3 B2 3 nO
4 e x it 4 nO
5 B3 5 nO
6 B4 6 nO
7 B5 7 nO
8 B6 8 nO

Next we show a series of snapshots of values that have changed from the previous
listing, all at the point labeled *2. For i = 8, the changed line is

j N d fs(j) Sdn o(N dfs(j)) Idom (N dfs(j))

8 B6 8 B5

For i == 7, the changed lines are

j N d fs(j) Sdn o(N dfs(j)) Idom (N dfs(j))

7 B5 6 nO
8 B6 8 B4

For i == 6, the changed lines are

j N d fs(j) Sd n o(N d fs(j)) Idom (N dfs(j))

6 B4 5 nO
7 B5 6 B4

For i == 5, the changed lines are

j N d fs(j) Sd n o(N d fs(j)) Idom (N dfs(j))

5 B3 2 nO
6 B4 5 B3

For i == 4, the changed lines are

j N d fs(j) Sd n o(N d fs(j)) Idom (N dfs(j))

4 e x it 2 nO
5 B3 2 B1

Section 7.4 Loops and Strongly Connected Components 191

For i = 3, the changed lines are
j Ndfs(j) Sdno(Ndfs(j)) Idom(Ndfs(j))
3 B2 3 nO
4 exit 2 nO

For i = 2, the changed lines are
j Ndfs(j) Sdno(Ndfs(j)) Idom(Ndfs(j))
2 B1 2 nO
3 B2 2 B1

At both point *3 and point *4 in Domin_Fast(), the values for all nodes are as
follows:

j Ndfs(j) Sdno(Ndfs(j)) Idom(Ndfs(j))
1 entry 1 nO
2 B1 1 entry
3 B2 2 B1
4 exit 2 B1
5 B3 2 B1
6 B4 5 B3
7 B5 6 B4
8 B6 6 B4

and the values of Idom() match those computed by the first method.
Alstrup and Lauridsen [AlsL96] describe a technique for incrementally updating

a dominator tree as the control flow of a procedure is modified. For the first time,
the computational complexity of their technique makes it better than rebuilding the
dominator tree from scratch.

Loops and Strongly Connected Components
Next, we define a back edge in a flowgraph as one whose head dominates its
tail. Note that this notion of back edge is more restrictive than the one defined in
Section 7.2. For example, the rooted directed graph in Figure 7.20(a) has as one of
its depth-first presentations the graph in Figure 7.20(b), which has a back edge from
d to c such that c does not dominate d. While this back edge does define a loop, the
loop has two entry points (c and d), so it is not a natural loop.

Given a back edge ra->w, the natural loop of m-^n is the subgraph consisting of
the set of nodes containing n and all the nodes from which m can be reached in the
flowgraph without passing through n and the edge set connecting all the nodes in its
node set. Node n is the loop header. We can construct the node set of the natural
loop of m^>n by the algorithm Nat_Loop() in Figure 7.21. Given the graph and the
back edge, this algorithm stores the set of nodes in the loop in Loop. Computing the
set of edges of the loop, if needed, is easy from there.

Many of the optimizations we consider require moving code from inside a loop
to just before its header. To guarantee that we uniformly have such a place available,

192 C on trol-F low A n alysis

FIG. 7 .20 (a) A rooted directed graph and (b) a depth-first presentation of it.

procedure Nat_Loop(m,n,Pred) returns set of Node
m, n: in Node
Pred: in Node — > set of Node

begin
Loop: set of Node
Stack: sequence of Node
p, q: Node
Stack := []
Loop := {m,n}
if m * n then

Stack ®= [m]
fi
while Stack * [] do

I| add predecessors of m that are not predecessors of n
I| to the set of nodes in the loop; since n dominates m,
I I this only adds nodes in the loop
p := Stackl-1
Stack ©= -1
for each q e Pred(p) do

if q £ Loop then
Loop u= {q>
Stack [q]

fi
od

od
return Loop

end I I Nat_Loop
FIG. 7.21 Computing the natural loop of back edge m ->«.

Section 7.4 Loops and Strongly Connected Components 193

FIG. 7.22 Example loop (a) without and (b) with preheader.

i s
Bl

, /
B2 BS

___ 1 1

FIG. 7.23 Two natural loops with the same header Bl.

we introduce the concept of a prebeader; which is a new (initially empty) block
placed just before the header of a loop, such that all the edges that previously went to
the header from outside the loop now go to the preheader, and there is a single new
edge from the preheader to the header. Figure 7.22(b) shows the result of introducing
a preheader for the loop in Figure 7.22(a).

It is not hard to see that unless two natural loops have the same header they
are either disjoint or one is nested within the other. On the other hand, given two
loops with the same header, as in Figure 7.23, it is often not clear whether one is
nested in the other (and if so, which is nested in which), or whether they make up
just one loop. If they resulted from the code in Figure 7.24(a), it would be clear that
the left loop was the inner one; if, on the other hand, they resulted from the code in
Figure 7.24(b), they more likely make up one loop together. Given that we cannot
distinguish these two situations without knowing more about the source code, we
treat such situations in this section as comprising single loops (structural analysis,
discussed in Section 7.7, will treat them differently).

A natural loop is only one type of strongly connected component of a flowgraph.
There may be other looping structures that have more than one entry point, as we
will see in Section 7.5. While such multiple-entry loops occur rarely in practice, they
do occur, so we must take them into account.

The most general looping structure that may occur is a strongly connected
component (SCC) of a flowgraph, which is a subgraph Gs = (N$, Es) such that every

194 Control-Flow Analysis

i = 1; Bl: if (i < j)
Bl: if (i >= 100) goto B2;

goto b4; else if (i > j)
else if ((i #/« 10) == 0) goto B3;

goto B3; else goto B4;
else B2:

B2: i++;
i++; goto Bl;
goto Bl; B3:

B3: i— ;
i++; goto Bl;
goto Bl; B4:

B4:
(a) (b)

FIG. 7.24 Alternative C code sequences that would both produce the flowgraph in Figure 7.23.

FIG. 7.25 A flowgraph with two strongly connected components, one maximal and one not
maximal.

node in N$ is reachable from every other node by a path that includes only edges
in £ 5.

A strongly connected component is maximal if every strongly connected com
ponent containing it is the component itself. As an example, consider the flowgraph
in Figure 7.25. The subgraph consisting of Bl, B2, and B3 and the edges connecting
them make up a maximal strongly connected component, while the subgraph con
sisting of the node B2 and the edge B2->B2 is a strongly connected component, but
not a maximal one.

The algorithm Strong_Components(r,Succ) in Figure 7.26 gives a method for
computing all the maximal SCCs of a flowgraph with entry node r. It is a version of
Tarjan’s algorithm, and it computes the SCCs in time linear in the number of nodes
and edges in the flowgraph. The function Dfn: Node — > integer is a depth-first
order of the nodes in N.

Section 7.4 Loops and Strongly Connected Components 195

N: set of Node
NextDfn: integer
A11_SCC: set of set of Node
LowLink, Dfn: Node — > integer
Stack: sequence of Node
procedure Strong_Components(x,Succ)

x: in Node
Succ: in Node — > set of Node

begin
i: integer
y, z: Node
SCC: set of Node
LowLink(x) := Dfn(x) := NextDfn += 1
Stack ®= [x]
for each y e Succ(x) do

if Dfn(y) = 0 then
Strong_Components(y,Succ)
LowLink(x) := min(LowLink(x),LowLink(y))

elif Dfn(y) < Dfn(x) & 3i e integer (y = Stackii) then
LowLink(x) := min(LowLink(x),Dfn(y))

fi
od
if LowLink(x) = Dfn(x) then I I x is the root of an SCC

SCC := 0
while Stack * [] do

z := Stackl-1
if Dfn(z) < Dfn(x) then

All.SCC u= {SCC}
return

fi
Stack ©= -1
SCC u= {z}

od
All.SCC u= {SCC}

fi
end |I Strong_Components
begin

x: Node
for each x e N do

Dfn(x) := LowLink(x) := 0
od
NextDfn := 0; Stack := []
All.SCC := 0
for each x e N do

if Dfn(x) = 0 then
Strong_Components(x,Succ)

fi
od
All.SCC u= {{Stackll}}

end
FIG. 7.26 Computing strongly connected components.

196 Control-Flow Analysis

The idea of the algorithm is as follows: For any node n in an SCC, let LowLink(rc)
be the smallest preorder number of any node m in the SCC such that there is a
path from n to m in the depth-first spanning tree of the containing graph with at
most one back or cross edge in the path. Let LL (n) be the node with preorder
value LowLink(n), and let no be n and \ be LL («,•). Eventually we must have,
for some /, «/+ i = n*•; call this node LLend(w). Tarjan shows that LLend(w) is the
lowest-numbered node in preorder in the maximal SCC containing «, and so it is
the root in the given depth-first spanning tree of the graph whose set of nodes is the
SCC containing n. Computing LLend(w) separately for each n would require more
than linear time; Tarjan modifies this approach to make it work in linear time by
computing LowLink(w) and using it to determine the nodes n that satisfy n = LL(«),
and hence n = LLend(w).

7.5 Reducibility
Reducibility is a very important property of flowgraphs, and one that is most likely
misnamed. The term reducible results from several kinds of transformations that
can be applied to flowgraphs that collapse subgraphs into single nodes and, hence,
“ reduce” the flowgraph successively to simpler graphs, with a flowgraph considered
to be reducible if applying a sequence of such transformations ultimately reduces
it to a single node. A better name would be well-structured and the definition of
reducibility we use makes this notion clear, but, given the weight of history, we use
the term reducible interchangeably. A flowgraph G = (N, E) is reducible or well-
structured if and only if E can be partitioned into disjoint sets E f, the forward edge
set, and Eg, the back edge set, such that (N, Ef) forms a DAG in which each node
can be reached from the entry node, and the edges in Eb are all back edges as defined
in Section 7.4. Another way of saying this is that if a flowgraph is reducible, then
all the loops in it are natural loops characterized by their back edges and vice versa.
It follows from this definition that in a reducible flowgraph there are no jumps into
the middles of loops—each loop is entered only through its header.

Certain control-flow patterns make flowgraphs irreducible. Such patterns are
called improper regions, and, in general, they are multiple-entry strongly connected
components of a flowgraph. In fact, the simplest improper region is the two-entry
loop shown in Figure 7.27(a), and the one in Figure 7.27(b) generalizes it to a three-
entry loop; it’s easy to see how to produce an infinite sequence of (comparatively
simple) distinct improper regions beginning with these two.

The syntax rules of some programming languages, such as Modula-2 and its
descendants and bliss , allow only procedures with reducible flowgraphs to be con
structed. This is true in most other languages as well, as long as we avoid gotos,
specifically gotos into loop bodies. Statistical studies of flowgraph structure have
shown that irreducibility is infrequent, even in languages like Fortran 77 that make
no effort to restrict control-flow constructs4 and in programs written over 2 0 years
ago, before structured programming became a serious concern: two studies have

4. This is not quite true. The Fortran 77 standard does specifically prohibit branching into do loops,
but it places no restrictions on branching into loops made up of ifs and gotos.

197Section 7.6 Interval Analysis and Control Trees

(a) (b)

FIG. 7.27 Simple improper regions.

FIG. 7.28 Result of applying node splitting to B3 in the improper region shown in Figure 7.27(a).

found that over 90% of a selection of real-world Fortran 77 programs have reducible
control flow and that all of a set of 50 large Fortran 6 6 programs are reducible. Thus,
irreducible flowgraphs occur only rarely in practice, and so one could almost ignore
their existence. However, they do occur, so we must make sure our approaches to
control- and data-flow analysis are capable of dealing with them.

There are three practical approaches to dealing with irreducibility in the control-
tree-based approaches to data-flow analysis discussed in Section 8 .6 (which depend
on flowgraphs being reducible). One is to do iterative data-flow analysis, as de
scribed in Section 8.4, on irreducible regions and to plug the results into the data
flow equations for the rest of the flowgraph. The second is to use a technique called
node splitting that transforms irreducible regions into reducible ones. If we split node
B3 in the example in Figure 7.27(a), the result is the flowgraph in Figure 7.28: B3 has
become a pair of nodes, B3 and B3a, and the loop is now a proper one with entry
B2. If irreducibility were common, node splitting could be very expensive, since it
could exponentially increase the size of the flowgraph; fortunately, this is not the
case in practice. The third approach is to perform an induced iteration on the lattice
of monotone functions from the lattice to itself (see Sections 8.5 and 8 .6).

.6 Interval Analysis and Control Trees
Interval analysis is a name given to several approaches to both control- and data
flow analysis. In control-flow analysis, interval analysis refers to dividing up the
flowgraph into regions of various sorts (depending on the particular approach),

198 Control-Flow Analysis

FIG. 7.29 T1-T2 transformations.

consolidating each region into a new node (often called an abstract node, since it
abstracts away the internal structure of the region it represents), and replacing the
edges entering or leaving the region with edges entering or leaving the corresponding
abstract node. A flowgraph resulting from one or more such transformations is called
an abstract flowgraph. Since the transformations are applied either one at a time
or to disjoint subgraphs in parallel, the resulting regions are nested in the sense
that each abstract node corresponds to a subgraph. Thus, the result of applying a
sequence of such transformations produces a control tree, defined as follows:

1 . The root of the control tree is an abstract graph representing the original flowgraph.

2. The leaves of the control tree are individual basic blocks.

3. The nodes between the root and the leaves are abstract nodes representing regions
of the flowgraph.

4. The edges of the tree represent the relationship between each abstract node and the
regions that are its descendants (and that were abstracted to form it).

For example, one of the simplest and historically earliest forms of interval
analysis is known as T1-T2 analysis. It is composed of just two transformations:
T 1 collapses a one-node self loop to a single node, and T2 collapses a sequence of
two nodes such that the first is the only predecessor of the second to a single node,
as shown in Figure 7.29.

Now suppose we are given the flowgraph shown on the left in Figure 7.30.
Applying T 1 and T2 repeatedly, we get the sequence of reductions shown in that
figure. The corresponding control tree is shown in Figure 7.31.

As originally defined, interval analysis used what are known as maximal inter
vals and ignored the existence of irreducible or improper regions. A maximal interval
lM(b) with header h is the maximal, single-entry subgraph with h as its only entry
node and with all closed paths in the subgraph containing h. In essence, Im(^) is the
natural loop with entry h, plus some acyclic structure dangling from its exits. For
example, in Figure 7.4, 7m(B4) is {B4,B6,B5,exit>; B6 is included because the only

Section 7.6 Interval Analysis and Control Trees 199

i
B 1

\i
B2 B l a

k T2 u

B3 | B 3 a |

B4

B l a

B3bT
7 2

FIG. 7.30 Example of T1-T2 transformations.

B ib

B l a B3b

B 3 a

FIG. 7.31 T1-T2 control tree for the flowgraph in Figure 7.30.

closed path containing B4 is the one consisting of B4 -> B6 and B6 -> B4, and B5 and
e x it are included because the subgraph would not be maximal otherwise.

A more modern form of interval analysis, which we concentrate on in the
remainder of this section, identifies the loops in the flowgraph without classifying
other types of control structures. In this context, a minimal interval (or simply an
interval) I is defined to be (1) a natural loop, (2) a maximal acyclic subgraph, or (3)
a minimal irreducible region. Thus, a minimal interval that is a natural loop differs
from the corresponding maximal interval in that the latter includes successors of the
nodes in the loop that are not themselves in the loop and that are also not headers of
maximal intervals, while the former excludes them. For example, Figure 7.32(a) and
(b) show the maximal and minimal intervals, respectively, in the same flowgraph.

A somewhat more complex example is shown in Figure 7.33. In this example,
rather than naming the abstract subgraphs, we simply give the set of nodes com
prising each of them—this makes the control tree (shown in Figure 7.34) obvious.
Basic blocks B2 and B4 form a loop, as do B5 and B6. After they have been collapsed
to single nodes, B3 and {B5,B6> are found to make an irreducible region, which is
collapsed. The remaining abstract graph is acyclic, and hence forms a single interval.

200 Control-Flow Analysis

FIG. 7.32 An example of the difference between (a) maximal intervals and (b) minimal intervals.

Since we consider structural analysis (covered in detail in Section 7.7) to be
superior to interval analysis, we give here only an outline of how to perform interval
analysis.5 The basic steps are as follows:

1. Perform a postorder traversal of the node set of the flowgraph, looking for loop
headers (each a single node) and headers of improper regions (each a set of more
than one node).

2. For each loop header found, construct its natural loop using the algorithm
Nat_Loop() given in Figure 7.21 and reduce it to an abstract region of type “ natural
loop.”

5. Actually, interval analysis can be viewed as a cut-down version of structural analysis that uses
fewer types of regions or intervals. Thus, an algorithm for performing interval analysis can be
derived from the one for structural analysis.

Section 7.6 Interval Analysis and Control Trees 201

FIG, 7,33 Example of interval analysis.

{B1,{B2,B4},
{B3,{B5,B6}},B7}

B1 {B2,B4} {B3,{B5,B6}} B7

B2 B4 B3 {B5,B6}

B5 B6
FIG, 7.34 Control tree for the flowgraph in Figure 7.33.

202 Control-Flow Analysis

3. For each set of entries of an improper region, construct the minimal strongly con
nected component (the algorithm given in Figure 7.26 can be modified to construct
the minimal SCC) of the flowgraph containing all the entries and reduce it to an
abstract region of type “ improper region.”

4. For the en try node and for each immediate descendant of a node in a natural loop
or in an irreducible region, construct the maximal acyclic graph with that node as
its root; if the resulting graph has more than one node in it, reduce it to an abstract
region of type “ acyclic region.”

5. Iterate this process until it terminates.

Note that termination is guaranteed since either the flowgraph is acyclic or it
contains one or the other type of loop: if it is acyclic, the process terminates with
the current iteration; if it includes one or more cycles, at least one natural-loop or
improper-region reduction will occur during each iteration, reducing the number of
cycles in the graph by at least one, and every flowgraph contains only a finite number
of cycles to begin with.

7.7 Structural A nalysis
Structural analysis is a more refined form of interval analysis. Its goal is to make
the syntax-directed method of data-flow analysis (developed by Rosen for use on
syntax trees) applicable to lower-level intermediate code. Rosen’s method, called
high-level data-flow analysis, has the advantage that it gives, for each type of struc
tured control-flow construct in a source language, a set of formulas that perform
conventional (bit-vector) data-flow analyses across and through them much more
efficiently than iteration does. Thus, this method extends one of the goals of op
timization, namely, to move work from execution time to compilation time, by
moving work from compilation time to language-definition time— in particular,
the data-flow equations for structured control-flow constructs are determined by
the syntax and semantics of the language.

Structural analysis extends this approach to arbitrary flowgraphs by discovering
their control-flow structure and providing a way to handle improper regions. Thus,
for example, it can take a loop made up of i f s, gotos, and assignments and discover
that it has the form of a w hile or re p e a t loop, even though its syntax gives no hint
of that.

It differs from basic interval analysis in that it identifies many more types of con
trol structures than just loops, forming each into a region and, as a result, provides
a basis for doing very efficient data-flow analysis. The control tree it builds is typi
cally larger than for interval analysis—since more types of regions, and hence more
regions, are identified— but the individual regions are correspondingly simpler and
smaller. One critical concept in structural analysis is that every region it identifies has
exactly one entry point, so that, for example, an irreducible or improper region will
always include the lowest common dominator of the set of entries to the strongly
connected component that is the multiple-entry cycle within the improper region.

Figures 7.35 and 7.36 give examples of typical acyclic and cyclic control struc
tures, respectively, that structural analysis can recognize. Note that which of these

Section 7.7 Structural Analysis 203

i
B1

I
B2
T

if-then if-then-else

*

I
block
schema case/switch schema

FIG. 7.35 Some types of acyclic regions used in structural analysis.

self loop while loop

~4
I B1

B2

natural loop schema

FIG. 7.36 Some types of cyclic regions used in structural analysis.

204 Control-Flow Analysis

FIG. 7.37 An acyclic region that does not fit any of the simple categories and so is identified as a
proper interval.

are appropriate for a given source language may vary with the choice of language
and that there may be others. For example, the case/switch construct in a particular
language may or may not allow each of the cases to fall through to the next case,
rather than branching directly to the construct’s exit—in C’s switch, any case may
fall through or branch to the exit, while in Pascal’s case, all cases branch to the
exit. Thus, the case/switch structure is really intended to be a schema that covers the
range of possibilities. Note that a natural loop represents any reducible loop that
is not one of the other specific reducible looping constructs (i.e., not a self or while
loop). It too is schematic, since the loop may have more than two exit edges.

Similarly, the improper (or irreducible) interval is schematic, since its entry block
may have more than two successors and it may contain more than three blocks. One
more type of interval is used in structural analysis, namely, a proper interval, which
is an arbitrary acyclic structure, i.e., one that contains no cycles and that cannot be
reduced by any of the simple acyclic cases. An example of such a structure is shown
in Figure 7.37.

Also, the situation represented in Figure 7.23 in which there are two back edges
entering B1 is recognized by structural analysis as two nested while loops. Which
one it makes the inner loop depends on the order in which they are encountered.

Structural analysis proceeds by constructing a depth-first spanning tree for the
flowgraph in question and then examining the flowgraph’s nodes in postorder for
instances of the various region types, forming abstract nodes from them and col
lapsing the connecting edges, and constructing the corresponding control tree in the
process. The order in which the checking for regions of various types is done and
the way in which it is done are important: for example, a sequence of n > 3 regions
that make up a block can be collapsed in one step to one block if we follow the se
quence to both ends before forming the region, or it can be collapsed in n — 1 steps
to a hierarchy of n — 1 blocks if we only inspect the first block and its predecessor
or successor at each step. Clearly, the former approach is preferred.

Section 7.7 Structural Analysis 20 5

Succ, Pred: Node — > set of Node
RegionType = enum {Block,IfThen,IfThenElse,Case,Proper,SelfLoop,

WhileLoop,NaturalLoop,Improper}
I| StructOf(n) = the region containing node n
StructOf: Node — > Node
I| StrucType(n) = the member of RegionType that is the type of
I I the region denoted by node n
StructType: Node — > RegionType
I I the set of all region nodes
Structures: set of Node
I| StructNodes(n) = the set of nodes making up the region
I| abstracted to node n
StructNodes: Node — > set of Node
I| node and edge sets of the control tree
CTNodes: set of Node
CTEdges: set of (Node x Node)
I| postorder traversal of the flowgraph
PostCtr, PostMax: integer
Post: integer — > Node
Visit: Node — > boolean

FIG. 7.38 Global data structures used in structural analysis.

Following Sharir [Shar80], we construct four data structures, called S tru c tO f,
S tru ctT y p e , S t r u c t u r e s , and S tru ctN o d es as we analyze a flowgraph (Figure
7.38). S tru c tO f gives, for each node, the (abstract) region node immediately con
taining it. S tru ctT y p e gives, for each region node, its type. S t r u c t u r e s is the set o f
all region nodes. S tru ctN o d es gives, for each region, the list o f nodes in it.

The structural analysis algorithm S t r u c t u r a l_ A n a ly s i s () given in Figure
7.39 assum es we are using the region types shown in Figures 7 .35 and 7 .36 , plus
the others described above, although others can be used, as appropriate to the lan
guage^) being processed. The algorithm first initializes the data structures described
above that record the hierarchical structure o f the flowgraph and the structures that
represent the control tree (CTNodes and CTEdges). Then it does a depth-first search
o f the flowgraph so as to construct a postorder traversal o f the flow graph’s nodes.
Then, in a series o f passes over the flowgraph, it identifies each region and collapses
it to a single abstract region node. If a reduction is perform ed, it repairs the sets
o f nodes and edges in the flowgraph and (if necessary) the postorder traversal and
processes the graph again. The algorithm replaces the edges entering a region with
edges to the new abstract node that replaces it and edges leaving the region with
edges from the new node. In parallel, it constructs the control tree.

The set ReachUnder is used to determine the nodes contained in a cyclic control
structure. If ReachUnder contains a single node and there is an edge from that node
to itself, then the loop is a self loop. If it contains more than one node, it can be
a while loop, a natural loop, or an im proper region. If the nodes in ReachUnder
are all descendants o f the first node put into it, then the loop is a while or natural
loop. If it contains a nondescendant o f the first node put into it, then the region is an
improper one. N ote that for an im proper region, the resulting region’s entry node is

206 Control-Flow Analysis

procedure Structural.Analysis(N,E,entry)
N: in set of Node
E: in set of (Node x Node)
entry: in Node

begin
m, n, p: Node
rtype: RegionType
NodeSet, ReachUnder: set of Node
StructOf := StructType := Structures := StructNodes :=
CTNodes N; CTEdges := 0
repeat

Post := 0; Visit := 0
PostMax := 0; PostCtr := 1
DFS.Postorder(N,E,entry)
while |N| > 1 & PostCtr < PostMax do

n := Post(PostCtr)
I I locate an acyclic region, if present
rtype Acyclic_Region_Type(N,E,n,NodeSet)
if rtype * nil then

p Reduce(N,E,rtype,NodeSet)
if entry e NodeSet then

entry := p
fi

else
I I locate a cyclic region, if present
ReachUnder := {n}
for each m e N do

if Path_Back(m,n) then
ReachUnder u= {m}

fi
od
rtype := Cyclic_Region_Type(N,E,n,ReachUnder)
if rtype * nil then

p Reduee(N,E,rtype,ReachUnder)
if entry e ReachUnder then

entry := p
fi

else
PostCtr += 1

fi
fi

od
until IN| = 1

end I I Structural.Analysis
FIG. 7 .3 9 The structural analysis algorithm.

Section 7.7 Structural Analysis 207

procedure DFS_Postorder(N,E,x)
N: in set of Node
E: in set of (Node x Node)
x: in Node

begin
y: Node
Visit(x) := true
for each y e Succ(x) (Visit(y) * nil) do

DFS_Postorder(N,E,y)
od
PostMax += 1
Post(PostMax) := x

end I I DFS_Postorder
FIG. 7.40 Computing a postorder traversal of the nodes in a flowgraph.

not part of the cyclic structure, since all regions have only a single entry; the routine
M inim ize_Im proper() in Figure 7.45 determines the set of nodes making up such
a region.

The computation of ReachUnder uses the function P a th _ B a ck (ra ,«) , which
returns tru e if there is a node k such that there is a (possibly empty) path from m
to k that does not pass through n and an edge k^>n that is a back edge, and f a l s e
otherwise.

The algorithm terminates when it has reduced the flowgraph to the trivial graph
with a single node and no edges. The routine D FS_P ostorder() given in Fig
ure 7.40 constructs a postorder traversal o f the nodes in the flowgraph. The routine
A cyclic_Region_Type (N tE, node, nset) given in Figure 7.41 determines whether
node is the entry node of an acyclic control structure and returns either its type or
n i l (if it is not such an entry node); the routine also stores in nset the set o f nodes
in the identified control structure.

The routine Cyclic_R egion_Type (N ,E , node, nset) given in Figure 7.42 deter
mines whether node is the entry node of a cyclic control structure and either returns
its type or n i l (if it is not such an entry node); it similarly stores in nset the set o f
nodes in the identified control structure.

The routine Reduce(N ,E ,rty pe, N od eSet), defined in Figure 7.43, calls
Create_Node() to create a region node n to represent the identified region and
sets the S tru ctT ype, S t r u c tu r e s , S tru c tO f, and Stru ctN od es data structures ac
cordingly. It returns n as its value. Reduce () uses R eplace () , which is defined in
Figure 7.44, to replace the identified region by the new node, to adjust the incoming
and outgoing edges and the successor and predecessor functions correspondingly,
and to build the control tree represented by CTNodes and CTEdges.

The routine Compact(N ,n ,n se t) used in R e p la c e () adds node n to N , inserts
n into P o st () in the highest-numbered position of a node in nset, removes the nodes
in nset from both N and P o st () , compacts the remaining nodes at the beginning of
P ost () , sets P o stC tr to the index of n in the resulting postorder, and sets PostMax
accordingly; it returns the new value of N .

The routine M in im ize_Im proper(N ,E ,n ,n se t) given in Figure 7.45 is used to
determine a small improper region containing n. Depending on the order of the

208 Control-Flow Analysis

procedure Acyclic_Region_Type(N,E,node,nset) returns RegionType
N: in set of Node
E: in set of (Node x Node)
node: inout Node
nset: out set of Node

begin
m, n: Node
p, s: boolean
nset := 0
I I check for a Block containing node
n := node; p := true; s := |Succ(n)| = 1

|Pred(n)| = 1; s := true

♦Pred(n); p := |Pred(n)| = 1; s

while p & s do
nset u= {n}; n := ♦Succ(n); p

od
if p then

nset u= {n}
fi
n := node; p :=
while p & s do

nset u= {n};
od
if s then

nset u= {n}
fi
node := n
if |nset| £ 2 then

return Block
I| check for an IfThenElse
elif |Succ(node)| = 2 then

m := ♦Succ(node); n := ♦(Succ(node) - {m})
if Succ(m) = Succ(n) & |Succ(m)| = 1

& |Pred(m)| = 1 & |Pred(n)| = 1 then
nset := {node,m,n}
return IfThenElse

I I other cases (IfThen, Case, Proper)
elif . . .

= |Pred(n)l = 1; s := |Succ(n)l

ISucc(n)I

fi

else
return nil

fi
end I I Acyclic_Region_Type

FIG . 7.41 Routine to identify the type of an acyclic structure.

procedure Cyclic_Region_Type(N,E,node,nset) returns RegionType
N: in set of Node
E: in set of (Node x Node)
node: in Node
nset: inout set of Node

FIG . 7 .42 Routine to identify the type of a cyclic structure.

Section 7.7 Structural Analysis 2 09

begin
m: Node
I| check for a SelfLoop
if Inset| = 1 then

if node-^node e E then
return SelfLoop

else
return nil

fi
fi
if 3m e nset (!Path(node,m,N)) then

II it’s an Improper region
nset := Minimize_Improper(N,E,node,nset)
return Improper

fi
I| check for a WhileLoop
m := ♦(nset - {node})
if |Succ(node)| = 2 & |Succ(m)| = 1 &

|Pred(node)| = 2 & |Pred(m)| = 1 then
return WhileLoop

else
II it’s a NaturalLoop
return NaturalLoop

fi
end I I CyclicEntryType

FIG. 7.42 (continued)

procedure Reduce(N,E,rtype,NodeSet) returns Node
N: inout set of Node
E: inout set of (Node x Node)
rtype: in RegionType
NodeSet: in set of Node

begin
node := Create_Node(), m: Node
I I replace node set by an abstract region node and
I| set data structures
Replace(N,E,node,NodeSet)
StructType(node) := rtype
Structures u= {node}
for each m e NodeSet do

StructOf(m) := node
od
StructNodes(node) := NodeSet
return node

end I I Reduce
FIG. 7.43 Region-reduction routine for structural analysis.

210 Control-Flow Analysis

procedure Replace(N,E,node,NodeSet)
N: inout set of Node
E: inout set of (Node x Node)
node: in Node
NodeSet: in set of Node

begin
I I link region node into abstract flowgraph, adjust the postorder traversal
I I and predecessor and successor functions, and augment the control tree
m, ctnode :® Create_Node(): Node
e: Node x Node
N := Compact(N,node,NodeSet)
for each e e E do

if e@l e NodeSet V e@2 e NodeSet then
E -= {e}; Succ(e@l) -= {e@2}; Pred(e@2) -= {e@l}
if e@l e N & e@l * node then

E u= {e@l-*node}; Succ(e@l) u= {node}
elif e@2 e N & e@2 * node then

E u= {node-*e@2}; Pred(e@2) u« {node}
fi

fi
od
CTNodes u= {ctnode}
for each n e NodeSet do

CTEdges u= {ctnode-^n}
od

end || Replace
FIG . 7 .44 Routine to do node and edge replacement and control-tree building for structural

analysis.

procedure Minimize_Improper(N,E,node,nset) returns set of Node
N, nset: in set of Node
E: in set of (Node x Node)
node: in Node

begin
ncd, m, n: Node
I := MEC.Entries(node,nset,E): set of Node
ncd := NC_Domin(I,N,E)
for each n € N - {ncd} do

if Path(ncd,n,N) & 3m e I (Path(n,m,N-{ncd})) then
I u= { n}

fi
od
return I u {ncd}

end I I Minimize.Improper
FIG . 7 .45 Improper-interval minimization routine for structural analysis.

Section 7.7 Structural Analysis 211

entryb

B3

B4 B5b

(C)

entryc

(e)

(d)

FIG. 7.46 Structural analysis of a flowgraph.

nodes in the flowgraph given by DFS.Postorder (), it limits the improper region
either to the smallest subgraph containing n and at least two other nodes such that
(1) one of the nodes other than n dominates all the nodes in the subgraph and (2)
any node on a non-empty path from n to some other node in the subgraph is also
in the subgraph, or to a somewhat larger improper region that contains the smallest
one as a subgraph.

Minimize_Improper() uses two functions, namely, MEC_Entries(rc,«se£,E),
which returns the set of entry nodes (all members of nset) of the smallest multiple-
entry cycle of which n is one of the entries, and NC_Domin(7,N,E), which returns
the nearest common dominator of the nodes in I. NC_Domin() can easily be com
puted from the flowgraph’s dominator tree. The function Path(«, m, I) returns true
if there is a path from n tom such that all the nodes in it are in I and false otherwise.

See the discussion of Figure 7.49(b) below for an example of how the postorder
affects determination of the resulting improper region. This approach almost always
results in smaller improper intervals than Sharir’s original method.

As an example of structural analysis, consider the flowgraph in Figure 7.46(a).
Figure 7.47 shows a depth-first spanning tree for the flowgraph. The first stage of

212 Control-Flow Analysis

entry
j

F B2 . B

N̂ B 3

B4 B5

B6 F

i ,

FIG. 7.47 Depth-first spanning tree for the flowgraph in Figure 7.46(a).

the analysis,6 shown in Figure 7.46(b), does three reductions: entry followed by B1
is recognized as a block and reduced accordingly, B2 is recognized as a self loop and
reduced, and B5 and B6 are recognized as an if-then and reduced. It sets the data
structures as follows:

StructType(entrya) = Block
StructOf(entry) = StructOf(Bl) = entrya
StructNodes(entrya) = {entry,Bl>
StructType(B2a) = SelfLoop
StructOf(B2) = B2a
StructNodes(B2a) = {B2}
StructType(B5a) = IfThen
StructOf(B5) = StructOf(B6) = B5a
StructNodes(B5a) = {B5,B6}
Structures = {entrya,B2a,B5a}

The next stage, shown in Figure 7.46(c), recognizes and reduces the if-then made up
of entrya and B2a and the block made up of B5a and B7. It sets the data structures
as follows:

StructType(entryb) = IfThen
StructOf(entrya) = StructOf(B2a) = entryb
StructNodes(entryb) = {entrya,B2a>
StructType(B5b) = Block
StructOf(B5a) = StructOf(B7) = B5b
StructNodes(B5b) = {B5a,B7}
Structures = {entrya,B2a,B5a,entryb,B5b}

6. The figure actually shows what can be thought of as a parallel version of structural analysis that
may make several reductions in each pass. This is done in the figure to save space, but could be
implemented in the algorithm at the expense of significantly decreasing its understandability.

Section 7.7 Structural Analysis 213

entryc

B5 B6
FIG. 7.48 Control tree for the flowgraph analyzed in Figure 7.46.

FIG. 7.49 Two examples of improper intervals.

In the next stage, shown in Figure 7.46(d), B3, B4, and B5b are reduced as an if-then-
else, and the data structures are set as follows:

StructType(B3a) = IfThenElse
Struct0f(B3) = Struct0f(B4) = StructOf(B5b) = B3a
StructNodes(B3a) = {B3,B4,B5b>
Structures = {entrya,B2a,B5a,entryb,B5b,B3a}

In the final stage, entryb, B3a, and e x i t are reduced as a block, resulting in
Figure 7.46(e). The data structures are set as follows:

StructType(entryc) = Block
StructOf(entryb) = StructOf(B3a) = StructOf(exit) = entryc
StructNodes(entryc) = {entryb,B3a,exit}
Structures = {entrya,B2a,B5a,entryb,B5b,B3a,entryc}

The resulting control tree is given in Figure 7.48.
Figure 7.49 gives two examples of flowgraphs that contain improper regions. In

example (a) the routine Minimize_Improper() recognizes the subgraph consisting

Control-Flow Analysis

of all nodes except B6 as the improper interval. In (b) the improper interval(s)
recognized depend on the particular postorder traversal used: if B3 precedes B2,
then it recognizes an improper region consisting of Bl, B3, and B4 and then another
consisting of the abstract node for that region along with B2 and B5; if B2 precedes
B3, then it recognizes a single improper region consisting of all five nodes.

Wrap-Up
Control-flow analysis is our first foray into material that relates directly to opti
mization.

Optimization requires that we be able to characterize the control flow of pro
grams and the manipulations they perform on their data, so that any unused gener
ality can be removed and operations can be replaced by faster ones.

As discussed above, there are two main approaches to control-flow analysis,
both of which start by determining the basic blocks that make up the routine and
constructing its flowgraph. The first approach uses dominators to discover loops
and simply notes the loops it finds for use in optimization. We also identify extended
basic blocks and reverse extended basic blocks for those optimizations that can be
applied to them. This is sufficient for use by iterative data-flow analyzers.

The second approach, called interval analysis, includes a series of methods that
analyze the overall structure of the routine and that decompose it into nested re
gions called intervals. The nesting structure of the intervals forms the control tree,
which is useful in structuring and speeding up data-flow analysis. The most sophis
ticated form of interval analysis, called structural analysis, classifies essentially all
the control-flow structures in a routine. It is sufficiently important that we devoted
a separate section to it.

In the past, most optimizing compilers used dominators and iterative data-flow
analysis, but this is changing because the interval-based approaches are faster, they
make it easier to update already computed data-flow information, and structural
analysis makes it particularly easy to perform the control-flow transformations dis
cussed in Chapter 18.

Further Reading
Lengauer and Tarjan’s approach to computing dominators is described in [LenT79].
It uses path-compression methods that are described more fully in [Tarj81]. Tar
jan’s algorithm for finding strongly connected components is described in [Tarj72].
Alstrup and Lauridsen’s dominator-tree update algorithm is described in [AlsL96].

An overview of the flowgraph transformations that are responsible for the no
tion of flowgraph reducibility’s being called that can be found in [Kenn81]. The
studies of reducibility in Fortran programs are from Allen and Cocke [AllC72b]; and
Knuth [Knut71]. T1-T2 analysis is described in [Ullm73]. The definition of maximal
interval is from Allen and Cocke [A11C76]; Aho, Sethi, and Ullman [AhoS8 6] also
use maximal intervals. Both give algorithms for partitioning a reducible flowgraph
into maximal intervals.

Section 7.10 Exercises 215

Structural analysis was originally formulated by Sharir [Shar80]. The syntax-
tree-based method of data-flow analysis is due to Rosen (see [Rose77] and [Rose79])
and was extended by Schwartz and Sharir [SchS79]. The modern approach to ana
lyzing and minimizing improper intervals is discussed in [JaiT8 8], but the approach,
as described there, is flawed—its intentional definition of the improper region dom
inated by a given node results in its containing just that node.

7.10 Exercises
7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

RSCH 7.13

7.14

7.15

Specify the set of flowgraph edges that must be added to a C function because it
includes a call to setjm p().

(a) Divide the ican procedure Domin_Fast() in Figure 7.16 into basic blocks. You
might find it useful to construct a flowgraph of it. (b) Then divide it into extended
basic blocks.

Construct (a) a depth-first presentation, (b) depth-first ordering, (c) preorder, and
(d) postorder of the flowchart nodes for the routine Depth_First_Search_PP() in
Figure 7.12.

Suppose that for each pair of nodes a and b in a flowgraph a dom b if and only if
b pdom a. What is the structure of the flowgraph?

Implement Dom_Comp(), Idom_Comp(), and Domin_Fast () in a language available
to you and run them on the flowgraph in Figure 7.32.

Explain what the procedure Compress () in Figure 7.17 does.

Explain what the procedure Link() in Figure 7.18 does.

Apply the algorithm Strong_Components() in Figure 7.26 to the graph in Fig
ure 7.50.

Define an infinite sequence of distinct improper regions Ri, R2, R35 • • • > with each
Ri consisting of a set of nodes N, and a set of edges £/.

Give an infinite sequence of irreducible regions Ri, R2, R3, . . . such that Rz consists
of i nodes and such that performing node splitting on Rz results in a flowgraph whose
number of nodes is exponential in /.

Write an ican program to compute the maximal intervals in a reducible flowgraph.

Write an ican program to compute the minimal intervals in a reducible flowgraph.

Read Rosen’s articles ([Rose77] and [Rose79]) and show the formulas he would
construct for an if-then-else construct and a repeat loop.

Write a formal specification of the case/switch schema in Figure 7.35 as a set of
graphs.

Write a formal specification of the set of natural loops (see Figure 7.36), where a
natural loop is defined to be a single-entry, multiple-exit loop, with only a single
branch back to the entry from within it.

216 Control-Flow Analysis

FIG. 7.50 An example graph to which to apply the algorithm Strong_Components() in
Figure 7.26.

7.16 Perform structural control-flow analyses of the routines (a) Make_Webs() in Fig
ure 16.7 and (b) Gen_Spill_Code() in Figure 16.24.

ADV 7.17 Implement in ican the function MEC_Entries() used by Minimize.Improper ().

CHAPTER 8

Data-Flow Analysis

T he purpose of data-flow analysis is to provide global information about
how a procedure (or a larger segment of a program) manipulates its data.
For example, constant-propagation analysis seeks to determine whether all
assignments to a particular variable that may provide the value of that variable at

some particular point necessarily give it the same constant value. If so, a use of the
variable at that point can be replaced by the constant.

The spectrum of possible data-flow analyses ranges from abstract execution of
a procedure, which might determine, for example, that it computes the factorial
function (as discussed in Section 8.14), to much simpler and easier analyses such as
the reaching definitions problem discussed in the next section.

In all cases, we must be certain that a data-flow analysis gives us information
that does not misrepresent what the procedure being analyzed does, in the sense
that it must not tell us that a transformation of the code is safe to perform that, in
fact, is not safe. We must guarantee this by careful design of the data-flow equations
and by being sure that the solution to them that we compute is, if not an exact
representation of the procedure’s manipulation of its data, at least a conservative
approximation of it. For example, for the reaching definitions problem, where we
determine what definitions of variables may reach a particular use, the analysis must
not tell us that no definitions reach a particular use if there are some that may. The
analysis is conservative if it may give us a larger set of reaching definitions than it
might if it could produce the minimal result.

However, to obtain the maximum possible benefit from optimization, we seek
to pose data-flow problems that are both conservative and, at the same time, as
aggressive as we can make them. Thus, we shall always attempt to walk the fine line
between being as aggressive as possible in the information we compute and being
conservative, so as to get the greatest possible benefit from the analyses and code
improvement transformations we perform without ever transforming correct code
to incorrect code.

217

218 Data-Flow Analysis

Finally, as you will recall, in Section 7.1 we discussed three approaches to
control- and data-flow analysis and our reasons for presenting all three of them in
the text. It is worth referring to that section to refresh your memory as to why we
choose to present all three.

8.1 An Example: Reaching Definitions
As an introduction to data-flow analysis, we continue the informal example we
began at the beginning of Chapter 7 by performing a simple data-flow analysis
called reaching definitions on the procedure given there that computed Fibonacci
numbers. Our starting point consists of the flowchart in Figure 7.3 and the flowgraph
in Figure 7.4.

A definition is an assignment of some value to a variable. A particular definition
of a variable is said to reach a given point in a procedure if there is an execution
path from the definition to that point such that the variable may have, at that
point, the value assigned by the definition. Our goal is to determine which particular
definitions of (i.e., assignments to) each variable may, by some control-flow path,
reach any particular point in the procedure. We take the term control-flow path
to mean any directed path in the flowchart for a procedure, usually irrespective of
whether predicates controlling branching along the path are satisfied or not.

We could perform data-flow analysis on the flowchart of a procedure, but it
is more efficient in general to divide it up into local flow analysis, done within
each basic block, and global flow analysis, done on the flowgraph. To do so, we
summarize the effect of each basic block to produce the local information and then
use it in the global analysis, producing information that corresponds to the entry
and exit of each basic block. The resulting global information can then be combined
with the local information to produce the set of definitions that reach the beginning
of each intermediate-language construct within any basic block. This has the effect
of reducing the number of steps needed to compute the data-flow information, often
significantly, in return for the generally small expense of propagating the information
from the beginning (or end) of a block to a point within it when it is needed there.

Similarly, most of the data-flow analyses we consider concern sets of various
kinds of program objects (constants, variables, definitions, expressions, etc.) and
the determination of what set of such objects is valid at any particular point in a
procedure. What kind of objects and what is meant by valid depend on the particular
problem. In the next few paragraphs, we formulate the reaching definitions problem
in two ways, as a problem over sets and as a problem over bit vectors, which are
simply a convenient representation for sets for use in a computer, since set union,
intersection, and complement correspond directly to bitwise or, and, and not on bit
vectors.

Reaching definitions analysis can be done in the classic form known as an
iterative forward bit-vector problem— “ iterative” because we construct a collection
of data-flow equations to represent the information flow and solve it by iteration
from an appropriate set of initial values; “ forward” because the information flow is
in the direction of execution along the control-flow edges in the program; and “ bit-

Section 8.1 An Example: Reaching Definitions 219

1 int g(int m, int i)

2 int f (n)
3 int n;
4 { int i ■i-)oii

5 if (n — 1) i =
6 while (n > 0) {
7 J « i + 1;
8 n = g(n,i) ;
9 >
10 return j;
11 >

FIG. 8.1 Example of undecidability of reaching definitions and dependence on input values.

vector” because we can represent each definition by a 1 (meaning it may reach the
given point) or a 0 (meaning it does not) and, hence, the collection of all definitions
that may reach a point by a sequence or vector of bits.

In general, as for most of the data-flow analysis problems we deal with, it is
recursively undecidable whether a definition actually reaches some other point. Also,
whether a definition reaches a particular point may depend on the input data. For
example, in the C code in Figure 8.1, whether the definition of i in the declaration in
line 4 actually reaches the uses in lines 7 and 8 depends on the value of the parameter
n of function f (), and whether the definition of j in line 7 actually reaches the
use in the return in line 10 depends on whether the while loop terminates, which
is, in general, recursively undecidable. Thus, we distinguish between what we can
determine to be false on the one hand and what we either know to be true or cannot
determine on the other. Since optimizations based on reaching definitions depend on
what may be true, we keep to the side of conservatism, putting the preservation of
correctness of the program ahead of aggressiveness of optimization.

Table 8.1 gives the correspondence between bit positions and definitions in the
flowchart in Figure 7.3. Thus, a vector of eight bits can be used to represent which
definitions reach the beginning of each basic block in the program.

Clearly, the appropriate initial condition is that none of the definitions reaches
the entry node, so the set of definitions valid on entry to the entry block is

RCHin (entry) = 0

or as an eight-bit vector,

RCHin(e ntry) = (00000000)

Further, since we are trying to determine which definitions may reach a particular
point, it is a conservative (but unnecessary) assumption to initialize

RCHin(i) = 0 for all i

or

RCHin{i) = (00000000) for all i

220 Data-Flow Analysis

TABLE 8.1 Correspondence between bit-vector positions, definitions,
and basic blocks for the flowchart in Figure 7.3.

Bit Position Definition Basic Block

1 m in node 1 Bl
2 f 0 in node 2
3 f 1 in node 3

4 i in node 5 B3

5 f 2 in node 8 B6
6 f 0 in node 9
7 f 1 in node 10
8 i in node 11

Now we must figure out what effect each node in the flowgraph has on each bit in
the bit vectors. If a mir instruction redefines the variable represented by the given bit
position, then it is said to kill the definition; otherwise it preserves it. This suggests
that we define sets (and corresponding bit vectors) called PRSV(i) that represent the
definitions preserved by block /. It is easy to see that, as sets (using the bit positions
to represent the definitions),

PRSV(B l) = {4 ,5 ,8 }

PRSV(B 3)= {1 ,2 ,3 ,5 ,6 ,7 }

PRSV(B 6)= {1}

PRSV(i) = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 } for i ^B1,B 3,B6

and, as bit vectors (counting from the left end),

PRSV(B l) = (00011001)

PRSV(B 3)= (11101110)

PRSV(B 6)= (10000000)

PRSV(i) = (11111111) for i ^ Bl, B3, B6
For example, the 0 in bit position seven of PRSV(Bl) indicates that basic block Bl
kills the definition of f 1 in node 10,1 while the 1 in bit position 5 of PRSV(Bl)
indicates that Bl does not kill the definition of f 2 in node 8. Some texts, such as
[AhoS86], use K IL L ()—the negation of PR SV ()—instead of PR SV ().

1. In fact, since there is no way for control to flow from the basic block containing node 10, namely,
block B6, to block Bl, we need not make this bit a 0, but it certainly does not hurt to do so.

Section 8.1 An Example: Reaching Definitions 221

Correspondingly, we define sets and bit vectors GEN(i) that give the definitions
generated by block /,2 i.e., that are assigned values in the block and not subsequently
killed in it. As sets, the G E N () values are

GEN(Bl) = {1,2, 3}

GEN(B3) = {4}

GEN(B6) = {5, 6, 7,8}

GEN(i) = 0 for Bl, B3, B6

and as bit vectors they are

GEN(Bl) = (11100000)

GEN(B3) = (00010000)

GEN(B6) = (00001111)

GEN(i) = (00000000) for i ^ Bl, B3, B6

Finally, we define sets and corresponding bit vectors RCHout(i) that represent
the definitions that reach the end of basic block i. As for RCHin(i), it is sufficient to
initialize RCHout(i) by3

RCHout(i) = 0
or

RCHout(i) = (00000000) for all i

Now a definition may reach the end of basic block i if and only if either it
occurs in block i and the variable it defines is not redefined in i or it may reach the
beginning of i and is preserved by /; or symbolically, using sets and set operations,
this is represented by

RCHout(i) = GEN(i) U (RCHin(i) C\PRSV(i)) fo r a ll i

or, using bitwise logical operations on bit vectors, by

RCHout(i) = GEN(i) v (RCHin(i) A PRSV(i)) fo r a ll i

A definition may reach the beginning of block i if it may reach the end of some
predecessor of /, i.e., for sets,

RCHin(i) = |^J RCHout(j) for all i
jePred(i)

2. We ignore, for the moment, the fact that some definitions of a variable are unambiguous, such
as explicit assignments, while others, such as assignments through pointers and procedure calls, are
ambiguous in the sense that they may or may not affect a particular variable, and we may not be
able to determine whether they do. No ambiguous definitions occur in this procedure.
3. As we shall see, this is actually unnecessary: since each RCH out(i) is computed from the
RCH in(i), GEN(/‘), and PRSV (i) for the same block, we really need not initialize the RCH out()
values at all.

2 2 2 Data-Flow Analysis

or, for bit vectors,

R C H in (i) = \ J R C H o u t (j) for all /
jePred(i)

To solve the system of (bit-vector) equations for R C H in (i) and R C H o u t(i), we
simply initialize the R C H in (i) to the values given above and iterate application of
the equations until no further changes result. To understand why iteration produces
an acceptable solution to the system of equations, we require a general introduction
to lattices and fixed-point iteration, which is given in the next section. After one
application of the equations, we have

R C H o u t(e ntry) = (00000000) R C H in (e ntry) = (00000000)
R C H o u t(Bl) = (11100000) R C H in (Bl) = (00000000)
R C H o u t(B2) = (11100000) R C H in (B2) = (11100000)
R C H o u t(B3) = (11110000) R C H in (B3) = (11100000)
R C H o u t(B4) = (11110000) R C H in (B4) - (11110000)
R C H o u t(B5) = (11110000) R C H in (B5) = (11110000)
R C H o u t(B6) = (10001111) R C H in (B6) = (11110000)
R C H o u t(e x i t) = (11110000) R C H in (e x i t) = (11110000)

After iterating one more time, we have

R C H o u t (e n t r y) = (00000000) R C H in (e ntry) = (00000000)
R C H o u t(Bl) = (11100000) R C H in (B l) = (00000000)
R C H o u t(B2) = (11100000) R C H in (B2) = (11100000)
R C H o u t(B3) = (11110000) R C H in (B3) - (11100000)
R C H o u t(B4) = (11111111) R C H in (B4) = (11111111)
R C H o u t(B5) = (11111111) R C H in (B5) = (11111111)
R C H o u t(B6) = (10001111) R C H in (B6) = (11111111)
R C H out(exit) = (11111111) R C H in (e x i t) = (11111111)

and iterating one more time produces no more changes, so the
solution.

above values are the

Note that the rules for performing the iteration never change a 1 to a 0, i.e.,
they are monotone, so we are guaranteed that the iteration process ultimately does
terminate.

The solution to the data-flow equations gives us a global view of which defini
tions of variables may reach which uses. For example, it shows that the definition
of f 0 in basic block B1 may reach the first use of f 0 in block B6 and that along the
execution path through basic block B2, the variables i and f 2 are never defined. One
way we might use this information to optimize the program is to avoid allocation of
storage (and registers) for i and f 2 along the path through B2.

Note that, while it may be easier to understand the data-flow equations as
presented above, there is actually no theoretical reason to have both R C H in () and

Section 8.2 Basic Concepts: Lattices, Flow Functions, and Fixed Points 223

RCHout() functions. Instead, we can substitute the equations for RCHout() into
the equations for RCHin() to get the simpler system of equations

RCHin(i) = |^J (G EN (j) U (RCHin(j) fl PRSV(j))) for all i
jePred(i)

or

RCH in(i)= (G EN (j) v (RCHin(j) a PRSV(j))) for all i
jePred(i)

with exactly the same solution. However, there is a practical trade-off involved in
choosing to use both RCHin() and RCHout() functions or only one of them. If
we employ both, we double the space required to represent the data-flow informa
tion, but we reduce the amount of computation required; with only the RCHin()
functions saved, we need to compute

G EN (j) U (RCHin(j) D PRSV(j))

repeatedly, even if RCHin(j) has not changed, while if we use both functions, we
have its value available immediately.

Basic Concepts: Lattices, Flow Functions, and
Fixed Points
We now proceed to define the conceptual framework underlying data-flow analy
sis. In each case, a data-flow analysis is performed by operating on elements of an
algebraic structure called a lattice. Elements of the lattice represent abstract prop
erties of variables, expressions, or other programming constructs for all possible
executions of a procedure—independent of the values of the input data and, usually,
independent of the control-flow paths through the procedure. In particular, most
data-flow analyses take no account of whether a conditional is true or false and,
thus, of whether the then or e ls e branch of an i f is taken, or of how many times a
loop is executed. We associate with each of the possible control-flow and computa
tional constructs in a procedure a so-called flow function that abstracts the effect of
the construct to its effect on the corresponding lattice elements.

In general, a lattice L consists of a set of values and two operations called meet,
denoted n, and join, denoted u, that satisfy several properties, as follows:

1. For all x, y e L, there exist unique z and w € L such that x n y = z and x u y = w
(closure).

2. For all x, y e L, x n y = y n x and x u y = y u x (commutativity).

3. For all x, y, z e L, (x n y) n z = x n (y n z) and (x u y) u z = x u (y u z) (associativity).

4. There are two unique elements of L called bottom, denoted ± , and top, denoted T,
such that for all x e L, x n _L = _!_ and x u T = T (existence of unique top and bottom
elements).

224 Data-Flow Analysis

<1U>

<110) <101) <011)

< 100) <010) <001)

< 000>

FIG. 8.2 BY3, the lattice of three-element bit vectors.

Many lattices, including all the ones we use except the one for constant propa
gation (see Section 12.6), are also distributive, i.e., for all x ,y ,z e L,

(x n y) u z = (x u z) n (y u z) and (x u y) n z = (x n z) u (y n z)

Most of the lattices we use have bit vectors as their elements and meet and join
are bitwise and and or, respectively. The bottom element of such a lattice is the
bit vector of all zeros and top is the vector of all ones. We use BV” to denote the
lattice of bit vectors of length n. For example, the eight-bit vectors in our example
in Section 8.1 form a lattice with ± = (00000000) and T = (11111111). The join
of two bit vectors is the bit vector that has a one wherever either of them has a one
and a zero otherwise. For example,

(00101111) u (01100001) = (01101111)
A lattice similar to the one in the reaching definitions example, but with vectors of
only three bits, is shown in Figure 8.2.

There are several ways to construct lattices by combining simpler ones. The first
of these methods is the product operation, which combines lattices elementwise. The
product of two lattices Li and L2 with meet operators rii and 112, respectively, which
is written Li x L2, is {{x \,x i) I x\ e L \ ,x i e L2 }, with the meet operation defined
by

(*i,*2> n (yi,y2> = (*1 r>i y i ,x 2 n2 y2>

The join operator is defined analogously. The product operation generalizes in the
natural way to more than two lattices and, in particular, what we have already
referred to as BV” is just the product of n copies of the trivial lattice BV = BV1 =
{0,1} with bottom 0 and top 1.

In some cases, bit vectors are undesirable or insufficient to represent the needed
information. A simple example for which they are undesirable is for constant prop
agation of integer values, for which we use a lattice based on the one called ICP
shown in Figure 8.3. Its elements are ± , T , all the integers, and the Booleans, and it
is defined by the following properties:

1. For all n e ICP, n n _L = _L.
2. For all n e ICP, n u T = T.

Section 8.2 Basic Concepts: Lattices, Flow Functions, and Fixed Points 225

T

false ... -2 -1 0 1 2 • • • true

j.
FIG. 8.3 Integer constant-propagation lattice ICP.

3. For all n e ICP, n r\n = n\J n = n.

4. For all integers and Booleans ra, n e ICP, if m ^ n , then m n n = ± and m u n = T.

In Figure 8.3, the meet of any two elements is found by following the lines downward
from them until they meet, and the join is found by following the lines upward until
they join.

Bit vectors could be used for constant propagation, as follows. Define Var to
be the set of variable names of interest, and let Z denote the set of integers. The
set of functions from finite subsets of Var to Z includes a representative for each
possible assignment of constant values to the variables used in any program. Each
such function can be represented as an infinite bit vector consisting of a position
for each (v, c) pair for some v e Var and constant c e Z, where the position
contains a 1 if v has value c and a 0 otherwise. The set of such infinite bit vectors
forms a lattice under the usual lattice ordering on bit vectors. Clearly this lattice is
much more complex than ICP: its elements are infinite bit vectors, and not only is it
infinitely wide, like ICP, but it is also infinitely high, which makes this formulation
very undesirable.

Some data-flow analysis problems require very much more complex lattices than
bit vectors, such as the two used by Jones and Muchnick [JonM81a] to describe
the “ shapes” of Lisp-like data structures, one of which consists of elements that are
regular tree grammars and the other of which consists of complex graphs.

It should be clear from the graphic presentation of the lattices that the meet and
join operations induce a partial order on the values, which is written o . It can be
defined in terms of the meet operation as

x O y if and only if x n y = x

or it can be defined dually in terms of the join operation. The related operations
□ , □, and 3 are defined correspondingly. The following properties of o (and corre
sponding ones for the other ordering relations) are easily derived from the definitions
of meet and join:

1. For all x , y, z, if x C y and y o z, then x C z (transitivity).

2. For all x, y, if x O y and y C x , then x = y (antisymmetry).

3. For all x ,x O x (reflexivity).

226 Data-Flow Analysis

A function mapping a lattice to itself, written as f : L -> L, is monotone if for all
x, y x O y=> f(x) c f(y). For example, the function f : BV3 -» BV3 as defined by

f((x ix2x 3)) = (x i lx 3)

is monotone, while the function g: BV3 -> BV3 as defined by g((000)) = (100) and
g((*i*2 *3>) = (000) otherwise is not.

The height of a lattice is the length of the longest strictly ascending chain in it,
i.e., the maximal n such that there exist x ~l, . . . , xn such that

_L = x\ C X2 C . . . □ x n = T

For example, the heights of the lattices in Figures 8.2 and 8.3 are 4 and 3, respec
tively. As for other lattice-related concepts, height may be dually defined by descend
ing chains. Almost all the lattices we use have finite height, and this, combined with
monotonicity, guarantees termination of our data-flow analysis algorithms. For lat
tices of infinite height, it is essential to show that the analysis algorithms halt.

In considering the computational complexity of a data-flow algorithm, another
notion is important, namely, effective height relative to one or more functions. The
effective height of a lattice L relative to a function f : L -> L is the length of the longest
strictly ascending chain obtained by iterating application of f (), i.e., the maximal n
such that there exist x i, X2 = f(x 1), X3 = f (x 2), = f{x n-\) such that

X \ C X2 □ X3 □ . . . □ xn c T

The effective height of a lattice relative to a set of functions is the maximum of its
effective heights for each function.

A flow function models, for a particular data-flow analysis problem, the effect of
a programming language construct as a mapping from the lattice used in the analysis
to itself. For example, the flow function for block B1 in the reaching definitions
analysis in Section 8.1 is the function BV8 -> BV8 given by

FBl((* l*2 *3 *4 *5 *6 *7 *8 » = (11 lx 4X500x8)

We require that all flow functions be monotone. This is reasonable in that the pur
pose of a flow function is to model the information about a data-flow problem
provided by a programming construct and, hence, it should not decrease the infor
mation already obtained. Monotonicity is also essential to demonstrating that each
analysis we consider halts and to providing computational complexity bounds for it.

The programming construct modeled by a particular flow function may vary,
according to our requirements, from a single expression to an entire procedure.
Thus, the function that transforms each RCHin(i) to RCHout(i) in the example in
Section 8.1 may be viewed as a flow function, as may the function that transforms
the entire set of RCHin(i)s to RCHout{i)s.

A fixed point of a function f : L -> L is an element z € L such that f(z) = z. For
a set of data-flow equations, a fixed point is a solution of the set of equations, since
applying the right-hand sides of the equations to the fixed point produces the same
value. In many cases, a function defined on a lattice may have more than one fixed
point. The simplest example of this is the function f : BV -> BV with f (0) = 0 and
f (1) = 1. Clearly, both 0 and 1 are fixed points of this function.

Section 8.2 Basic Concepts: Lattices, Flow Functions, and Fixed Points 227

The value that we wish to compute in solving data-flow equations is the so-
called meet-over-all-patbs (MOP) solution. Intuitively, this results from beginning
with some prescribed information Init at the entry node of a flowgraph (or the exit
node for backward flow problems), applying the composition of the appropriate
flow functions along all possible paths from the entry (or exit) node to each node
in the flowgraph, and forming, for each node, the meet of the results. Expressed in
equations, we have the following for a forward flow problem. Let G = (N, E) be a
flowgraph. Let Path(B) represent the set of all paths from entry to any node B e N
and let p be any element of Path(B). Let FB() be the flow function representing
flow through block B and Fp() represent the composition of the flow functions
encountered in following the path p, i.e., if B\ = e n try ,. . . , Bn = B are the blocks
making up a particular path p to £ , then

Fp = FBn o • • • o Fb\

Let Init be the lattice value associated with the entry block. Then the meet-over-all-
paths solution is

MOP(B) = | | Fp(Init) for B = entry, Bl,. . ., Bn, exit
pePath(B)

Analogous equations express the meet-over-all-paths solution for a backward flow
problem.

Unfortunately, it is not difficult to show that for an arbitrary data-flow analysis
problem in which the flow functions are only guaranteed to be monotone, there
may be no algorithm that computes the meet-over-all-paths solution for all possible
flowgraphs. What our algorithms do compute is called the maximum fixed point
(MFP) solution, which is simply the solution to the data-flow equations that is
maximal in the ordering of the underlying lattice, i.e., the solution that provides
the most information. Kildall [Kild73] showed that for data-flow problems in which
all the flow functions are distributive, the general iterative algorithm that we give in
Section 8.4 computes the MFP solution and that, in that case, the MFP and MOP
solutions are identical. Kam and Ullman [KamU75] generalized this result to show
that for data-flow problems in which the flow functions are all monotone but not
necessarily distributive, the iterative algorithm produces the MFP solution (but not
necessarily the MOP solution).

Before moving on to discuss the types of data-flow problems that are of interest
to us and how to solve them, we take a moment to discuss the issue of associating
data-flow information with the entry points of basic blocks in the flowgraph, rather
than with edges. The former is standard practice in most of the literature and all the
compilers we are aware of. However, a few papers associate data-flow information
with edges in the flowgraph. This has the effect of producing better information in
some cases, essentially because it does not force information at a node with multiple
predecessors (or, for backward flow problems, a node with multiple successors) to
be merged before it enters the node.

A simple example of a situation in which this produces improved information is
the constant-propagation instance shown in Figure 8.4. Clearly, the value assigned to

228 Data-Flow Analysis

FIG, 8.4 Flowgraph for which associating data-flow information with edges produces better
results than associating it with node entries.

w in B4 is the constant 3. Regardless of whether we associate information with node
entries or with edges, we know that on exit from both B2 and B3, both u and v have
constant values. If we do constant propagation and associate data-flow information
with the edges, then we preserve the fact that, on the edge from B2 to B4, u has value
1 and v has value 2, and on the edge from B3 to B4, u has value 2 and v has value
1. This allows the flow function for B4 to combine the distinct values to determine
that B4 in turn assigns the constant value 3 to w. On the other hand, if we associate
the data-flow information with node entries, then all we know at entry to B4 is that
neither u’s value nor v’s value is a constant (in both cases, the value is either 1 or
2, but the lattice ICP doesn’t provide a way to distinguish that information from
T, and even if it did, it would not be enough for us to determine that w’s value is a
constant).

8.3 Taxonomy o f Data-Flow Problems and
Solution Methods
Data-flow analysis problems are categorized along several dimensions, including the
following:

1. the information they are designed to provide;

2. whether they are relational or involve independent attributes;

3. the types of lattices used in them and the meanings attached to the lattice elements
and functions defined on them; and

4. the direction of information flow: in the direction of program execution (forward
problems), opposite the direction of execution (backward problems), or in both
directions (bidirectional problems).

Section 8.3 Taxonomy of Data-Flow Problems and Solution Methods 229

Almost all the problems we consider are examples of the independent-attribute
type, i.e., they assign a lattice element to each object of interest, be it a variable def
inition, expression computation, or whatever. Only a few, such as the structure type
determination problem described in Section 8.14, require that the data-flow state of
a procedure at each point be expressed by a relation that describes the relationships
among the values of the variables, or something similar. The relational problems
have much greater computational complexity than the independent-attribute prob
lems.

Similarly, almost all the problems we consider are one-directional, either for
ward or backward. Bidirectional problems require forward and backward propa
gation at the same time and are more complicated to formulate and, in the average
case, to solve than one-directional problems. Happily, in optimization, bidirectional
problems are rare. The most important instance is the classic formulation of partial-
redundancy elimination, mentioned in Section 13.3, and even it has been superseded
by the more modern version presented there, which uses only unidirectional anal
yses.

Among the most important data-flow analyses for program optimization are
those described below. In each case, we give a fuller characterization of the prob
lem and the equations for it when we describe the first optimization for which it is
useful.

Reaching Definitions
This determines which definitions of a variable (i.e., assignments to it) may reach
each use of the variable in a procedure. As we have seen, it is a forward problem
that uses a lattice of bit vectors with one bit corresponding to each definition of a
variable.

Available Expressions
This determines which expressions are available at each point in a procedure, in the
sense that on every path from the entry to the point there is an evaluation of the
expression, and none of the variables occurring in the expression are assigned values
between the last such evaluation on a path and the point. Available expressions is a
forward problem that uses a lattice of bit vectors in which a bit is assigned to each
definition of an expression.

Live Variables
This determines for a given variable and a given point in a program whether there is
a use of the variable along some path from the point to the exit. This is a backward
problem that uses bit vectors in which each use of a variable is assigned a bit
position.

Upwards Exposed Uses
This determines what uses of variables at particular points are reached by partic
ular definitions. It is a backward problem that uses bit vectors with a bit position
corresponding to each use of a variable. It is the dual of reaching definitions in that
one connects definitions to uses, while the other connects uses to definitions. Note
that these are typically different, as shown by the example in Figure 8.5, where the
definition of x in B2 reaches the uses in B4 and B5, while the use in B5 is reached by
the definitions in B2 and B3.

230 Data-Flow Analysis

exit

FIG. 8.5 Example that differentiates reaching definitions from upwards exposed uses.

Copy-Propagation Analysis
This determines that on every path from a copy assignment, say x <- y, to a use
of variable x there are no assignments to y. This is a forward problem that uses bit
vectors in which each bit position represents a copy assignment.

Constant-Propagation Analysis
This determines that on every path from an assignment of a constant to a variable,
say, x <r- const, to a use of x the only assignments to x assign it the value const.
This is a forward flow problem. In its classic formulation, it uses vectors with one
position per variable and values drawn from the lattice ICP” discussed in Section 8.2,
or from a similar lattice with elements chosen from another appropriate data type. In
its sparse conditional form (see Section 12.6) it uses a similar lattice, but one lattice
value per definition and symbolic execution, rather than simple data-flow analysis.

Partial-Redundancy Analysis
This determines what computations are performed twice (or more times) on some
execution path without the operands being modified between the computations. As
originally formulated by Morel and Renvoise, it is a bidirectional flow problem that
uses bit vectors in which each position represents an expression computation. Their
formulation also determines redundant variable definitions and assignments. A more
recent formulation of the problem has shown that it can be performed as a series of
forward and backward data-flow computations.

The flow-analysis problems listed above are not the only ones encountered in
optimization, but they are among the most important.

There are many approaches to solving data-flow problems, including the follow
ing (see Section 8.16 for detailed source information):

1. Allen’s strongly connected region method;

2. KildalPs iterative algorithm (see Section 8.4);

Section 8.4 Iterative Data-Flow Analysis 231

3. Ullman’s T1-T2 analysis;

4. Kennedy’s node-listing algorithm;

5. Farrow, Kennedy, and Zucconi’s graph-grammar approach;

6. elimination methods, e.g., interval analysis (see Section 8.8);

7. Rosen’s high-level (syntax-directed) approach;

8. structural analysis (see Section 8.7); and

9. slotwise analysis (see Section 8.9).

Here we concentrate on three approaches: (1) the simple iterative approach, with
several strategies for determining the order of the iterations; (2) an elimination
or control-tree-based method using intervals; and (3) another control-tree-based
method using structural analysis. As we shall see, these methods present a range
of ease of implementation, speed and space requirements, and ease of incrementally
updating the data-flow information to avoid totally recomputing it. We then make
a few remarks about other approaches, such as the recently introduced slotwise
analysis.

8.4 Iterative Data-Flow Analysis
Iterative analysis is the method we used in the example in Section 8.1 to perform
reaching definitions analysis. We present it first because it is the easiest method
to implement and, as a result, the one most frequently used. It is also of primary
importance because the control-tree-based methods discussed in Section 8.6 need to
be able to do iterative analysis (or node splitting or data-flow analysis over a lattice
of functions) on improper (or irreducible) regions of code.

We first present an iterative implementation of forward analysis. Methods for
backward and bidirectional problems are easy generalizations.

We assume that we are given a flowgraph G = (N, E) with entry and e x it
blocks in N and a lattice L and desire to compute in(B), out(B) e L for each B e N ,
where in{B) represents the data-flow information on entry to B and out(B) repre
sents the data-flow information on exit from £, given by the data-flow equations

Ilnit for B = entry
| | out(P) otherwise

PePred(B)

out(B) = Ffi(m(B))

where Init represents the appropriate initial value for the data-flow information on
entry to the procedure, Fb () represents the transformation of the data-flow infor
mation corresponding to executing block £ , and n models the effect of combining
the data-flow information on the edges entering a block. Of course, this can also be
expressed with just in{) functions as

232 Data-Flow Analysis

procedure Worklist_Iterate(N,entry,F,dfin,Init)
N: in set of Node
entry: in Node
F: in Node x L —> L
dfin: out Node — > L
Init: in L

begin
B, P: Node
Worklist: set of Node
effect, totaleffect: L
dfin(entry) := Init

* Worklist := N - {entry}
for each B e N do

dfin(B) := t
od
repeat

* B := ♦Worklist
Worklist -= {B}
totaleffect := t
for each P e Pred(B) do

effect := F(P,dfin(P))
totaleffect n= effect

od
if dfin(B) * totaleffect then

dfin(B) := totaleffect
* Worklist u= Succ(B)

fi
until Worklist = 0

end I I Worklist.Iterate
FIG. 8.6 Worklist algorithm for iterative data-flow analysis (statements that manage the worklist

are marked with asterisks).

I Init for B = en try
|~~] Fp(in(P)) otherwise

PePred(B)

If u models the effect of combining flow information, it is used in place of n in the
algorithm. The value of Init is usually T or JL.

The algorithm W o rk lis t_ Ite ra te () , given in Figure 8.6, uses just in() func
tions; the reader can easily modify it to use both in()s and out{)s. The strategy is
to iterate application of the defining equations given above, maintaining a worklist
of blocks whose predecessors’ in() values have changed on the last iteration, un
til the worklist is empty; initially the worklist contains all blocks in the flowgraph
except en try , since its information will never change. Since the effect of combin
ing information from edges entering a node is being modeled by n, the appropriate
initialization for t o t a l e f f e c t is T . The function Fb (x) is represented by F (B ,x).

The computational efficiency of this algorithm depends on several things: the lat
tice L, the flow functions Fb (), and how we manage the worklist. While the lattice

Section 8.4 Iterative Data-Flow Analysis 233

TABLE 8.2 Flow functions for the flowgraph in Figure 7.4.

Pentry = id
Eb i ((* 1 *2 *3 *4 *5 *6 *7 *8 >) = (11 l x 4X500x8>

PB2 = id
P B 3 ((x Ix 2X3X4X5X 6X 7X $)) = (* 1* 2* 3 1 * 5* 6* 7 0)

Fb4 = id
PB5 = id
EB6((*1*2*3*4*5*6*7*8)) = <*l0001 111)

and flow functions are determined by the data-flow problem we are solving, the man
agement of the worklist is independent of it. Note that managing the worklist cor
responds to how we implement the statements marked with asterisks in Figure 8.6.
The easiest implementation would use a stack or queue for the worklist, without re
gard to how the blocks are related to each other by the flowgraph structure. On the
other hand, if we process all predecessors of a block before processing it, then we
can expect to have the maximal effect on the information for that block each time we
encounter it. This can be achieved by beginning with an ordering we encountered in
the preceding chapter, namely, reverse postorder, and continuing with a queue. Since
in postorder a node is not visited until all its depth-first spanning-tree successors
have been visited, in reverse postorder it is visited before any of its successors have
been. If A is the maximal number of back edges on any acyclic path in a flowgraph
G, then A + 2 passes through the repeat loop are sufficient if we use reverse pos
torder.4 Note that it is possible to construct flowgraphs with A on the order of |N|,
but that this is very rare in practice. In almost all cases A < 3, and frequently A = 1.

As an example of the iterative forward algorithm, we repeat the example we
did informally in Section 8.1. The flow functions for the individual blocks are given
in Table 8.2, where id represents the identity function. The initial value of dfin(B)
for all blocks is (00000000). The path-combining operator is u or bitwise logical or
on the bit vectors. The initial worklist is {B l, B2, B3, B4, B5, B6, e x i t } , in reverse
postorder.

Entering the repeat loop, the initial value of B is Bl, with the worklist becoming
{B2, B3, B4, B5, B6, e x it } . B l’s only predecessor is P = entry, and the result of
computing e f fe c t and t o t a le f f e c t is (00000000), unchanged from the initial
value of df in (B l) , so B l’s successors are not put into the worklist.

Next, we get B = B2 and the worklist becomes {B3, B4, B5, B6, e x it } . The only
predecessor of B2 is P = Bl, and the result of computing e f fe c t and t o t a le f f e c t is
(11100000), which becomes the new value of df in(B2), and e x it is added to the
worklist to produce {B3, B4, B5, B6, ex it}.

Next, we get B = B3, and the worklist becomes {B4, B5, B6, ex it} . B3 has one
predecessor, namely, Bl, and the result of computing e f fe c t and t o t a le f f e c t is

4. If we keep track of the number of blocks whose data-flow information changes in each pass,
instead of simply whether there have been any changes, this bound can be reduced to A + 1.

234 Data-Flow Analysis

(11100000), which becomes the new value of dfin (B 3), and B4 is put onto the
worklist.

Then we get B = B4, and the worklist becomes {B5, B6, exit}. B4 has two
predecessors, B3 and B6, with B3 contributing (11110000) to effect, totaleffect,
and dfin(B4), and B6 contributing (00001111), so that the final result of this
iteration is dfin(B4) = (11111111) and the worklist becomes {B5, B6, exit}.

Next, B = B5, and the worklist becomes {B6, exit}. B5 has one predecessor, B4,
which contributes (11111111) to effect, totaleffect, and df in(B5), and exit is
added to the worklist.

Next, B = B6, and the worklist becomes { e x i t } . B6’s one predecessor, B4,
contributes (11111111) to df in(B6), and B4 is put back onto the worklist.

Now e x it is removed from the worklist, resulting in {B4}, and its two prede
cessors, B2 and B5, result in df in (e x it) = (11111111).

The reader can check that the body of the repeat loop is executed twice more
for each element of the worklist, but that no further changes result in the df in ()
values computed in the last iteration. One can also check that the results are identical
to those computed in Section 8.1.

Converting the algorithm above to handle backward problems is trivial, once
we have properly posed a backward problem. We can either choose to associate the
data-flow information for a backward problem with the entry to each block or with
its exit. To take advantage of the duality between forward and backward problems,
we choose to associate it with the exit.

As for a forward analysis problem, we assume that we are given a flowgraph
G = (N, E) with entry and e x it blocks in N and that we desire to compute
out(B) e L for each B e N where out(B) represents the data-flow information on
exit from B, given by the data-flow equations

out(B) =
Init for B = e x it

| | in(P) otherwise
PeSucc(B)

in(B) = FsioutiB))

where Init represents the appropriate initial value for the data-flow information
on exit from the procedure, F#() represents the transformation of the data-flow
information corresponding to executing block B in reverse, and n models the effect
of combining the data-flow information on the edges exiting a block. As for forward-
flow problems, they can also be expressed with just out() functions as

out(B) =
Init for B = e x it

[""] Fp(out(P)) otherwise
PeSucc(B)

If u models the effect of combining flow information, it is used in place of n in the
algorithm.

Section 8.5 Lattices of Flow Functions 235

Now the iterative algorithm for backward problems is identical to that given
for forward problems in Figure 8.6, with the appropriate substitutions: out() for
in(), e x it for entry, and Succ{) for Pred{). The most effective way to manage
the worklist is by initializing it in reverse preorder, and the computational efficiency
bound is the same as for the forward iterative algorithm.

8.5 Lattices o f Flow Functions
Just as the objects on which we perform a data-flow analysis are best viewed as
elements of a lattice, the set of flow functions we use in performing such an analysis
also forms a lattice with its meet and join induced by those of the underlying lattice.
As we shall see in Section 8.6, the induced lattice of monotone flow functions is very
important to formulating the control-tree-based approaches to data-flow analysis.

In particular, let L be a given lattice and let LF denote the set of all monotone
functions from L to L, i.e.,

f e Lf if and only if Vx, y e L x ^ y implies f(x) c f(y)

Then the induced pointwise meet operation on LF given by

8 € LF, Vx € L (f n g)(x) = f{x) n g(x)

and the corresponding induced join and order functions are all easily checked to be
well defined, establishing that LF is indeed a lattice. The bottom and top elements of
Lf are J_F and T F, defined by

Vx e L l F(x) = 1 and T F(x) = T

To provide the operations necessary to do control-tree-based data-flow analysis,
we need to define one more function in and two more operations on LF. The
additional function is simply the identity function id, defined by id(x) = x, Vx € L.
The two operations are composition and Kleene (or iterative) closure. For any two
functions f , g e LF, the composition of f and g, written f o g, is defined by

(f 0 g)(x) = f(g(x))

It is easily shown that LF is closed under composition. Also, for any f € LF, we define
f n by

f ° = id and for w > 1, f n = f o f n~ l

The Kleene closure of f e LF, written f * , is defined by

Vx e L f*(x) = lim (id n f) n(x)
«-> 00

Also, as is usual, we define f + = f o f* . To show that LF is closed under Kleene
closure, we rely on the fact that our lattices all have finite effective heights under
all the functions we use. This implies that if we compute for any Xo € L the sequence

X/+i = (id n f)(xi)

there is an i such that x* = xz+\ and so, clearly, f*(xo) = xz.

236 Data-Flow Analysis

It is easy to show that if L is a lattice of bit vectors, say BV”, then for every
function f : BV" -> BV”, f is strongly distributive over meet and join, i.e.,

V*, y, f ix u y) = f{x) u f(y) and f(x n y) = f(x) n f(y)

Also, as long as the various bit positions change independently of each other, as is
the case for all the bit-vector analyses we consider, BV” has effective height 1, i.e.,
f o /* = /*, so f * = id n f. As we shall see in the next section, this makes control-tree-
based data-flow analyses that are representable by bit vectors very efficient.

8.6 Control-Tree-Based Data-Flow Analysis
The algorithms for control-tree-based data-flow analysis, namely, interval analysis
and structural analysis, are very similar in that they are both based on the use of
the control trees discussed in Sections 7.6 and 7.7. They are significantly harder to
implement than iterative methods—requiring node splitting, iteration, or solving of a
data-flow problem on the lattice of monotone functions to handle improper regions,
if they occur—but they have the advantage of being more easily adapted to a form
that allows for incremental updating of the data-flow information as a program is
changed by optimizing transformations.

As a whole, control-tree-based methods are known, for historical reasons, as
elimination methods. They involve making two passes over the control tree for
a procedure, which is assumed to have been built by either structural or interval
control-flow analysis, as mentioned above. In each pass, they visit each node in
the control tree: in the first pass, performed bottom up, i.e., starting from the basic
blocks, they construct a flow function that represents the effect of executing the part
of the procedure that is represented by that portion of the control tree; in the second
pass, performed top down, i.e., starting from the abstract node representing the
whole procedure and from initial information corresponding to either the entry (for
forward problems) or the exit (for backward problems), they construct and evaluate
data-flow equations that propagate the data-flow information into and through the
region represented by each control-tree node, using the flow functions constructed
in the first pass.

8.7 Structural Analysis
Structural analysis uses the detailed information about control structures developed
by structural control-flow analysis to produce corresponding data-flow equations
that represent the data-flow effects of the control structures. We begin with it be
cause it is simpler to describe and understand, and because, once we have all the
mechanisms we need for it, those needed for interval analysis are simply a subset of
them.

8.7.1 Structural Analysis: Forward Problems
To begin with, we assume that we are performing a forward analysis—as we shall
see, backward analyses are a bit trickier since the control-flow constructs each have

Section 8.7 Structural Analysis 237

i
if-then

^if-then

FIG. 8.7 Flow functions for structural analysis of an if-then construct.

a single entry, but may have multiple exits. Also, we assume, as for our iterative
algorithm, that the effect of combining data-flow information where several control-
flow paths merge is modeled by n.

In performing a structural data-flow analysis, most of the abstract graphs we
encounter in the first pass are simple regions of the types shown schematically in
Figures 7.35 and 7.36. The flow function Fg for a basic block is the same as it is for
iterative analysis—it depends only on the problem being solved and on the contents
of the basic block.

Now, assume that we have an if- th e n construct, as shown in Figure 8.7, with
the flow functions for each construct given on the edges leaving it. Then, the flow
function F^f-then constructed for it in the first pass is related to the flow functions
for the components of the if- th e n as follows:

^if-then = (fthen 0 fif /y) n F i f /N
i.e., the effect of executing the if- th e n construct is the result of combining (by the
path-combining operator n) the effect of executing the i f part and exiting it on the
Y branch followed by executing the then part, with the effect of executing the i f
part and exiting it on the N branch.

Note that we can choose either to distinguish the Y and N exits from the if and
to have distinct flow functions Fi f /y and ^ if/N f ° r them, or not. Had we chosen
not to distinguish them, as in our presentation of iterative analysis above, we would
simply have a single flow function for the if, namely, F^f, rather than F±±/y and
Fff/N , i.e., we would have

^if-then = (^then ° ̂ if) n ̂ if = (^then n o F^f
Either approach is legitimate—the former may yield more precise information than
the latter, in case the branches of the i f discriminate among data-flow values of
interest to us, as for example in constant propagation or bounds-checking analysis.
In our examples below, however, we use the latter approach, as is customary.

The data-flow equations constructed in the second pass tell us how, given data
flow information entering the if- th e n construct, to propagate it to the entry of each
of the substructures. They are relatively transparent:

m(if) = m(if-then)
m(then) = F ± f/ y(*«(if))

238 Data-Flow Analysis

if-then-else
^if-then-else

FIG. 8.8 Flow functions for structural analysis of an if-th en -else construct.

or, if we choose not to distinguish exits:

m (if) = w (if-then)

m(then) = F^f (m (if))

The first of these equations can be read as saying that on entry to the i f part, we
have the same data-flow information that we have on entry to the if- th en construct,
and the second as saying that on entry to the then part, we have the result of
transforming the information on entry to the i f by the data-flow effect of the i f part,
exiting it on the Y branch. The second pair is identical, except for not distinguishing
the exits from the i f part.

Next, we consider how to extend this to an if- th e n -e lse construct, and then
to a while loop. The form of an if- th e n -e lse is shown in Figure 8.8 and the
functions are an easy generalization of those for the if- th e n case. The flow function
^ if- th e n -e lse constructed in the first pass is related to the flow functions for the
components as follows:

^ if- th e n -e lse = (^then 0 ^ i f /y) n (^e lse ° ^ i f / n)

and the propagation functions constructed in the second pass are

m (if) = m (if-th en -e lse)

m(then) = F ^ f^ {m {± f))

m (else) = F±f / N(m (if))

For a while loop, we have the form shown in Figure 8.9. In the bottom-up pass,
the flow function that expresses the result of iterating the loop once and coming back
to its entry is Fbody 0 ^while/Y’ so rcsu^ of doing this an arbitrary number of
times is given by this function’s Kleene closure

^loop = (^body ° ̂ while/y)
and the result of executing the entire while loop is given by executing the while and
body blocks repetitively, followed by executing the while block and exiting it on the
N branch, i.e.,

^while-loop = ̂ while/N ° ̂ loop

Section 8.7 Structural Analysis 239

while-loop
F while-loop

FIG. 8.9 Flow functions for structural analysis of a while loop.

Note that in the most common case, namely, a bit-vector problem,

(^body 0 ^while/y)*

is simply

id n (Fbody o Fwhile/Y)
but that the equations above are valid regardless of the forward-flow problem being
solved. In the top-down pass, we have for the while loop

m(while) = Fi00p(m(while-loop))
m(body) = Fwhile/Y(m(while))

since the while part can be reached either from outside the loop or by iterating it,
and the body can be reached only by entering the loop, executing the while and body
blocks some number of times (possibly zero), and exiting the while block through
the Y branch.

Again, if we don’t distinguish between the exits, we have

^loop = (^body ° ^while)*

and the result of executing the entire while loop is given by executing the while and
body blocks repetitively, followed by executing the while block and exiting it on the
N branch, i.e.,

^while-loop = ̂ while ° ̂ loop
= ̂ while ° (^body ° ̂ while)

m(while) = Fi00p(m(while-loop))
m(body) = Fwhile(m(while))
It should be clear from the if- th e n and if- th e n -e lse cases how to generalize

the construction of the equations to a general acyclic region A. In particular, suppose
that the abstract nodes making up the acyclic region are BO, B l , . . . , B«, with BO as
the entry node of the region, and with each Bi having exits B/ / 1 , . . . , Bi/ei (of course,
in most cases et = 1, and only very rarely is it larger than 2). Associate a forward-
flow function Bsi/e with each Bi/e from it, in the usual way, and let P(A, Bi^/e^)

240 Data-Flow Analysis

denote the set of all possible paths from the entry of A to some abstract node’s exit
Bifr/ek in F ° r the bottom-up pass, given the path

p = BO/e0, B h /eu . . . , Bik/ek € P(A, Bik/ek)

the composite flow function for the path is

Fp = pBik/ek ° * * * ° Fsi^/ei ° PB/'oM)
and the flow function corresponding to all possible paths from the entry point of A
to node exit Bi^/e^ is

F(A,Bik/ek) = F I FP
peP(A,Bik/ek)

For the top-down pass, for the entry to Bi, for i ± 0, let Pp(A, Bi) denote the set
of all P(A, B j/e) such that Bj e Pred(Bi) and exit Bj/e leads to Bi. Then

I ini A) for i = 0
P I F(A,Bj/e)(in(A)) otherwise

P(A,Bj/e)ePp(A,Bi)

For a general cyclic but proper region C, there is a single back edge leading from
some block Be to the entry block BO. If we remove the back edge, the result is an
acyclic region. Proceeding as above, we construct flow functions that correspond to
following all possible paths from C ’s entry to Bi^/e^ in the acyclic region that results
from removing the back edge. This gives us a collection of flow functions F(c,Bik/ek)
and, in particular, if Bc/e is the tail of the back edge, a function

Fiter = F(C,Bc/e)
that represents the result of performing one iteration of the body of the region. Thus,

Fc = F*ter

represents the overall data-flow effect of executing the region and returning to its
entry, and

F [c,Bik/ek) = F (C,Bik/ek) ° F C

represents the effect of executing the region and exiting it from Bi^/e^. Correspond
ingly, for the top-down pass,

in(Bi) =
in(C) for / = 0

I” ! ^ B j / e ^ F O)) otherwise
P(C,Bj/e)ePp(C,Bi)

For an improper region R, in the bottom-up pass we construct a set of equations
similar to those for the general acyclic region above that represent the data-flow
effect of a path from the region’s entry to any point within it. In the top-down
pass, we use the functions constructed in the bottom-up pass to propagate the data
flow information to each point within the region in the usual way, starting with the

Section 8.7 Structural Analysis 241

FIG. 8.10 An improper region.

information we have at its entry. The major difference between these equations and
those for the acyclic case is that the top-down system for the improper region R is
recursive, since the region contains multiple cycles. Given the system of equations,
we can proceed in any of three ways, as follows:

1. We can use node splitting, which can turn improper regions into proper ones with
(possibly many) more nodes.

2. We can solve the recursive system of equations iteratively, using as initial data
whatever the equations for the surrounding constructs yield us at the entry to R,
each time we solve the data-flow problem.

3. We can view the system of equations as itself a forward data-flow problem defined,
not over L, but over LF (the lattice of monotone functions from L to L that we
discussed in Section 8.5), and solve it, producing flow functions that correspond to
the paths within the region; this requires that the underlying lattice L be finite, which
is sufficient for most of the problems we consider, including all the bit-vector ones.

For example, consider the simple improper region in Figure 8.10, and suppose
that it reduces to the region called B la , as shown. Then the bottom-up equation
for ^B la is

^B la = ((f B3 0 f B2)+ ° f B l) n ((^B3 ° f B2)* ° ^B3 ° ^Bl)

since a trip through B la in the forward direction goes either through B1 followed by
one or more trips through either the pair made up of B2 followed by B3 or through
B1 followed by B3 followed by zero or more iterations of the pair B2 followed by B3.
For the top-down equations, one gets the recursive system

m(Bl) = m(Bla)

in(B2) = FBi(m (B l)) n FB3(m(B3))

m(B3) = FBi(m (B l)) n FB2(*>*(B2))

or we can solve the equations for in(B2) and m(B3) in the function lattice to produce

in(B2) = (((FB3 ° ^B2)* ° f B l) n ((^B3 ° ^B2)* o FB3 ° ^ B l))(/W(B1))

= ((Fb3 ° ^B2)* 0 n ^B3) ° FB1)(in(Bl))

242 Data-Flow Analysis

while

if-then-
else

entry

Bla

exit

block

block

entrya

FIG. 8.11 Structural control-flow analysis of our reaching definitions example.

and

m(B3) = (((Fb2 ° ^B3)* ° ^Bl) n ((^B2 ° ^B3)* ° ^B2 ° ^B l))(/W(B1))

= i(FB3 ° ^B2)* ° (id n f B2) o FB1)(m (Bl))

As an example of a forward structural data-flow analysis, we continue with our
reaching definitions instance. First, we must do the structural control-flow analysis
for it, as shown in Figure 8.11. The first equation we construct in the bottom-up pass
of the data-flow analysis is for the w hile loop, as follows (and since distinguishing
Y and N exits makes no difference in computing reaching definitions, we omit them):

^B4a = ^B4 ° (^B6 ° ^B4)* = ^B4 ° (id n (FB 6 ° ^B4))

The others are, for the block reduced to B3a:

FB3cl = FBb ° f B4a ° FB3

for the i f - t h e n - e ls e reduced to B la:

FBla. = (^B2 ° FBl) n (f B3a ° FBl)

Section 8.7 Structural Analysis 243

and for the block reduced to entrya:

Gentry a = F e x it ° ^Bla ° Gentry

As we shall see, the last equation is actually not used in the data-flow analysis.
In the top-down pass, we construct for the components of the entrya block the

equations

in (entry) = In it

in{ Bla) = Gentry (entry))

m (exit) = FB la (m(Bla))

for the if- th e n -e lse reduced to Bla:
m(Bl) = m(Bla)

m(B2) = m(B3a) = Fgi(m(Bla))

for the block reduced to B3a:
m(B3) = m(B3a)

m(B4a) = Fg3(m(B3a))

m(B5) = Fg4a (m(B4a))

and for the while loop reduced to B4a:

in{B4) = (FB6 o FB4)*(m(B4a)) = (id n (FBg o FB4))(m(B4a))

m(B6) = FB4(m(B4))

The initial value of m(entry) and the flow functions for the individual blocks
are identical to those in the iterative example above (see Table 8.2). Our first step in
solving the equations for the in() values by hand is to simplify the equations for the
compound flow functions, as follows:

f B4a = f B4 ° (f B6 ° f B4)*
= Fb 4 o (id n (FBg o Fb4))

= id o (id n (FBg o id))

= id n FBg

f B3a = f B5 ° f B4a ° f B3
= id o (id n FBg) o FB3

= (id n FBg) o FB3

= f B4a ° f B3

f Bla = (f B2 ° f Bl) n (f B3a ° f Bl)
= (id o FB1) n ((id n FBg) o FB3 o FB)̂

= FBi n ((id n FBg) o FB3 o FBi)

244 Data-Flow Analysis

TABLE 8.3 in() values computed by
structural analysis for our
reaching definitions example.

m(entry) = (00000000)
in(Bl) = (00000000)
in (B2) = (11100000)
m(B3) = (11100000)
in(B4) = (11111111)
m(B5) = (11111111)
in(B6) = (11111111)
m(exit) = (11111111)

We then compute the values of in() starting from in (entry) and using the available
values of the F#() functions, which results in the values shown in Table 8.3. The
reader can check that the in {) values for the individual basic blocks are identical to
those computed by the iterative approach (Section 8.1).

8.7.2 Structural Analysis: Backward Problems
As remarked at the beginning of the previous section, backward problems are some
what harder for structural analysis since the control-flow constructs we use are
guaranteed to each have a single entry, but not necessarily a single exit.

For constructs with a single exit, such as the if- th e n or if- th e n -e lse , we
can simply “ turn the equations around.” Given the if- th e n -e lse in Figure 8.12,
the equation constructed in the bottom-up pass for backward flow through the i f -
th en -else is

^if-then-else = (®if/Y ° ̂ then) n (®if /N ° ̂ else)

FIG. 8.12 Flow functions for backward structural analysis of an if- th e n -e lse construct.

Section 8.7 Structural Analysis 245

and the equations for the top-down pass are

o^(then) = out(±f-th en -else)

out(e lse) = ow £(if-then-else)

out(i f) = B-tYieniout(then)) n Bei s e {out{%lse))

For a general acyclic region A, suppose again that the abstract nodes making
up the acyclic region are BO, B I , . . . , Bn. Let BO be the entry node of the region,
and let each Bi have entries B/ / 1 , . . . , Bi/ej (of course, in most cases e* = 1 or 2,
and only rarely is it larger than 2). Associate a backward-flow function Bsi/e with
each Bi and entry e to it, and let P{Bi}z/e^ Bii/ej) denote the set of all possible
(forward) paths from some Bi^/e^ to Bif/e^ For the bottom-up pass, given some
path p e P{Bik/efo B ije i), the composite backward-flow function for the path is

Bp — o . . . o

Define Exits(A) to be the set of exit blocks of region A, i.e., Bi e Exits(A) if and
only if there exists Bj e Succ(Bi) such that Bj $ A. Then the backward-flow function
corresponding to all possible paths from Bi^/e^ to all possible exits from the region
A is

B(A,Bik/ek) “ P I B p
peP(Bik/eh Bii/ei)

BiieExits(A)

For the top-down pass, for each exit block Bj from A, we have data-flow information
out(Bj) associated with it. Let PS(A, Bi) denote the set of all P(Bj/e , Bk/f) such that
Bj e Succ(Bi) and Bk e Exits(A). Then

I out (A) if Bi e Exits(A)
I”] B(A,Bj/e)(out(Bk)) otherwise

P(Bj/e9B k/f)eP s(A,Bi)

For a general cyclic but proper region C, we combine the method above for an
acyclic region with that for forward problems for a cyclic proper region. Again, there
is a single back edge leading from some block Be to the entry block BO, and if we
remove the back edge, the result is an acyclic region. We construct backward-flow
functions that correspond to following all possible (backward) paths from all of C’s
exits to B i J in the acyclic region that results from removing the back edge. This
gives us a collection of flow functions B(c,Bik/ek) and, in particular, if Bc/e is the head
of the back edge, a function

Biter — B(C,Bc/e)

that represents the result of performing one iteration of the body of the region. Thus,

Be = B*ter

246 Data-Flow Analysis

represents the overall backward data-flow effect of executing the region and return
ing to its entry, and

B '(C,Bik/ek) “ B (C ,B ik/ek) ° # C

represents the backward data-flow effect of executing the region backward, starting
from its exits to some node Bi£ within it. Correspondingly, for the top-down pass,
for any exit block from Bj of C, we have data-flow information out(Bj) associated
with it, and for each node Bi within the region, as follows:

I out(C) if Bi e Exits(C)n B(c9Bj/e)(out(Bk)) otherwise

P(Bj/e ,Bk/f)ePs(C9Bi)

where PS(C, Bi) and P(Bj/e , Bk/f) are as defined for an acyclic region above.
The handling of improper regions for backward problems is analogous to their

handling for forward problems. We construct the corresponding recursive set of
data-flow equations and either use node splitting, solve them iteratively, or solve
them as a data-flow problem over LF. The one surprise in this is that the data
flow problem over the function lattice turns out to be a forward one, rather than
a backward one.

As an example of a backward problem, consider the region A consisting of
BO through B5 in Figure 8.13. Let p be the path BO/i, Bl/l, B3/l, B4/i. Then Bp is
given by

BP = b BO/i ° BBl/l ° b B3/i ° b B4/i

FIG. 8.13 An acyclic region A for backward structural analysis.

Section 8.7 Structural Analysis 247

The paths from BO/l to both exits from A are
p i = BO/l, Bl/l, B3/l, B4/l
p2 = BO/l, Bl/l, B3/2, B5/1
p3 = BO/2, B2/l, B3/l, B4/l
p4 = BO/2, B2/1, B3/2, B5/1
p5 = BO/2, B2/2, B5/1

and the backward-flow function from all the exits of A to BO/l is
£(A,BO/i) = Bp\ n Bpi n Bp3 n BP4 n Bp$

= B B0/i o B b1/1 O B B3/1 O B B4/1

n B B0/1 ° B B1/1 ° B B3/2 ° B B 5 /\

n B B 0/2 ° B B2/1 ° B B3/1 ° B B4/1

n B B0/2 ° B B2/1 ° B B3/2 ° B B5/1

n BB0/2o BB2/2o BB5/\

and the value of out(BO) is
ô (BO) = Bpi(out(B4)) n Bp2 (out(BS)) n Bp^(out(B4)) n Bp4 (out(Bb))

n Bps(out(B5))
= b B0/1 (BB1/1 (BB3/1 (̂ B4/l (o«f(B4)))))

n ^ B 0 / l(^ B l/ l (^ B 3 /2 (^ B 5 / l(°^ (B5)))))

n BB0/2(BB2/1 (BB3/l(BB4/l (om (̂B4)))))
n B B0/2(B B 2 /l(B B3/2(B B 5 /l(o^ (B5)))))

n BB0/2(BB2/2(BB 5 /l(°^ (B5))))

8.7.3 Representing Structural Analysis Equations
The equations used in structural analysis are of two kinds: (1) those for the sim
ple forms, such as an if-then-else or while loop, which can be represented by
code that implements them directly; and (2) those for the complex forms, such as
improper regions.

An example of code for a simple structure is given in Figure 8.14. The type
Component is intended to contain an identifier for each of the possible components
of a simple structure; here we have restricted it to the components of an if-then-
else. The type FlowFcn represents functions from variables to lattice values. The
data-flow analysis assigns such a function to the entry point of each region. The
argument r of ComputeF.if _then_else () holds a region number; each component
of a structure has one. The function Region_No: integer x Component -> integer
returns the region number of the given component of the given region.

248 Data-Flow Analysis

Component - enum {if,then,else}
FlowFcn = Var — > Lattice

procedure ComputeF_if_then_else(x,r) returns FlowFcn
x: in FlowFcn
r: in integer

begin
y: FlowFcn
y := ComputeF_if(x,Region_No(r,if))
return ComputeF_then(y,Region_No(r,then))

n ComputeF_else(y,Region_No(r,else))
end I I ComputeF_if_then_else

procedure ComputeIn_then(x,r) returns FlowFcn
x: in FlowFcn
r: in integer

begin
return ComputeF_if(ComputeIn_if(x,r),r)

end I I ComputeIn_then
FIG. 8.14 Code representation of some of the structural data-flow equations for an if- th e n -e lse .

FIG. 8.15 Graphic representation of some of the structural data-flow equations for the region Bla
in Figure 8.10.

The complex forms can be represented in a data-flow analyzer in a variety of
ways. One relatively simple, time- and space-efficient way is to use graphs with two
types of nodes, one type for in(B) values and Fg values (including a special one for
id), and the other type representing the operations composition “ o” , meet “ n” , join
“ u” , Kleene closure non-empty closure “ + ” , and function application “ () ” .
Note that a function-application node represents the application of its left subgraph
to its right, and a composition node represents the composition of its left subgraph
with its right. Figure 8.15 shows the graphic representation of some of the equations

Section 8.8 Interval Analysis 249

for the improper region Bla in Figure 8.10. This representation can be used by a
simple interpreter to apply the equations analyzing the region they correspond to.

Note that the fact that part of a flowgraph requires the interpreted representa
tion does not mean that all of it does. If, for example, we have a simple loop whose
body is an improper region that contains an i f - t h e n - e ls e construct, then we can
execute code for the loop and the i f - t h e n - e ls e and use the interpreter for the im
proper region.

.8 Interval Analysis
Now that we have built all the mechanisms to do structural data-flow analysis,
performing interval analysis is trivial: it is identical to structural analysis, except that
only three kinds of regions appear, namely, general acyclic, proper, and improper
ones.

As an example, consider the original flowgraph from Figure 7.4, which we
reproduce in Figure 8.16, along with its reduction to intervals. The first step turns
the loop comprising B4 and B6 into the node B4a, and the second step reduces the
resulting acyclic structure to the single node entrya. The corresponding forward
data-flow functions are as follows:

fB4a = fB4 ° (^B6 ° ̂ 34)*

= Fb 4 o {id n (fB 0 o FB4))

= id o {id n (FBg o id))

= id n FBg

^entrya = ̂ exit ° (FB2 n (FB5 ° fB4a ° FB3)) ° fBl ° Gentry

acyclic entrya

FIG. 8.16 Interval control-flow analysis of our reaching definitions example.

250 Data-Flow Analysis

TABLE 8.4 in() values computed by
interval analysis for our
reaching definitions example.
in (entry) = (00000000)
m(Bl) = (00000000)
in(B2) = (11100000)
m(B3) = (11100000)
m(B4) = (11111111)
in(Bb) = (11111111)
in(B6) = (11111111)
m(exit) = (11111111)

and the equations for in () are as follows:
m(entry) = m(entrya) = Init

in(Bl) = F (in(entry))

in(B2) = F%i(in(Bl))

in(B3) = F B1(m(Bl))
m(B4a) = FB3(m(B3))
m(B4) = m(B4a) n (fBg o FB4)*(m(B4a))

= m(B4a) n (id n (fBg o id))(in(B4a))
= m(B4a) n m(B4a) n FBg(m(B4a))
= m(B4a) n FBg(w(B4a))

m(B6) = FB4(w(B4))
= m(B4)

m(B5) = FB4a(w(B4a))
= (FB4 o (id n (fBg o FB4)))(m(B4a))
= id(in(B4a)) n *d(FBg(/<i(m(B4a))))
= in(B4a) n FBg(m(B4a))

m(exit) = FB2(m(B2)) n FB5(w(B5))
The resulting in() values, shown in Table 8.4, are identical to those computed by
the iterative and structural analyses.

8.9 Other Approaches
Dhamdhere, Rosen, and Zadeck describe a new approach to data-flow analysis
that they call slotwise analysis [DhaR92]. Instead of developing long bit vectors

Section 8.10 Du-Chains, Ud-Chains, and Webs 251

to represent a data-flow characteristic of variables or some other type of program
construct and operating on the bit vectors by one of the methods described above,
they, in effect, consider each slot of all the bit vectors separately. That is, first they
consider what happens to the first slot in all the bit vectors throughout the procedure,
then the second, and so on. For some data-flow problems, this approach is useless,
since they depend on combining information from different slots in two or more bit
vectors to compute the value of a slot in another bit vector. But for many problems,
such as reaching definitions and available expressions, each slot at a particular
location in a procedure depends only on that slot at other locations. Further, for
the available expressions problem, for example, the information in most slots is the
default value 0 (= unavailable) in most places. This combination can make a slotwise
approach very attractive.

In their paper, the authors show how to apply slotwise analysis to partial-
redundancy analysis, an analysis used in several important commercial compilers.

8.10 Du-Chains, Ud-Chains, and Webs
Du- and ud-chains are a sparse representation of data-flow information about vari
ables. A du-cbain for a variable connects a definition of that variable to all the
uses it may flow to, while a ud-chain connects a use to all the definitions that may
flow to it. That the two are different may be seen by inspecting the example in Fig
ure 8.5. The du-chain for the x defined in block B2 includes the uses in both blocks
B4 and B5, while that for the x defined in block B3 includes only the use in block
B5. The ud-chain for the use of x in block B4 includes only the definition in B2,
while the ud-chain for the use of x in block B5 includes the definitions in both B2
and B3.

Abstractly a du- or ud-chain is a function from a variable and a basic-block-
position pair to sets of basic-block-position pairs, one for each use or definition,
respectively. Concretely, they are generally represented by linked lists. They can be
constructed by solving the reaching definitions data-flow problem for a procedure
and then using the resulting information to build the linked lists. Once the lists have
been constructed, the reaching definitions bit vectors can be deallocated, since the
chains represent the same information. For our purposes, the du- and ud-chains for
a procedure are represented by functions of the i c a n type UdDuChain, where

UdDu = integer x integer
UdDuChain: (Symbol x UdDu) -> set of UdDu

A web for a variable is the maximal union of intersecting du-chains for the
variable. Thus, the web for x in Figure 8.5 includes both definitions and both uses,
while in Figure 8.17, there are two webs for x, one consisting of the definitions in B2
and B3 and the uses in B4 and B5 and the other containing the definition of x in B5
and its use in B6. Webs are particularly useful in global register allocation by graph
coloring (see Chapter 16)—they are the units that are candidates for allocation to
registers.

252 Data-Flow Analysis

{«x, <B2,1» ,{<B4,1>, <B5,1»>»
« x ,<B3,1»,{<B5,1»»
{«y,<B4,l»,0»
{«z,<B5,l»,0»

(b) {«x,<B5,2»,{<B6,l»»

<B5,2>

<B6,1>

{«z,<B6,l»,0»

<B2,1> <B3,1>

<B4,1> <BS,1>

FIG. 8.17 (a) Example for construction of webs and (b) the webs.

Note that one effect of constructing webs is to separate uses of a variable with a
name like i that may be used over and over again in a procedure as, say, a loop index,
but whose uses are disjoint from each other. This can significantly improve register
allocation by reducing the range over which a variable may require a register and can
improve the effectiveness of other optimizations as well. In particular, optimizations
that apply to a single variable or that apply to a limited range of program text, such
as strength reduction applied to induction variables, may benefit from this.

8.11 Static Single-Assignment (SSA) Form
Static single-assignment form is a relatively new intermediate representation that
effectively separates the values operated on in a program from the locations they
are stored in, making possible more effective versions of several optimizations.

A procedure is in static single-assignment fSSAj form if every variable assigned
a value in it occurs as the target of only one assignment. In SSA form du-chains are
explicit in the representation of a procedure: a use of a variable may use the value
produced by a particular definition if and only if the definition and use have exactly
the same name for the variable in the SSA form of the procedure. This simplifies
and makes more effective several kinds of optimizing transformations, including
constant propagation, value numbering, invariant code motion and removal, strength
reduction, and partial-redundancy elimination. Thus, it is valuable to be able to
translate a given representation of a procedure into SSA form, to operate on it and,
when appropriate, to translate it back into the original form.

In translating to SSA form, the standard mechanism is to subscript each of the
variables and to use so-called ^-functions at join points, such as the entry to B5 in

Section 8.11 Static Single-Assignment (SSA) Form 253

FIG. 8.18 Standard translation of the example in Figure 8.17 into SSA form.

Figure 8.18, to sort out the multiple assignments to a variable. Each 0 -function has
as many argument positions as there are versions of the variable coming together
at that point, and each argument position corresponds to a particular control-flow
predecessor of the point. Thus, the standard SSA-form representation of our example
in Figure 8.17 is as shown in Figure 8.18. The variable x has been split into four
variables x j, X2, X3, and X4, and z has been split into z j, Z2, and Z3, each of which is
assigned to only once.

The translation process into SSA form first figures out at what join points to
insert ^-functions, then inserts trivial 0-functions (i.e., 0-functions of the form
0 (x, x , . . . , x)) with the number of argument positions equal to the number of
control-flow predecessors of the join point that some definition of the variable
reaches, and then renames definitions and uses of variables (conventionally by sub
scripting them) to establish the static single-assignment property. Once we have
finished doing whatever we translated to SSA form for, we need to eliminate the
0-functions, since they are only a conceptual tool, and are not computationally
effective—i.e., when we come to a join point with a 0-function while executing a
procedure, we have no way to determine which branch we came to it by and hence
which value to use.5

Translating a procedure to minimal SSA form, i.e., an SSA form with a minimal
number of 0-functions, can be done by using what are known as dominance fron
tiers. For a flowgraph node x, the dominance frontier of x, written DE(x), is the set

5. An extension of SSA form called gated single-assignm ent form includes in each 0-function a
selector that indicates which position to select according to the path taken to reach a join point.

254 Data-Flow Analysis

of all nodes y in the flowgraph such that x dominates an immediate predecessor of y
but does not strictly dominate y, i.e.,

DF(x) = [y | (3z € Pred(y) such that x dom z) and x \sdom y]

Computing DF(x) directly for all x would be quadratic in the number of nodes in the
flowgraph. An algorithm that is linear results from breaking it into the computation
of two intermediate components, DF/0CJ/(x) and DFup(x, z), as follows:

DFfocali*) = {yeSucc(x) | idom (y)^x)

DFup(x, z) = (y € DF(z) | idom(z) = x & idom(y) ± x]

and computing DF(x) as

DF(x) = DFlocai(x) U U DFup(x,z)
z e N (idom(z) = x)

To compute the dominance frontier for a given flowgraph, we turn the above
equations into the code shown in Figure 8.19. The function value IDom(x) is the set
of nodes that x immediately dominates (i.e., idom(x) = y if and only if x e IDom(y)),
and DF(x), on completion, contains the dominance frontier of x. The function
Post .Order (N ,IDom) returns a sequence of nodes that is a postorder traversal
of the dominator tree represented by N and IDom .

Now, we define for a set of flowgraph nodes S, the dominance frontier of S as

DF(S) = 1 J DF(x)
xeS

and the iterated dominance frontier D F+ () as

D F+(S) = lim DF‘(S)
i->oo

where D F1(S) = DF(S) and DFl+1(S) = DF(S U DFZ(S)). If S is the set of nodes
that assign to variable x, plus the entry node, then D F+ (S) is exactly the set of nodes
that need ^-functions for x.

To compute the iterated dominance frontier for a flowgraph, we adapt the
equations given above, as shown in Figure 8.20. The value of DF_Plus(S) is the
iterated dominance frontier of the set of nodes S, given that we have precomputed
DF(x) for all nodes x in the flowgraph. This implementation of computing DF+ (S)
has a time bound quadratic in the size of the procedure in the worst case, but is
usually linear in practice.

As an example of translating to minimal SSA form, consider the flowgraph in
Figure 8.21. The dominator tree for the flowgraph is shown in Figure 8.22. Using

Section 8.11 Static Single-Assignment (SSA) Form 2 5 5

IDom, Succ, Pred: Node — > set of Node

procedure Dom_Front(N,E,r) returns Node — > set of Node
N: in set of Node
E: in set of (Node x Node)
r:

begin
in Node

y> z: Node
P: sequence of Node
i: integer
DF: Node — > set of Node
Domin.Fast(N,r,IDom)
P := Post_0rder(N,IDom)
for i := 1 to IPI do

DF(Pli) := 0
I| compute local component
for each y e Succ(Pli) do

if y £ IDom(Pli) then
DF(Pli) u= {y}

fi
od
I| add on up component
for each z e IDom(Pli) do

for each y e DF(z) do
if y £ IDom(Pli) then

DF(Pli) u= {y}
fi

od
od

od
return DF

end I| Dom_Front
FIG. 8.19 Code to compute the dominance frontier of a flowgraph.

the iterative characterization o f dominance frontiers given above, we com pute for
variable k:

DF1 ({entry, Bl, B3}) = {B2}
DF2({entry,Bl,B3}) = DF({entry, Bl, B2, B3}) = {B2}

and for i:

DF1 ({entry, Bl, B3, B6}) = {B2, exit}
DF2({entry, Bl, B3, B6}) = DF({entry, Bl, B2, B3, B6, exit})

= {B2,exit}

256 Data-Flow Analysis

procedure DF_Plus(S) returns set of Node
S: in set of Node

begin
D, DFP: set of Node
change := true: boolean
DFP := DF_Set(S)
repeat

change := false
D := DF_Set(S u DFP)
if D * DFP then

DFP := D
change := true

fi
until !change
return DFP

end I I DF.Plus

procedure DF_Set(S) returns set of Node
S: in set of Node

begin
x: Node
D := 0: set of Node
for each x e S do

D u= DF(x)
od
return D

end I| DF_Set
FIG. 8.20 Code to compute the iterated dominance frontier of a flowgraph.

FIG* 8.21 Example flowgraph to be translated to minimal SSA form.

Section 8.11 Static Single-Assignment (SSA) Form 257

entry

B1

B2

B5 B6 exit
FIG. 8.22 Dominator tree for the flowgraph in Figure 8.21.

and for j (as for k):

D F1 ({entry, B1,B3}) = {B2}

DF2({entry,B l,B3}) = DF({entry, Bl, B2, B3}) = {B2}
so B2 and e x it are the nodes requiring 0-functions. In particular, B2 requires a 0-
function for each of i , j , and k, and e x it needs one for i . The result of subscripting
the variables and inserting the 0-functions is shown in Figure 8.23. Note that the 0-
function inserted into the e x it block is not really necessary (unless i is live on exit

FIG. 8.23 Result of translating the flowgraph in Figure 8.21 to minimal SSA form.

258 Data-Flow Analysis

from the procedure); pruned SSA form eliminates such unneeded ^-functions at the
expense of somewhat increased computation cost.

Efficient algorithms are given in the literature (see Section 8.16) for translation
to and from minimal SSA form. There is also experimental evidence [CytF91] of
the effect of translating to SSA form: the numbers of assignments in 221 Fortran
77 procedures after translation to SSA form were anywhere from 1.3 to 3.8 times
the numbers of assignments in the original forms. The occasionally large increase in
program size is of some concern in using SSA form but, given that it makes some
optimizations much more effective, it is usually worthwhile.

8.12 Dealing with Arrays, Structures, and Pointers
So far, we have said nothing in our discussion of data-flow analysis about dealing
with values more complex than simple constants and variables whose values are
restricted to such constants. Since variables (and, in some languages, constants) may
also have arrays, records, pointers, and so on as their values, it is essential that we
consider how to fit them into our data-flow analysis framework and how to represent
them in SSA form.

One option that is used in many compilers is to simply ignore array and record
assignments and to treat assignments through pointers pessimistically. In this ap
proach, it is assumed that a pointer may point to any variable’s value and, hence,
that an assignment through a pointer may implicitly affect any variable. Languages
like Pascal provide some help with this issue, as they restrict pointers to point only
to objects of the types they are declared to be pointers to. Dealing with pointers in
a way that produces much more useful information requires what is known as alias
analysis, to which we devote Chapter 10. Pointers into heap storage may be mod
eled conservatively by considering the heap to be a single large object, like an array,
with any assignment through a pointer assumed to both access and change any ob
ject in the heap. More aggressive techniques for dealing with pointers and records
are discussed below in Section 8.14.

In C, pointers are not even restricted to pointing to heap storage—they may also
point to objects on the stack and to statically allocated objects. The alias analysis
methods discussed in Chapter 10 are important for aggressive optimization of C
programs.

Some languages allow array assignments in which the values of all elements of an
array are set at once. Such assignments can be handled easily by considering array
variables and constants to be just like ordinary variables and constants. However,
most array assignments set a single element, e.g., A [3] 5 or A[i] <- 2, rather
than the entire array. Assignments that set a known element can also be treated
like ordinary assignments, but this still does not account for most array operations.
One possibility for dealing with assignments that set an array element named by
a variable is to translate them to a form that uses access and update assignments
that make them appear to operate on the whole array, as in Figure 8.24. While such
operators permit our data-flow algorithms to work correctly, they generally produce

Section 8.13 Automating Construction of Data-Flow Analyzers 259

x <- a[i] x <- access(a ,i)
a [j] <- 4 a <- update(a, j ,4)
(a) (b)

FIG. 8.24 Assignments involving array elements and their translation into access/update form.

information that is too crude to be very useful in optimizing array operations. The
usual alternative is to do dependence analysis of array operations, as discussed in
Section 9.1, which can provide more precise information about arrays, but at the
expense of considerable additional computation. Relatively recently, an approach to
doing data-flow analysis of array elements, called last-write trees (see Section 8.16),
has been introduced.

In most languages, assignments involving direct references to elements of records
(rather than through pointers) can only use member names that are constants.
Thus, assignments to records can be treated as either accesses and updates to the
whole record, as suggested for arrays above, or they can be treated as dealing with
individual members. The latter approach can result in more effective optimization
if records are used frequently in a program, and is discussed in Section 12.2. If the
source language allows variables to be used to select members of records, then they
are essentially fixed-size arrays with symbolic element names and can be handled
like other arrays.

8.13 Automating Construction o f Data-Flow
Analyzers
Several tools have been implemented that, given a variety of types of intermediate
code and a description of a data-flow problem, construct a data-flow analyzer that
solves the given data-flow problem. Such tools can be used to construct data-flow
analyzers for use in an optimizer, as long as the particular intermediate code is
used.

The first well-known analyzer constructor of this type was developed by Kil-
dall [Kild73]. His system constructs an iterative analyzer that operates on what he
calls “pools,” where a pool is, in current parlance, the data-flow information one has
at a particular point in a procedure at some time during the analysis. Kildall gives a
tabular form for expressing pools and rules that, according to the type of flowgraph
node being processed and the data-flow problem being solved, transforms an “ in
put pool” into the corresponding “ output pool.” His system allows for pools to be
represented as bit vectors, linked lists, or value numbers (see Section 12.4), depend
ing on the data-flow problem, and performs a worklist implementation of iterative
analysis similar to the one presented in Section 8.4.

A much more recent and more sophisticated analyzer constructor is Tjiang and
Hennessy’s Sharlit [TjiH92]. In addition to performing data-flow analyses, it can
be used to specify optimizing transformations. Much of what one needs to write to
specify an analyzer and optimizer in Sharlit is purely declarative, but other parts,

260 Data-Flow Analysis

such as the optimizing transformations, require writing procedural code, which
one does in C++. This analyzer constructor operates on an intermediate code of
quadruples called SUIF (see Section C.3.3). The quadruple types of interest to it
are loads, stores, binary operations that take two operands and place the result in a
destination, and others that specify control flow. Rather than requiring a data-flow
analyzer to consist of a local component that analyzes and propagates information
through basic blocks and a global component that works on the flowgraph of
basic blocks, Sharlit allows the analyzer specifier to vary the granularity at which
the compiler writer wishes to work. One can operate on individual intermediate-
code nodes, or group them into basic blocks, intervals, or other structural units—
whichever may be most appropriate to the problem at hand.

The underlying technique used by Sharlit to perform a data-flow analysis is
path simplification, based on Tarjan’s fast algorithms for path problems, which
compute a regular expression of node names, called a path expression, that specifies
all possible execution paths from one node to or through another. For example, for
the flowgraph in Figure 7.32(a), the path expression for the path from the entry
through block B5 is

entry • (B1 •B2)*»B3»B5
and the one for the path from B3 through exit is

B3 • (B4 + (B5 • (B6 • B7)*)) • exit
The operator represents concatenation, “ + ” represents joining of paths, and

represents repetition. The operators are interpreted in a data-flow analyzer as
composition of flow functions, meet, and fixed-point computation, respectively.

To specify an optimizer to Sharlit, one must give the following:

1 . a description of the flowgraphs it is to operate on (including such choices as whether
to consider individual quadruples or basic blocks as the units for the analysis);

2 . the set of data-flow values to be used, one of which is associated with each node
in the flowgraph in the solution (which may be bit vectors, assignments of constant
values to variables, or other objects);

3. flow functions that describe the effects of nodes on data-flow values; and

4. action routines that specify optimizing transformations to be performed using the
results of the data-flow analysis.

Given the description of how the data-flow problem being solved interprets the
flowgraph, values, and functions and a procedure to be analyzed, Sharlit computes
a set of path expressions for components of a flowgraph, and then uses the flow
functions and path expressions to compute the flow values constituting the solution.
It then uses the resulting values and the action routines to traverse the flowgraph
and perform the applicable transformations.

Tjiang and Flennessy give three examples of how Sharlit can be used to compute
available expressions (iterative analysis on a flowgraph of individual nodes, local
analysis to compute flow functions for basic blocks, and interval analysis). They

Section 8.14 More Ambitious Analyses 261

conclude that the tool greatly simplifies the specification and debugging of an opti
mizer and is competitive in the results it produces with optimizers built by hand for
commercial compilers.

8.14 More Ambitious A nalyses
So far we have considered only relatively weak forms of data-flow analysis, which
give little hint of its power or of its close relationship with such powerful methods
as proving properties of programs, including correctness. In this section, we explore
how the complexity of the lattices used and the reasoning power we allow ourselves
about the operations performed in a program affect the properties we are able to
determine.

Consider doing constant-propagation analysis on the simple example in Fig
ure 8.25. If the arithmetic operations, such as the i + 1 that occurs here, are all
considered to be uninterpreted— i.e., if we assume that we have no information
about their effect at all—then we have no way of determining whether j ’s value
is constant at the entry to B4. If, on the other hand, we strengthen our constant-
propagation analysis to include the ability to do addition of constants, then we can
easily determine that j has the value 2 on entry to B4.

In the example in Figure 8.26, assuming that we can reason about subtraction
of 1 and comparison to 0 and that we distinguish the “ Y” and “ N” exits from tests,
then we can conclude that, on entry to the e x i t block, n’s value is < 0. If we extend
this program to the one shown in Figure 8.27, then we can conclude that n = 0 on
entry to the e x i t block. Further, if we can reason about integer functions, then we
can also determine that at the same point, if «o > 0 , f = where «o represents the
value of n on entry to the flowgraph. This at least suggests that we can use data
flow analytic techniques to do program verification. The data-flow information we
need to associate with each exit of each block to do so is the inductive assertions
shown in Table 8.5. While this requires more machinery and has much greater

FIG. 8.25 Simple example for constant-propagation analysis.

262 Data-Flow Analysis

FIG. 8.26 Simple factorial computation.

B5

B6

B7

FIG. 8.27 Full factorial computation.

computational complexity than any analysis we might actually use in a compiler, it at
least demonstrates the spectrum of possibilities that data-flow analysis encompasses.

Another example of a computationally expensive data-flow analysis, but one
that is less so than program verification, is type determination and dependence ana
lysis of data structures that include records and pointers. This has been investigated
by a series of researchers starting in 1968 and is a problem for which there are still no
entirely satisfactory solutions. Various methods have been proposed, but they all fall
into three major categories, the grammar-based approach and the ^-limited graphs
defined in a paper of Jones and Muchnick [JonM81a] and the access-path approach
of Flendren et al. described briefly in Section 9.6.

Section 8.15 Wrap-Up 263

TABLE 8.5 Inductive assertions associated with the exit from
each block in Figure 8.27 that are needed to determine
that it computes the integer factorial function.

Block Inductive Assertion

entry n = n0
Bl/Y n = no < 0

Bl/N n = no > 0

B2 n = 0 and f = hq\
B3/Y n = no = 0 and f = 1

B3/N n = no > 0

B4 n = hq = 0 and f = n$\
B5 n = «o > 0 and f = «o
B6 n > 0 and f = « 0 x («o - 1) X •' • x (n 1)
B7/Y n > 0 and f = «0 x(«o- 1) X • x (n + 1)
B7/N n = 0 and f = «o x (wo - 1) X ..• • X 1 = Hq\
B8 n > 0 and f = no x (no — 1) X • • x n

8.15 Wrap-Up
Data-flow analysis provides global information about how a procedure (or a larger
segment of a program) manipulates its data, thus providing grist for the mill of
optimization. The spectrum of possible data-flow analyses ranges from abstract exe
cution of a procedure, which might determine that it computes a particular function,
to much simpler and easier analyses such as reaching definitions. However, as for
control-flow analysis, there are three main approaches, one associated with each of
the control-flow approaches. The approach associated with dominators and back
edges is called iterative data-flow analysis and the other two approaches have the
same names as the corresponding control-flow approaches, namely, interval analysis
and structural analysis. They have trade-offs as to their benefits and disadvantages
similar to the control-flow approaches as well.

No matter which approach we use, we must ensure that the data-flow analysis
gives us correct and conservative information, i.e., that it does not misrepresent what
the procedure does by telling us that a transformation is safe to perform that, in fact,
is not. We guarantee this by careful design of the data-flow equations and by being
sure that the solution to them that we compute is, if not an exact representation of
the desired information, at least a conservative approximation to it. For example,
for reaching definitions, which determine what definitions of variables may reach a
particular use, the analysis must not tell us that no definitions reach a particular use
if there are some that may. The analysis is conservative if it gives us a set of reaching
definitions that is no smaller than if it could produce the minimal result.

However, to maximize the benefit that can be derived from optimization, we
seek to pose data-flow problems that are both conservative and as aggressive as we

264 Data-Flow Analysis

can make them. Thus, we walk a fine line between being as aggressive as possible
in the information we compute, and being conservative, so as to get the great
est possible benefit from the analyses and transformations performed without ever
transforming correct code to incorrect code.

8.16 Further Reading
An example of a text that uses K ILL () functions rather than PRSV() is [AhoS8 6].

The lattices used by Jones and Muchnick to describe the “ shapes” of Lisp-like
data structures are presented in [JonM81b].

Proof that there may be no algorithm that computes the meet-over-all-paths
solution for a data-flow analysis involving monotone functions can be found in
[Ffech77] and [KamU75]. Kildall’s result that for data-flow problems in which all
the flow functions are distributive, the general iterative algorithm computes the
MFP solution and that, in that case, the MFP and MOP solutions are identical, is
found in [Kild73]. Kam and Ullman’s partial generalization to monotone but not
distributive functions is found in [KamU75].

Papers that associate data-flow information with edges in the flowgraph in
clude [JonM76], [JonM81a], and [Rose81]. The second of those papers also draws
the distinction between relational and independent attributes.

Morel and Renvoise’s original formulation of partial-redundancy elimination is
found in [MorR79] and Knoop, Riithing, and Steffen’s more recent one is given
in [KnoR92]. Khedker and Dhamdhere [KheD99] discuss the computational com
plexity of bidirectional data-flow analysis.

The approaches to solving data-flow problems in Section 8.3 are described in
the following papers:

Approach Reference

Allen’s strongly connected region method [Alle69]
Kildall’s iterative algorithm [Kild73]
Ullman’s T1-T2 analysis [Ullm73]
Kennedy’s node-listing algorithm [Kenn75]
Farrow, Kennedy, and Zucconi’s graph-grammar approach [FarK75]
Elimination methods, e.g., interval analysis [A11C76]
Rosen’s high-level (syntax-directed) approach [Rose77]
Structural analysis [Shar80]
Slotwise analysis [DhaR92]

The proof that, if A is the maximal number of back edges on any acyclic path in
a flowgraph, then A + 2 passes through the repeat loop in the iterative algorithm
are sufficient if we use reverse postorder, is due to Hecht and Ullman [HecU75]. Al
ternatives for managing the worklist include round-robin and various node listings,
which are discussed in [Hech77].

A precursor of slotwise analysis is found in [Kou77]. [DhaR92] shows how to
apply slotwise analysis to partial-redundancy analysis.

Static single-assignment form is described in [CytF89] and [CytF91] and is
derived from an earlier form developed by Shapiro and Saint [ShaS69]. The linear

Section 8.17 Exercises 265

time dominance-frontier algorithm appears in[CytF91], along with efficient methods
for translating to and from SSA form.

The use of last-write trees to do data-flow analysis of array elements is intro
duced in [Feau91].

Tjiang and Hennessy’s Sharlit is described in [TjiH92] and [Tjia93]. It operates
on the SUIF intermediate representation, which is described in [TjiW91] (see Appen
dix C for information on downloading suif). [TjiH92] gives three examples of the
use of Sharlit.

Investigation of how to apply data-flow analysis to recursive data structures in
cludes [Reyn6 8], [Tene74a], [Tene74b], [JonM81a], [Laru89], [Hend90], [ChaW90],
[HumH94], [Deut94], and a variety of others. The approach used in [HumH94] is
discussed in Section 9.6.

8.17 Exercises
8.1

8.2
8.3

8.4

RSCH 8.5

RSCH 8 .6

8.7

8.8

ADV 8.9

RSCH 8.10

8.11

What is the complexity in bit-vector or set operations of iteratively computing
unidirectional data-flow information using (a) both in() and out() functions versus
(b) using only one of them?

Give an example of a lattice that is not strongly distributive.

Give an example of a specific data-flow problem and an instance for which the MOP
and MFP solutions are different.

Evaluate the space and time complexity of associating data-flow information with
edges in a flowgraph versus with node entries and exits.

Formulate the data-flow analysis in Figure 8.4 as a relational problem, as described
in [JonM81a]. Is the result as good as associating information with edges? What
about the computational complexity?

Research Kennedy’s node-listing algorithm [Kenn75] or Farrow, Kennedy, and Zuc-
coni’s graph-grammar approach [FarK75] to data-flow analysis. What are their ad
vantages and disadvantages in comparison to the methods discussed here?

What alternative ways might one use to manage the worklist in Figure 8 .6 ? How do
they compare in ease of implementation and computational effectiveness to reverse
postorder for forward problems?

Draw the lattice of monotone functions from BV2 to itself.

Is Lf distributive for any L? If not, give an example. If so, prove it.

Research the updating of data-flow information as a flowgraph is being modified, as
discussed in [Zade84]. What evidence is there that this is worth doing in a compiler,
rather than recomputing data-flow information when needed?

Work an example of structural data-flow analysis on a flowgraph with an improper
region. Show each of the three approaches to handling the improper region, namely,
(a) node splitting, (b) iteration, and (c) solving a data-flow problem on the underly
ing lattice’s lattice of monotone functions.

266 Data-Flow Analysis

8.12 (a) Formulate a backward data-flow analysis using the structural approach, (b) Show
that the iteration over the function lattice to handle an improper region is a forward
analysis.

8.13 (a) Construct an example flowgraph that is a simple loop whose body is an improper
region that contains an i f - th e n - e ls e construct, (b) Write the structural data-flow
equations for your example, (c) Write the ican code to perform a forward data-flow
analysis for the loop and the i f - th e n - e ls e . (d) Construct an ican data structure to
represent the data flow in the improper region as discussed in Section 8.7.3. (e) Write
an interpreter in ican that evaluates data-flow information using the data structure
in part (d). (f) Use the code for the loop and the i f - th e n - e ls e and the interpreter
for the improper region to compute reaching definitions for the flowgraph.

8.14 Suggest alternative representations for structural analysis equations (i.e., ones other
than those shown in Section 8.7.3). What advantages and disadvantages do your
approaches have?

8.15

8.16

8.17

RSCH 8.18

Formulate and solve a BV” problem, such as available expressions, slotwise.

Construct the du-chains, ud-chains, and webs for the procedure in Figure 16.7.

Compute D F () and D F+ () for the procedure in Figure 16.7.

Investigate last-write trees [Feau91] for data-flow analysis of arrays. What do they
provide, allow, and cost?

ADV 8.19 Does Sharlit produce the MOP solution of a data-flow problem?

CHAPTER 9

Dependence Analysis and
Dependence Graphs

D ependence analysis is a vital tool in instruction scheduling (see Section 17.1)
and data-cache optimization (see Section 20.4).

As a tool for instruction scheduling, it determines the ordering rela
tionships between instructions in a basic block (or larger unit of code) that must be
satisfied for the code to execute correctly. This includes determining, for two given
register or memory references, whether the areas of memory they access overlap and
whether pairs of instructions have resource conflicts. Similarly, dependence analysis
and the loop transformations it enables are the main tools for data-cache optimiza
tion and are essential to automatic vectorization and parallelization.

Also, a new intermediate form called the program dependence graph (see Section
9 .5) has been proposed as a basis for doing several sorts of optimizations.

One of the final sections of this chapter is devoted to dependences between
dynamically allocated objects.

9.1 Dependence Relations
In this section, we introduce the basic notions of dependence analysis. Following
sections show how they are used specifically in instruction scheduling and data-
cache-related analysis. In each case, we may construct a graph called the dependence
graph that represents the dependences present in a code fragment—in the case of
instruction scheduling as applied to a basic block, the graph has no cycles in it, and
so it is known as the dependence DAG. As we shall see, dependence analysis can be
applied to code at any level—source, intermediate, or object.

If statement Si precedes S2 in their given execution order, we write Si < S 2 .
A dependence between two statements in a program is a relation that constrains
their execution order. A control dependence is a constraint that arises from the
control flow of the program, such as S2’s relationship to S3 and S4 in Figure 9.1—
S3 and S4 are executed only if the condition in S2 is not satisfied. If there is a

267

268 Dependence Analysis and Dependence Graphs

SI a <- b + c
S2 if a > 10 goto LI
S3 d <- b * e
S4 e <- d + 1
S5 LI: d <- e / 2

FIG. 9.1 Example of control and data dependence in mir code.

control dependence between statements Si and S2, we write Si 8C S2 . So, S2 Sc S3
and S2 <$c S4 in Figure 9.1.

A data dependence is a constraint that arises from the flow of data between
statements, such as between S3 and S4 in the figure—S3 sets the value of d and
S4 uses it; also, S3 uses the value of e and S4 sets it. In both cases, reordering
the statements could result in the code’s producing incorrect results. There are four
varieties of data dependences, as follows:

1. If Si < S2 and the former sets a value that the latter uses, this is called a flow
dependence or true dependence, which is a binary relation denoted Si 8{ S2 ; thus, for
example, the flow dependence between S3 and S4 in Figure 9.1 is written S3 S4.

2. If Si < S2 , Si uses some variable’s value, and S2 sets it, then we say that there is an
antidependence between them, written Si <$a S2 . Statements S3 and S4 in Figure 9.1
represent an antidependence, S3 8a S4, as well as a flow dependence, since S3 uses e
and S4 sets it.

3. If Si < S2 and both statements set the value of some variable, we say there is an
output dependence between them, written Si 8° Sj- In the figure, we have S3 8° S5.

4. Finally, if Si < S2 and both statements read the value of some variable, we say there
is an input dependence between them, written Si 8l S2 ; for example, in the figure,
S3 51 S5, since both read the value of e. Note that an input dependence does not
constrain the execution order of the two statements, but it is useful to have this
concept in our discussion of scalar replacement of array elements in Section 20.3.

A set of dependence relationships may be represented by a directed graph called
a dependence graph. In such a graph, the nodes represent statements and the edges
represent dependences. Each edge is labeled to indicate the kind of dependence it
represents, except that it is traditional to leave flow-dependence edges unlabeled.
Figure 9.2 gives the dependence graph for the code in Figure 9.1. Control depen
dences are generally omitted in dependence graphs, unless such a dependence is the

FIG. 9.2 The dependence graph for the code in Figure 9.1.

Section 9.2 Basic-Block Dependence DAGs 269

only one that connects two nodes (in our example, there is a control dependence
connecting S2 and S4, but it is omitted in the graph).

9.2 Basic-Block Dependence DAGs
The method of basic-block scheduling we consider in Chapter 17 is known as
list scheduling. It requires that we begin by constructing a dependence graph that
represents the constraints on the possible schedules of the instructions in a block and
hence, also, the degrees of freedom in the possible schedules. Since a basic block has
no loops within it, its dependence graph is always a DAG known as the dependence
DAG for the block.

The nodes in a dependence DAG represent machine instructions or low-level
intermediate-code instructions and its edges represent dependences between the in
structions. An edge from to may represent any of several kinds of dependences.
It may be that

1. I1 writes a register or location that I2 uses, i.e., I\ 8f I2 ;

2. I\ uses a register or location that I2 changes, i.e., /1 8a I2 ;

3. I1 and I2 write to the same register or location, i.e., I\ 8° I2 ;

4. we cannot determine whether I\ can be moved beyond I2 ; or

5. I\ and 12 have a structural hazard, as described below.

The fourth situation occurs, for example, in the case of a load followed by a
store that uses different registers to address memory, and for which we cannot
determine whether the addressed locations might overlap. More specifically, suppose
an instruction reads from [r l l] (4) and the next writes to [r2+12] (4). Unless we
know that r2+12 and r l l point to different locations, we must assume that there is
a dependence between the two instructions.

The techniques described below in Section 9.4 can be used to disambiguate many
memory references in loops, and this information can be passed on as annotations
in the code to increase the freedom available to the scheduler.

A node I1 is a predecessor of another node I2 in the dependence DAG if I2 must
not execute until Ji has executed for some number of cycles. The type of depen
dence represented by an edge in the DAG is unimportant, so we omit the type labels.
However, the edge from I\ to 12 is labeled with an integer that is the required latency
between I\ and /2, except that we omit labels that are zeros. The latency is the delay
required between the initiation times of and I2 minus the execution time required
by /1 before any other instruction can begin executing (usually one cycle, but fre
quently zero in a superscalar implementation). Thus, if I2 can begin execution in the
cycle following when Ji begins, then the latency is zero, while if two cycles must
elapse between beginning I1 and /2, then the latency is one. For example, for the l i r

code in Figure 9.3(a) with the assumption that a load has a latency of one cycle and
requires two cycles to complete, the dependence DAG is as shown in Figure 9.3(b).

Condition codes and other implicit resources are treated as if they were registers
for the computation of dependences.

270 Dependence Analysis and Dependence Graphs

1 r2 [rl] (4)
2 r3 <- [rl+4] (4)
3 r4 •*- r2 + r3
4 r5 r2 - 1

(a)
© ©
(b)

FIG. 9.3 (a) A basic block of lir code, and (b) its dependence DAG.

1 r3 <- [rl5] (4)
2 r4 <- [rl5+4] (4)
3 r2 <- r3 - r4
4 r5 «- [rl2] (4)
5 rl2 <-• rl2 + 4
6 r6 <- r3 * r5
7 [r!5+4] (4) r3
8 r5 <- r6 + 2

(a)

FIG. 9.4 (a) A more complex lir example, and (b) its dependence DAG.

As a second, more complex example, consider the lir code in Figure 9.4(a) and
its dependence DAG in Figure 9.4(b), again assuming a latency of one cycle for loads.
Instructions 1 and 2 are independent of each other since they reference different
memory addresses and different target registers. Instruction 3 must follow both of
them because it uses the values loaded by both of them. Instruction 4 is independent
of 1 and 2 because they are all loads to different registers. Instruction 7 must follow
1, 2, and 4 because it uses the result of 1, stores into the address loaded from by 2,
and would conflict with 4 if the value in r l2 is rl5+4.

Note that the edge from 4 to 8 in Figure 9.4(b) is redundant, since there is an
edge from 4 to 6 and another from 6 to 8. On the other hand, if the edge from 4 to
8 were labeled with a latency of 4, it would not be redundant since then

1 ,2 ,4 ,5 ,6 , 7 ,8 ,3

and

1 ,2 ,4 , 5, 6, 8, 7, 3

Section 9.2 Basic-Block Dependence DAGs 271

would both be feasible schedules, but the first would require eight cycles, while the
second would require nine.

To construct the dependence DAG for a basic block we need two functions,

Latency: LIRInst x in teger x LIRInst x in teger —> in teger

and

C o n f l ic t : L IR In st x L IR In st —> boolean

defined by

Latency U \ ,« i ,/2>w2) = the number of latency cycles incurred by beginning
execution of I2 s n ^ cycle while executing
cycle n\ of I\

and

C o n f l ic t (/1, 12) = tru e if I 1 must precede I2 for correct execution
f a l s e otherwise

Note that for any two l ir instructions I\ and I2 separated by a .sequence pseudo
op, C o n flic t (/ 1 , J2) is true.

To compute Latency (), we use resource vectors. A resource vector for an
instruction is an array of sets of computational resources such that the instruction
needs the given resources in successive cycles of its execution. For example, the m ip s
R4000 floating-point unit has seven resources named A (mantissa Add), E (Exception
test), M (Multiplier first stage), N (Multiplier second stage), R (adder Round), S
(operand Shift), and U (Unpack). The single-precision floating-point add (add.s)
and multiply (mul. s) instructions have the following resource vectors:

1 2 3 4 5 6 7

a d d .s u S,A A ,R R ,S

m u l. s u M M M N N ,A R

so starting an add. s in cycle four of a mul. s would result in conflicts in the sixth and
seventh cycles of the mul. s—in the sixth, both instructions need resource A, and in
the seventh, both need R. Competition by two or more instructions for a resource at
the same time is called a stru ctu ra l h a z a rd .

Now, to compute Latency(Ji , J2), we match the resource vector for instruction
I 1 with that for I2 (see Figure 9.5). In particular, we repeatedly check whether
elements of the two resource vectors have a non-empty intersection, stepping along
J i ’s resource vector each time we find a resource conflict. The procedure Inst_RV()
takes an instruction as its first argument and the length of the resource vector
as its second and returns the resource vector corresponding to the type of that
instruction. The function ResSet (m s*,*) returns the set of resources used by cycle
i of instruction inst. The constant MaxCycles is the maximum number of cycles
needed by any instruction.

272 Dependence Analysis and Dependence Graphs

ResVec = array [1•-MaxCycles] of set of Resource
MaxCycles, IssueLatency: integer

procedure Latency(instl,cycl,inst2,cyc2) returns integer
instl, inst2: in LIRInst
cycl, cyc2: in integer

begin
I1RV, I2RV: ResVec
n := MaxCycles, i := 0, j, k: integer
cycle: boolean
I1RV := Inst_RV(instl,cycl)
I2RV := Inst_RV(inst2,cyc2)
I I determine cycle of instl at which inst2 can begin
I| executing without encountering stalls
repeat

cycle := false
j := 1
while j < n do

if IlRV[j] n I2RV[j] * 0 then
for k := 1 to n - 1 do

IlRVCk] := IlRV[k+l]
od
n -= 1
i +- 1
cycle := true
goto LI

fi
j += 1

od
LI: until !cycle

return i
end I I Latency

procedure Inst_RV(inst,cyc) returns ResVec
inst: in LIRInst
eye: in integer

begin
IRV: ResVec
i: integer
I| construct resource vector for latency computation
I| from resource set
for i := 1 to MaxCycles do

if cyc+i-1 < MaxCycles then
IRV[i] := ResSet(inst,cyc+i-1)

else
IRV[i] := 0

fi
od
return IRV

end I I Inst_RV
FIG. 9.5 Computing the Latency () function.

Section 9.2 Basic-Block Dependence DAGs 273

For the example L aten cy(m u l.s ,4 ,ad d .s, 1), we have MaxCycles = 7 and the
following resource vectors:

I1RV[1] = {M} I2RV[1] = m
I1RV[2] = m I2RV[2] = {S,A>
I1RV[3] = {N,A> I2RV[3] = {A,R>
I1RV[4] = {R> I2RV[4] = {R,S>
11RV [5] = 0 I2RV [5] = 0
I1RV[6] = 0 I2RV [6] = 0
I1RV[7] = 0 I2RV[7] = 0

The reader can easily check that the call to Latency () returns the value 2, so
starting the add. s immediately would result in a two-cycle stall,1 but the add.s can
be started in cycle 6 of the mul. s with no stall cycles.

While this method of computing latency is transparent, it can be computed
significantly more quickly. Proebsting and Fraser [ProF94] describe a method that
uses a deterministic finite automaton whose states are similar to sets of resource
vectors and whose transitions are instructions to compute the analogue of the j loop
in our algorithm by a single table lookup.

Now let In s t [l* * r a] be the sequence of instructions (including .sequence
pseudo-ops) that make up a basic block. If the basic block ends with a branch and
if branches have a delay slot in the architecture, we exclude the branch from the
sequence of instructions. The data structure DAG has the form shown in Figure 9.6,
where Nodes = { 1 , . . . , n> and Roots £ Nodes.

The algorithm to construct the scheduling DAG is called Build_DAG() and is
given in Figure 9.6. The algorithm iterates over the instructions in order. It first
determines, for each instruction, whether it conflicts with any of the ones already
in the DAG. If so, the instructions it conflicts with are put into the set Conf. Then, if
Conf is empty, the current instruction is added to Roots, the set of roots of the DAG.
Otherwise, for each instruction in Conf, a new edge is added to the graph from it to
the new instruction and the label associated with the edge is set to the corresponding
latency. Constructing the DAG requires 0 (n 2) operations, since it compares each
pair of instructions in the basic block to find the dependences.

As an example of the DAG-building process, consider the sequence of eight lir
instructions given in Figure 9.4(a). Build_DAG() is called with n = 8 and In st [1]
through Inst [8] set to the eight instructions in sequence. For the first instruction,
there are no previous instructions to conflict with, so it is made a root. The second
instruction does not conflict with the first, so it is also made a root. The third
instruction conflicts with both the first and second, since it uses the values loaded by
them, so edges are added to the DAG running from the first and second instructions
to the third, each with a latency of one. The fourth instruction does not conflict with
any of its predecessors—it might be the case that [r!2] (4) is the same address as

1. A stall refers to the inaction (or “stalling”) of a pipeline when it cannot proceed to execute
the next instruction presented to it because a needed hardware resource is in use or because some
condition it uses has not yet been satisfied. For example, a load instruction may stall for a cycle in
some implementations if the quantity loaded is used by the next instruction.

274 Dependence Analysis and Dependence Graphs

DAG * record {
Nodes, Roots: set of integer,
Edges: set of (integer x integer),
Label: (integer x integer) — > integer}

procedure Build_DAG(m,Inst) returns DAG
m: in integer
Inst: in array [l-*m] of LIRInst

begin
D :- <Nodes:0,Edges:0,Label:0,Roots:0>: DAG
Conf: set of integer
j, k: integer
I| determine nodes, edges, labels, and
|| roots of a basic-block scheduling DAG
for j := 1 to m do

D.Nodes u= {j}
Conf := 0
for k := 1 to j - 1 do

if Conflict(Inst[k],Inst[j]) then
Conf u= {k}

fi
od
if Conf = 0 then

D.Roots u= {j}
else

for each k e Conf do
D.Edges u= {k->j}
D.Label(k,j) := Latency(Inst[k],1,Inst[j],IssueLatency+1)

od
fi

od
return D

end I I Build.DAG
FIG. 9.6 Algorithm to construct the dependence DAG for basic-block scheduling.

[r l5] (4) or [rl5+4] (4), but since they are all loads and there are no intervening
stores to any of the locations, they don’t conflict. The DAG that results from this
process is the one shown in Figure 9.4(b).

In studying data-cache optimization, our concern is almost entirely with data depen
dence, not control dependence.

While dependences among scalar variables in a single basic block are useful for
instruction scheduling and as an introduction to the concepts, our next concern
is dependences among statements that involve subscripted variables nested inside
loops. In particular, we consider uses of subscripted variables in perfectly nested

9.3 Dependences

Section 9.3 Dependences in Loops 275

for il <- 1 to nl do
for i2 < - 1 to n2 do

for ik <- 1 to nk do
statem en ts

endfor

endfor
endfor

FIG. 9.7 A canonical loop nest.

loops in h i r that are expressed in canonical form, i.e., each loop’s index runs from
1 to some value n by Is and only the innermost loop has statements other than fo r
statements within it.

The iteration space of the loop nest in Figure 9.7 is the ^-dimensional polyhe
dron consisting of all the ^-tuples of values of the loop indexes (called index vectors),
which is easily seen to be the product of the index ranges of the loops, namely,

[l..nl] x [l..n2] x . . . x [l..nk]

where [a..b] denotes the sequence of integers from a through b and n l, . . . , nk are
the maximum values of the iteration variables.

We use “ V ’ to denote the lexicographic ordering of index vectors. Thus,

(zTi, . . . , ik\) < {H i, . . . , iki)

if and only if

3/, 1 < / < k, such that il \ = / I2, . . . , /(/ — l) i = i(j — 1)2 and ij\ < iji

and, in particular, 0 -< (/ l , . . . , ik), i.e., 7 is lexicographically positive, if

3/, 1 < / < k, such that il = 0 , . . . , /(/ — 1) = 0 and ij > 0

Note that iteration {il j , . . . , ik 1) of a loop nest precedes iteration (/I2, . . . , ik2) if
and only if

(z'li,. . . , z&i) -< (zl2, . . . , iki)

The iteration-space traversal of a loop nest is the sequence of vectors of in
dex values encountered in executing the loops, i.e., the lexicographic enumeration
of the index vectors. We represent the traversal graphically by a layout of nodes
corresponding to the index vectors with dashed arrows between them indicating
the traversal order. For example, for the loop in Figure 9.8, the iteration space is
[1..3] x [1..4] and the iteration-space traversal is portrayed in Figure 9.9.

Note that the iteration space of a loop nest need not be rectangular. In particular,
the loop nest in Figure 9.10 has the trapezoidal iteration space and traversal shown
in Figure 9.11.

Given subscripted variables nested in loops, the dependence relations are more
complicated than for scalar variables: the dependences are functions of the index

276 Dependence Analysis and Dependence Graphs

for il <- 1 to 3 do
for i2 <- 1 to 4 do

51 t <- x + y
52 a[il,i2] <- b[il,i2] + c[il,i2]
53 b[il,i2] <- a[il,i2-l] * d[il+l,i2] + t

endfor
endfor

FIG. 9.8 An example of a doubly nested loop.

i2
1 2 3 4

> 0 - - K > - 0 - - ; ! 0

i i 2 ------K > — ; : ? 0

3 O ^ - — ► Q - -----► Q - ------ h O

FIG. 9.9 The iteration-space traversal for the code in Figure 9.8.

for il <- 1 to 3 do
for i2 <- 1 to il+1 do

51 a[il,i2] <- b[il,i2] + c[il,i2]
52 b[il,i2] <- a[il,i2-l]

endfor
endfor

FIG. 9.10 A doubly nested loop with a nonrectangular iteration-space traversal.

variables, as well as of the statements. We use bracketed subscripts after a statement
number to indicate the values of the index variables. We extend the “ <T notation so
that . . . , iki] <S2[/l2> • • • j ^ 2] means that S i [/ l i , . . . , ik\] is executed before
S2 UI2 , . . . , ik2], where il through ik are the loop indexes of the loops containing the
statements Si and S2 , outermost first. Note that S i [/ l i , . . . , ik 1] < S2 DT2, . . . , ik2] if
and only if either Si precedes S2 in the program and (/ I i , . . . , ik 1) < (iI 2, . . . , ik2)
or Si is the same statement as or follows S2 and (/ l i , . . . , ik 1) (/I2, . . . , ik2).

For our example in Figure 9.8, we have the following execution-order relation
ships:

S2[il, i 2 -l] < S3[il, i 2]

S2[il, 1 2] < S3[il, 1 2]

Section 9.3 Dependences in Loops 277

±2
1 2 3 4* o---»p

u 2 cP-—>o——>o

3 -----► O------ ► O
FIG. 9.11 The trapezoidal iteration-space traversal of the loop nest in Figure 9.10.

i2

1 2 3 4
i O-------HD------ O ------O

ii 2 o------ KD------KD----- hO

3 O-------HD------ hO------O
FIG. 9.12 The dependence relations for the code in Figure 9.8.

and the corresponding dependence relations:

S 2 [il , i2 —1] <5f S 3 [i l , i2]

S 2 [il , i2] <$a S 3 [il , i2]

Like the iteration-space traversal, the dependence relations for the loop body as
a whole can be displayed graphically, as shown in Figure 9.12. We omit arrows
that represent self-dependences. Note that each (i l , 1) iteration uses the value of
a [i l ,0] , but that this is not represented in the diagram, since 0 is not a legal value
for the loop index i2 .

Next we introduce distance, direction, and dependence vectors as notations for
loop-based dependences. A distance vector for a nest of k loops is a ^-dimensional
vector d = {d\ 9. . . , d*), where each dj is an jnteger; it means that for each index
vector 7, the iteration with index vector 1 4- d — (i\ + d \ 9. . . , + d^) depends on
the one with index vector 7. A direction vector approximates one or more distance

278 Dependence Analysis and Dependence Graphs

vectors and has elements that are ranges of integers, where each range is [0, 0],
[1, oo], [—oo, —1], or [—oo, oo], or the union of two or more ranges. There are two
frequently occurring notations for direction vectors, as follows:

[0,0] [l,oo] [- 0 0 ,- 1] [—oo, oo]
= + - ±
= < > *

In the second notation, the symbols “ < ” , and “ > ” are used for unions of
ranges, with the obvious meanings. So the dependences described above for the loop
nest in Figure 9.8 are represented by the distance vectors

S 2 [il, ±2-1] (0,1) S 3 [il, i2]

S 2 [il, i2] (0,0) S 3 [il, i2]

which can be summarized (with significant loss of information) by the direction
vector (= , <).

Dependence vectors generalize the other two kinds of vectors. A dependence
vector for a nest of k loops is a ^-dimensional vector d = ([d j~, d *] , . . . , [d d ^]) 9
where each [d j ,d f] is a (possibly infinite) range of integers and infinite values
satisfying d̂ ~ e Z U {—oo}, d f e Z U {oo}, and d~ < d f . Note that a dependence
vector corresponds to a (possibly infinite) set of distance vectors called its distance
vector set DV(d), as follows:

DV{d) = {(<zi,. . . , a^) I ai e Z and di < a ; < d^]

If d~ = d f for 1 < i < k , then the dependence vector is a distance vector. Conven
tionally, we write such single values in place of their ranges. As above, the ranges
[1, oo], [—oo, —1], and [—oo, oo] correspond to the directions “ +” or “ < ” , ” or
“ > ” , and “ ± ” or

The dependences for the loop nest in Figure 9.8 can now be represented by the
dependence vector (0, [0,1]).

Note that dependences with distance (0, 0 , . . . , 0) have no effect on loop trans
formations that avoid reordering the statements in the body of a loop. Accordingly,
we may omit mentioning such dependences.

Further, a dependence may be loop-independent, i.e., independent of the loops
surrounding it, or loop-carried, i.e., present because of the loops around it. In
Figure 9.8, the dependence of S3 on S2 arising from the use of b [i l , i 2] in S2
and its definition in S3 is loop-independent—even if there were no loops around the
statements, the antidependence would still be valid. In contrast, the flow dependence
of S2 on S3, arising from S2’s setting an element of a [] and S3’s use of it one
iteration of the i2 loop later, is loop-carried and, in particular, carried by the inner
loop; removing the outer loop would make no difference in this dependence. A loop-
independent dependence is denoted by a subscript zero attached to the dependence
symbol and a dependence carried by loop i (counting outward) by a subscript i > 1.
Thus, for example, for the dependences in Figure 9.8, we have

Section 9.4 Dependence Testing 279

for i <- 1 to n do
for j <- 1 to n do

SI a[i,j] <- (a[i-l,j] + a[i+l,j])/2.0
endfor

endfor
FIG. 9.13 An assignment SI with the distance vector (1,0).

S2[il,i2-l]s{ S3[il,i2]

S2[il, i2]<5g S3[il, i 2]

or in the distance vector notation:
S2 [i l , i 2 - 1] (0 , l)i S3[il,i2]

S2[il,i2] (0, 0>0 S3 [i l , i 2]

These concepts are useful in doing scalar replacement of array elements (Sec
tion 20.3).

As another example, the assignment in Figure 9.13 has the distance vector <1,0)
and is carried by the outer loop, i.e.,

S l[i l- 1 , j] (l,0)i SI[il, j]

.4 Dependence Testing
In Section 20.4, we are concerned with transforming loop nests to take better
advantage of the memory hierarchy. Most of the transformations we consider there
are applicable only if there are no dependences (of particular kinds, depending on
the transformation) between iterations of a loop nest. Thus, it is essential to be able
to determine whether there are dependences present in a loop nest and, if so, what
they are.

Consider the example loop in Figure 9.14(a). To determine whether there are
any dependences between references to a [] in the same iteration, we must determine
whether there exists an integer i that satisfies the equation

2 * / + 1 = 3 * / — 5

and the inequality 1 < / < 4. The equation is easily seen to hold if and only if i = 6,
and this value of i does not satisfy the inequality, so there are no same-iteration
dependences (i.e., dependences with distance 0) in this loop.

for i <- 1 to 4 do
b[i] a[3*i-5] + 2.0
a[2*i+l] <- 1.0/i

endfor
(a)

for i * - 1 to 4 do
b[i] •«- a[4*i] + 2.0
a[2*i+l] * - 1.0/i

endfor
(b)

FIG. 9.14 Two example hir loops for dependence testing.

280 Dependence Analysis and Dependence Graphs

To determine whether there are any dependences between references to a [] in
different iterations, we seek integers i\ and z’2 that satisfy the equation

2 * z'i + 1 = 3 * *2 — 5

and that both satisfy the given inequality. Again, we can easily determine that for
any z, i\ = 3 * z and z*2 = 2 * z + 2 satisfy the equation, and for z = 1, we get i\ = 3
and z’2 = 4, both of which satisfy the inequality. Thus, there is a dependence with
positive distance in the loop: a [7] is used in iteration 3 and set in iteration 4.

Notice that if the loop limits were nonconstant expressions, we would not be
able to conclude that there was no dependence with distance 0—we could only
conclude that there might be a dependence with distance 0 or a positive distance,
since the inequality would no longer be applicable.

Next, suppose we change the first statement in the loop to fetch a [4 * i] , as in
Figure 9.14(b). Now we must satisfy the equation

2 * z’i + 1 = 4 * z*2

either for the same or different integer values of i\ and z-2 and the same inequality
as above, as well. It is easy to see that this is not possible, regardless of satisfying
the inequality—the left-hand side of the equation is odd for any value of z'i, while
the right-hand side is even for any value of z*2 . Thus there are no dependences in the
second loop, regardless of the values of the loop bounds.

In general, testing whether there are dependences present in a loop nest and, if
so, what they are is a problem in constrained Diophantine equations—i.e., solving
one or more equations with integer coefficients for integer solutions that also satisfy
given inequalities, which is equivalent to integer programming, a problem that is
known to be NP-complete. However, almost all subscript expressions occurring in
real programs are very simple.

In particular, the subscripts are almost always linear expressions of the loop
indexes, and, from this point on, we assume that this is the case. Often the subscripts
are linear expressions in a single index. Accordingly, we assume that we are given a
loop nest of the form shown in Figure 9.15 with n loops indexed by the variables i\
through in and two references to elements of the array x [] with subscripts that are
all linear expressions in the loop indexes. There is a dependence present if and only
if for each subscript position the equation

n n

#o + ai * V*1 = ^ 0 + * */>2
7=1 7=1

and the inequalities

1 < //, 1 < bij and 1 < iu2 < hij for j = 1 , . . . , n

are jointly satisfied. Of course, the type of dependence is determined by whether
each instance of x [. . .] is a use or a definition. There are numerous methods in use
for testing for dependence or independence. We describe several in detail and give
references for a list of others.

Section 9.4 Dependence Testing 281

for i\ <- 1 to h i\ do
for i2 <- 1 to h ii do

for in 1 to bin do

• • • x [..., a0 + a \ * i \ -\----h an * in, • • J

••• x[. bo + b \ * i\ H---- \ - bn *i „, . . J •••

endfor

endfor
endfor

FIG. 9.15 Form of the hir loop nest assumed for dependence testing.

The earliest test currently in use is known as the GCD (greatest common divisor)
test and was developed by Banerjee [Bane76] and Towle [Towl76]. It is a compara
tively weak test in terms of its ability to prove independence. The GCD test states
that if, for at least one subscript position,

gcd (J sep (ah bhj)) / (a, - b,)
V=1 / I = °

where gcd() is the greatest common divisor function, “a / b” means a does not
divide fe, and sep(^, b9j) is defined by2

/ i \ \ {& ~ b} if direction / is =
X ?ia ’ b- ') = \ M otherwise

then the two references to x [. . .] are independent; or equivalently, if there is a
dependence, then the GCD divides the sum. For example, for our loop in Fig
ure 9.14(a), the test for a same-iteration dependence reduces to

gcd(3 - 2) / (- 5 - 1 + 3 - 2)

or 1 / —5, which is false, and so tells us only that there may be a dependence.
Similarly, for inter-iteration dependence, we have

gcd(3,2) / (—5 — 1 + 3 — 2)

or again 1 / —5, which again fails to rule out independence. For the example in
Figure 9.14(b), on the other hand, we have

gcd (4, 2) / (- 1 + 4 - 2)

which reduces to 2 / 1. Since this is true, these two array references are independent.

2. Note that since gcd (a, b) = gcd (a, a - b) = gcd(b, a - b) for all a and b , the unequal direction
case includes the equal direction case.

282 Dependence Analysis and Dependence Graphs

The GCD test can be generalized to arbitrary lower loop bounds and loop
increments. To do so, assume the /th loop control is

fo r by incj to hij

Then the GCD test states that if, for at least one subscript position,

gcd I (J seP(*/' * inci> bj * incj, /) I / a0 - b0 + (*/ - bj) * /o,
\/=i / /=i

then the two instances of x [. . .] are independent.
Two important classes of array references are the separable and weakly separa

ble ones, which are found to occur almost to the exclusion of others in a very wide
range of real programs. A pair of array references is separable if in each pair of sub
script positions the expressions found are of the form a * ij + b\ and a * ij + b2 where
if is a loop control variable and a , b\, and b2 are constants. A pair of array references
is weakly separable if each pair of subscript expressions is of the form a\ * ij + b\
and a2 * ij + b2 where ij is as above and a 2, b\, and b2 are constants. Both of our
examples in Figure 9.14 are weakly separable but not separable.

For a separable pair of array references, testing dependence is trivial: a depen
dence exists if either of two situations holds for each subscript position, namely,

1. a = 0 and b\ — b2, or

2. (b\ - b2)/a < hij.

For a weakly separable pair of array references, we have for each subscript
position / a linear equation of the form

a\ * y + b\ = a i * x + bi

or

ai * y = a i * x + 0 2 — b\)

and there is a dependence between the two references if each set of equations for a
particular value of / has a solution that satisfies the inequality given by the bounds
of loop /. Now we appeal to the theory of linear equations and divide the problem
into cases, as follows (in each case, the solutions represent dependences if and only
if they satisfy the bounds inequalities):
(a) If the set of equations has one member, assume it is as given above. Then we

have one linear equation in two unknowns and there are integer solutions if and
only if gcd(a 1, a2) \ (b2 - b\).

(b) If the set of equations has two members, say,

a hi * y = d2,i * * + 0 2 ,1 - b^i)

and

*1,2 * y = *2,2 * X + 0 2 ,2 - &1,2)

Section 9.4 Dependence Testing 283

for i <- 1 to n do
for j <- 1 to n do

f[i] <- g[2*i, j] + 1.0
g[i+l,3*j] h[i,i] - 1.5
h[i+2,2*i-2] <- 1.0/i

endfor
endfor

FIG. 9.16 An example of weak separability.

then it is a system of two equations in two unknowns. If <Z2,i/<zi,i = 02 ,2/^ 1,25
there are rational solutions if and only if

0 2 ,1 - = 0 2 ,2 - &1,2) / * 1,2

and the solutions are easily enumerated. If 02 ,1/01,1 ^ 02,l ! a \,2? then there is one
rational solution, and it is easily determined. In either case, we check that the
solutions are integers and that the required inequalities are also satisfied.

(c) If the set of equations has n > 2 members, then either n — 2 equations are
redundant and this case reduces to the preceding one or it is a system of at least
three equations in two unknowns and is overdetermined.

As an example of weak separability, consider the loop nest in Figure 9.16.
We first consider the g [] references. For there to be a dependence, we must
have for the first subscript

2 * x = y + 1

and for the second

z = 3 * w

The two equations are independent of each other and each has an infinite
number of integer solutions. In particular, there are dependences between the
array references as long as n > 3. For the h[] references, we must satisfy

x = y + 2

and

x = 2 * y — 2

simultaneously. This is easily seen to be true if and only if x = 6 and y = 4, so
there is a dependence if and only if n > 6.

As indicated above, there are numerous other dependence tests available with
varying power and computational complexity (see Section 9.8 for further reading).
These include:

1. the extended GCD test,

2. the strong and weak SIV (single index variable) tests,

284 Dependence Analysis and Dependence Graphs

3. the Delta test,

4. the Acyclic test,

5. the Power test,

6. the Simple Loop Residue test,

7. the Fourier-Motzkin test,

8. the Constraint-Matrix test, and

9. the Omega test.

9.5 Program-Dependence Graphs
Program-dependence graphs, or PDGs, are an intermediate-code form designed
for use in optimization. The PDG for a program consists of a control-dependence
graph (CDG)3 and a data-dependence graph. Nodes in a PDG may be basic blocks,
statements, individual operators, or constructs at some in-between level. The data-
dependence graph is as described above in Sections 9.1 and 9.3.

The CDG, in its most basic form, is a DAG that has program predicates (or, if
the nodes are basic blocks, blocks that end with predicates) as its root and internal
nodes, and nonpredicates as its leaves. A leaf is executed during the execution of the
program if the predicates on the path leading to it in the control-dependence graph
are satisfied.

More specifically, let G = (N, E) be a flowgraph for a procedure. Recall that a
node m postdominates node « , written m pdom n, if and only if every path from n to
e x i t passes through m (see Section 7.3). Then node n is control-dependent on node
m if and only if

1. there exists a control-flow path from m to n such that every node in the path other
than m is postdominated by n and

2. n does not postdominate m.4

To construct the CDG, we first construct the basic CDG and then add so-called
region nodes to it. To construct the basic CDG, we begin by adding a dummy
predicate node called s t a r t to the flowgraph with its “ Y” edge running to the entry
node and its “ N” edge to e x it . Call the resulting graph G + . Next, we construct the
postdominance relation on G + ,5 which can be displayed as a tree, and we define S
to be the set of edges m ^>n in G + such that n does not postdominate m. Now for

3. [Fer087] defines two notions of the control-dependence graph, the one we discuss here (called
by the authors the e x ac t C D G) and the a p p ro x im a te C D G , which shows the same dependences
as the exact CDG for well-structured programs and from which it is somewhat easier to generate
sequential code.
4. Note that this notion of control dependence is a subrelation of the one discussed in Section 9.1.
5. This can be done by reversing the edges in the flowgraph and using either of the dominator-
computation algorithms in Section 7.3.

Section 9.5 Program-Dependence Graphs 285

FIG. 9.17 Flowgraph from Figure 7.4 with s ta r t node added.

exit

B 1

entry

B3 B6

FIG. 9.18 Postdominance tree for the flowgraph in Figure 9.17.

each edge m^>n e S, we determine the lowest common ancestor of m and n in the
postdominance tree (or m itself if it is the root). The resulting node / is either m or
ra’s parent, and all nodes in N on the path from / to n in the postdominance tree
except / are control-dependent on m.

For example, consider the flowgraph shown in Figure 7.4. The result of adding
the s t a r t node is Figure 9.17 and its postdominance tree is shown in Figure 9.18.
The set S consists of start-G entry , B1->B2, B1->B3, and B4->B6, and the basic
CDG is as shown in Figure 9.19.

The purpose of region nodes is to group together all the nodes that have the
same control dependence on a particular predicate node, giving each predicate node
at most two successors, as in the original control-flow graph. The result of adding
region nodes to our example is shown in Figure 9.20.

286 Dependence Analysis and Dependence Graphs

start
Y |

B 1

Y
B6

FIG. 9.19 Basic control-dependence graph for the flowgraph in Figure 9.17.

start
Y |

B 1
N Y

R2

B2
iY i

R3

B6

FIG. 9.20 Control-dependence graph with region nodes for the flowgraph in Figure 9.17.

An important property of PDGs is that nodes control-dependent on the same
node, such as B3 and B5 in our example, can be executed in parallel as long as there
are no data dependences between them.

Several other intermediate-code forms with goals similar to those of the program-
dependence graph have been suggested in the literature. These include the depen
dence flowgraph, the program-dependence web, and the value-dependence graph.

9.6 Dependences Between Dynamically Allocated
Objects
So far we have discussed dependences between machine instructions and between
array accesses, plus the program-dependence graph. Another area of concern is large
dynamically allocated data structures linked by pointers, e.g., lists, trees, DAGs,
and other graph structures that are used in both algebraic and symbolic languages,

Section 9.6 Dependences Between Dynamically Allocated Objects 287

such as lisp , Prolog, and Smalltalk. If we can determine that such a data structure
or graph is, for example, a linked list, a tree, or a DAG, or that parts of it are never
shared (i.e., accessible from two variables at once through a chain of pointers), we
may be able to improve memory or cache allocation for it, just as for arrays.

Some of the pioneering work in this area was done in the mid 1970s by Tenen-
baum and by Jones and Muchnick, designed largely as an attempt to assign data
types to variables in a language in which only data objects have types a priori; there
has been a flurry of research activity in recent years. More recent papers by Deutsch
and by Hummel, Hendren, and Nicolau present approaches with impressive results,
but these approaches require large amounts of computational effort to obtain their
results. (See Section 9.8 for further reading.)

We describe briefly a technique developed by Hummel, Hendren, and Nicolau.
What it does consists of three parts, namely, (1) it develops a naming scheme for
anonymous locations in heap memory by describing the relationships between such
locations; (2) it develops axioms that characterize the basic aliasing relations among
locations and/or the lack thereof in the data structures; and (3) it uses a theorem
prover to establish desired properties of the structures, such as that a particular
structure is a queue expressed as a linked list with items added at one end and
removed from the other.

The naming scheme uses the names of fixed locations and fields in records to
specify relationships. Specifically it uses handles, which name fixed nodes (usually
pointer variables) in a structure and have the form _hvar where var is a variable
name, and access-path matrices, which express relationships between handles and
variables. Thus, for the C type declaration in Figure 9.21(a) and some particular
programs, the axioms in (b) might be applicable. The third axiom, for example, says
that any location reachable from a pointer variable p by one or more accesses of
l e f t or r ig h t components is distinct from the location denoted by p itself.

Figure 9.22 shows a C function that uses the data type defined in Figure 9.21(a)
and that satisfies the given axioms. An access-path matrix for the program point

typedef struct node {struct node *left;
struct node *right;
int val> node;

(a)

Axl: Vp p.left * p.right
Ax2: Vp,q p * q => p.left * q.left,

p.left * q.right,
p.right * q.left,
p.right * q.right

Ax3: Vp p(.left|.right)+ * p.€
(b)

FIG. 9.21 (a) Example of a C type declaration for a recursive data structure, and (b) axioms that
apply to structures built from it.

2 8 8 Dependence Analysis and Dependence Graphs

typedef struct node {struct node *left;
struct node *right;
int val} node;

int follow(ptr,i,j)
struct node *ptr;
int i, j;

{ struct node *pl, *p2;
int n;
pi = ptr;
p2 = ptr;
for (n * 0; n < i; n++)

pi = pl->left;
for (n * 0; n < j; n++)

p2 = p2->right;
return (pi == p2);

}

FIG. 9.22 Example of a C function that uses structures of the type defined in Figure 9.21.

TABLE 9.1 Access-path matrix for the point just preceding
the return in Figure 9.22. The value at the
intersection of row _hvarl and column varl
represents the path from the original value
of varl to the current value of varl. A entry
means there is no such path.

ptr Pi P2
_hptr € left + right+
_hpl - left + right+
_hp2 - left + right+

just preceding the re tu rn is given in Table 9.1. The theorem prover can, given the
axioms in Figure 9.21(b), prove that the function returns 0.

Note that, like most powerful theories, those that describe pointer operations
are undecidable. Thus the theorem prover may answer any of “ yes,” “ no,” or
“ maybe” for a particular problem.

9.7 Wrap-Up
As we have seen in this chapter, dependence analysis is a tool that is vital to instruc
tion scheduling and data-cache optimization, both of which are discussed in their
own chapters below.

For instruction scheduling, dependence analysis determines the ordering rela
tionships between instructions that must be satisfied for the code to execute correctly,

Section 9.8 Further Reading 289

and so determines the freedom available to the scheduler to rearrange the code to
improve performance. In doing so, it takes into account as many of the relevant re
sources as it can. It definitely must determine ordering among instructions that affect
and depend on registers and implicit resources, such as condition codes. It usually
will also disambiguate memory addresses to the degree it is able—often depending
on information passed on to it from earlier phases of the compilation process—again
so as to provide the maximum latitude for scheduling.

As a tool for data-cache optimization, the primary purpose of dependence ana
lysis is to determine, for two or more given memory references—usually subscripted
array references nested inside one or more loops—whether the areas of memory they
access overlap and what relation they have to each other if they do overlap. This
determines, for example, whether they both (or all) write to the same location, or
whether one writes to it and the other reads from it, etc. Determining what depen
dences do hold and which loops they are carried by provides a large fraction of the
information necessary to reorder or otherwise modify the loops and array references
to improve data-cache performance. It is also an essential tool for compilers that do
automatic vectorization and/or parallelization, but that subject is beyond the scope
of this book.

Also, we discussed a relatively new intermediate-code form called the program-
dependence graph that makes dependences explicit and that has been proposed as
a basis for doing data-cache optimization and other sorts of optimizations. Several
variations on this concept are referred to in the text, suggesting that it is not yet clear
which, if any, of them will become important tools for optimization.

We devoted another of the final sections of the chapter to techniques for de
pendence analysis of dynamically allocated objects that are accessed by pointers.
This is an area that has been the subject of research for well over 20 years, and
while effective methods for performing it are becoming available, they are also very
computation-intensive, leaving it in doubt as to whether such techniques will come
to be important components in production compilers.

Further Reading
The reader interested in an exposition of the use of dependence analysis to drive
vectorization or parallelization should consult [Wolf92], [Wolf89b], [Bane88], or
[ZimC91].

The use of resource vectors to compute latency is described in [BraH91]. Our
description of the pipeline of the m i p s R40005s floating-point pipeline is derived
from [KanH92]. Use of a deterministic finite automaton to compute latency is de
scribed in [ProF94].

Dependence vectors are defined by Wolf and Lam in [WolL91]. The proof that
general dependence testing in loop nests is NP-complete is found in [MayH91]. The
GCD test developed by Banerjee and Towle is described in [Bane76] and [Towl76].
The classes of separable and weakly separable array references are defined in
[Call86]. Among the other types of dependence tests in use are the following:

290 Dependence Analysis and Dependence Graphs

Dependence Test References

The extended GCD test
The strong and weak SIV (single index

variable) tests
The Delta test
The Acyclic test
The Power test
The Simple Loop Residue test
The Fourier-Motzkin test

The Constraint-Matrix test
The Omega test

[Bane88]
[GofK91]

[GofK91]
[MayH91]
[WolT90]
[MayH91]
[DanE73] and

[MayH91]
[Wall88]
[PugW92]

[GofK91] and [MayH91] evaluate several tests for their applicability and practi
cality.

Program-dependence graphs are defined in [Fer087]. The alternative forms
are the dependence flowgraph defined in [JohP93], the program-dependence web
of [CamK93], and the value-dependence graph of [WeiC94].

The early work on assigning types to variables in dynamic languages was done
by Tenenbaum ([Tene74a] and [Tene74b]) and by Jones and Muchnick ([JonM76]
and [JonM78]).

Some of the pioneering work in characterizing the memory usage and de
pendences among recursive data structures was done by Jones and Muchnick in
[JonM81a]. More recent work is reported in [WolH90], [Deut94], and [HumH94].

9.9 Exercises
9.1 (a) What are the dependences between the lir instructions in the following basic

block? (b) Use Build_DAG() to construct the scheduling DAG for the block and
draw the resulting dependence DAG.

rl <- [r7+4](4)
r2 <- [r7+8](2)
r3 «- r2 + 2
r4 <- rl + r2
[r5] (4) <- r4
r4 <- r5 - r3
[r5](4) r4
[r7+r2](2) r3
r4 <- r3 + r4
r3 <- r7 + r4
r7 <- r7 + 2

9.2 Let the floating-point addition instruction have the following resource vector:

1 2 3 4 5 6 7

u S,A A,R R,S

Section 9.9 Exercises 291

Supposing that the lir add instruction f4 <- f3 + 1.0 is available for initiation
in cycle 1, compute the latency of the instruction with the pipeline containing
instructions that use the following execution resources in the following stages of
the pipeline:

1 2 3 4 5 6 7 8 9 10 11

M U,A A S R,S S M M,U A S,A R

9.3 Hewlett-Packard’s pa-risc compilers build the basic-block scheduling DAG back
ward, i.e., from the leaves toward the roots, so as to track uses of condition
flags and the instructions that set them. Code a version of Build_DAG() called
Build_Back_DAG () that does this for lir code.

ADV 9.4 Research the notion of extending the dependence graph from a basic block to any
single-entry, single-exit subgraph of a flowgraph that contains no loops. Does this
give additional freedom in instruction scheduling? If so, give an example. If not,
why not?

9.5 What is the iteration-space traversal of the following triply nested hir loop?

for i <- 1 to n do
for j <r- n by -1 to 1 do

for k <r- 1 to n+1 do
51 A[i,j,k] <r- A[i,j-l,k-l] + A[i-l,j,k]
52 B[i,j-l,k] <r- A[i,j-l,k-l] * 2.0
53 A[i,j,k+1] <r- B[i,j,k] + 1.0

endfor
endfor

endfor
9.6 Given the loop nest in the preceding exercise, what are the execution-order and

dependence relationships within it?

9.7 (a) Write an algorithm that, given a distance vector, produces the minimal depen
dence vector that covers it, where d\ covers di if and only if any dependence ex
pressed by dj is also represented by d\. (b) Do the same thing for direction vectors.

9.8 Give a three-deep loop nest that the GCD test determines independence for.

RSCH 9.9 Research the Delta test described in [GofK91]. (a) How does it work? (b) How
effective is it? (c) What does it cost?

RSCH 9.10 Research the Omega test described in [PugW92]. (a) How does it work? (b) How
effective is it? (c) What does it cost?

RSCH 9.11 Research the notion of extending dependence to synchronized accesses to shared
variables in a parallel language; i.e., what are appropriate meanings for Si <$f S2 ,
Si <$a S2, etc. in this situation?

CHAPTER 10

Alias Analysis

Alias analysis refers to the determination of storage locations that may be
accessed in two or more ways. For example, a C variable may have its ad
dress computed and be assigned to or read from both by name and through
a pointer, as shown in Figure 10.1, a situation that can be visualized as shown in

Figure 10.2, where the boxes represent the variables, with each box labeled with its
name and containing its value. As hinted at in Chapter 8, determining the range of
possible aliases in a program is essential to optimizing it correctly, while minimiz
ing the sets of aliases found is important to doing optimization as aggressively as
possible. If we should happen to miss identifying an alias, we can very easily pro
duce incorrect code for a program. Consider the C code fragment in Figure 10.3.
The second k = a + 5 assignment is redundant if and only if both the call to f ()
and the assignment through the pointer q leave the values of both k and a unmodi
fied. Since the address of k is passed to f (), it might alter k’s value. Since q is exter
nal, either f () or some earlier unshown code in procedure examl() might have
set it to point to either a or k. If either of these situations is the case, the second
k = a + 5 assignment is not provably redundant. If neither of them is the case, the
assignment is redundant. This example shows the significance of both intrapro
cedural and interprocedural alias determination. In practice, intraprocedural alias
determination is usually the more important of the two. We consider it here in detail
and leave the interprocedural case to Chapter 19.

Despite the fact that high-quality aliasing information is essential to correct
and aggressive optimization, there are many programs for which only the most
minimal such information is needed. Despite the fact that a C program may contain
arbitrarily complex aliasing, it is sufficient for most C programs to assume that only
variables whose addresses are computed are aliased and that any pointer-valued
variable may point to any of them. In most cases, this assumption places minimal
restrictions on optimization. If, on the other hand, we have a C program with
200 variables such that 100 of them have their addresses computed and the other

293

294 Alias Analysis

mainO
{ int *p;

int n;
p = &n;
n = 4;
printf ("°/0d\n", *p);

>

FIG. 10.2 Relationship between the variables at the call to p rin tf () in Figure 10.1.

examl()
{ int a, k;

extern int *q;

k = a + 5;
f(a,&k);
*q = 13;
k = a + 5; /* redundant? */

FIG. 10.3 Example of the importance of alias computation.

100 are pointer-valued, then clearly aggressive alias analysis is essential to most
optimizations that might be performed on the program.

In the following chapters on global optimization, we generally assume that alias
analysis has been performed and do not mention it further. Nevertheless, the reader
must be aware that alias analysis is essential to performing most optimizations
correctly, as the above example suggests.

It is useful to distinguish may alias information from must alias information.
The former indicates what may occur on some path through a flowgraph, while the
latter indicates what must occur on all paths through the flowgraph. If, for example,
every path through a procedure includes an assignment of the address of variable
x to variable p and only assigns that value to p, then “p points to x ” is must alias
information for the procedure. On the other hand, if the procedure includes paths
that assign the address of y to pointer variable q on one of the paths and the address
of z on another, then “ q may point to y or z ” is may alias information.

It is also useful to distinguish flow-sensitive from flow-insensitive alias informa
tion. Flow-insensitive information is independent of the control flow encountered in

FIG. 10.1 Simple pointer aliasing in C.

n 4

>

Alias Analysis 295

a procedure, while flow-sensitive aliasing information depends on control flow. An
example of a flow-insensitive statement about aliasing is that “p may point to x be
cause there is a path on which p is assigned the address of x .” The statement simply
indicates that a particular aliasing relationship may hold anywhere in the procedure
because it does hold somewhere in the procedure. A flow-sensitive example might
indicate that “p points to x in block B 7.” The above-mentioned approach to alias
analysis for C that simply distinguishes variables whose addresses are taken is flow
insensitive; the method we describe in detail below is flow sensitive.

In general, the may vs. must classification is important because it tells us whether
a property must hold, and hence can be counted on, or that it only may hold, and so
must be allowed for but cannot be counted on. The flow-sensitivity classification
is important because it determines the computational complexity of the problem
under consideration. Flow-insensitive problems can usually be solved by solving
subproblems and then combining their solutions to provide a solution for the whole
problem, independent of control flow. Flow-sensitive problems, on the other hand,
require that one follow the control-flow paths through the flowgraph to compute
their solutions.

The formal characterization of aliasing depends on whether we are concerned
with may or must information and whether it is flow sensitive or flow insensitive.
The cases are as follows:

1. Flow-insensitive may information: In this case, aliasing is a binary relation on the
variables in a procedure alias e Var x Var, such that x alias y if and only if x and
y may, possibly at different times, refer to the same storage location. The relation is
symmetric and intransitive.1 The relation is intransitive because the fact that a and b
may refer to the same storage location at some point and b and c may, likewise, refer
to the same location at some point does not allow us to conclude anything about a
and c—the relationships a alias b and b alias c may simply hold at different points
in the procedure.

2. Flow-insensitive must information: In this case, aliasing is again a binary relation
alias e Var x Var, but with a different meaning. We have x alias y if and only if
x and y must, throughout the execution of a procedure, refer to the same storage
location. This relation is symmetric and transitive. If a and b must refer to the same
storage location throughout execution of a procedure and b and c must refer to the
same storage location throughout execution of the procedure, then, clearly, a and c
refer to the same location also.

3. Flow-sensitive may information: In this case, aliasing can be thought of as a set
of binary relations, one for each program point (i.e., between two instructions) in
a procedure that describes the relationships between variables at that point, but it
is clearer and easier to reason about if we make aliasing a function from program
points and variables to sets of abstract storage locations. In this formulation, for a
program point p and a variable v, Alias(p, v) = SL means that at point p variable v

1. It does not matter whether we make the relation reflexive or irreflexive, since x alias x provides
no useful information.

296 Alias Analysis

may refer to any of the locations in SL. Now if Alias(p, a) Pi Alias(p, b) ^ 0 and
Alias(p,b) fl Alias(p,c) ^ 0, then it may be the case that Alias(p, a) Pi Alias(p,c)
7 ̂ 0 also, but this is not necessarily the case. Also, if p i, p2, and p3 are distinct pro
gram points, Alias(p i , a) Pi Alias(p2,a) ^ 0, and Alias(p2,a) Pi Alias(p3,a) ^ 0,
then, likewise, it may also be the case that Alias{p i, a) Pi Alias(p3^a) ^ 0.

4. Flow-sensitive must information: In this case, aliasing is best characterized as a
function from program points and variables to abstract storage locations (not
sets of locations). In this formulation, for a program point p and a variable z/,
Alias(p, Z/) = / means that at point p variable z/ must refer to location /. Now if
Alias(p, <z) = Alias(p, b) and Alias(p, b) = Alias(p, c), then it must be the case
that A lias(p,a) = Alias(p,c) also. Similarly, if p i, p2, and p3 are distinct pro
gram points, A/z'tfs(pi, a) = Alias(p2, a), and Alias(p2^ a) = Alias(p3, a), then it
must also be the case that A lias(p l,a) = Alias{p3,a). Thus, flow-sensitive must
aliasing information for a particular program point is a transitive relation between
variables, and flow-sensitive must information for a particular variable is a transitive
relation between program points. It is also easy to see that each of those relations is
symmetric.

This classification is further complicated by the inclusion of pointers in a language
as is the case, for example, in C. Then any object that may refer to a storage
location, such as a pointer field in a record, may be aliased to any other reference
to a location. Thus, in a language with pointers, aliasing is a relation or function
between references to locations, where references include any objects that may have
pointers as their values, not just variables.

The sources of aliases vary from language to language, but there is a common
component to alias computation as well. For example, a language may allow two
variables to overlay one another or may allow one to be a pointer to the other or
not, but regardless of these language-specific rules, if variable a is pointed to by
variable b and b is pointed to by c at a given execution point, then a is reachable by
following pointers from c. Thus, we divide alias computation into two parts: 1

1. a language-specific component, called the alias gatherer\ that we expect the compiler
front end to provide us; and

2. a single component in the optimizer, called the alias propagator\ that performs a
data-flow analysis using the aliasing relations discovered by the front end to combine
aliasing information and transfer it to the points where it is needed.

The language-specific alias gatherer may discover aliases that are present because of

1. overlapping of the memory allocated for two objects;

2. references to arrays, array sections, or array elements;

3. references through pointers;

4. parameter passing; or

5. combinations of the above mechanisms.

Section 10.1 Aliases in Various Real Programming Languages 297

exam2()
{ int a, b, c[100], d, i ;

extern int *q;

q = &a;
a = 2;
b = *q + 2;

q = &b;
for (i = 0; i < 100; i++) {

c[i] = c[i] + a;
*q - i ;

>
d = *q + a;

>
FIG. 10.4 Different aliases in different parts of a procedure.

Before we delve into the details, we consider the granularity of aliasing informa
tion that we might compute and its effects. In particular, it might be the case that
two variables are provably not aliased in one segment of a procedure, but that they
are either aliased or not determinable not to be aliased in another part of it. An ex
ample of this is shown in Figure 10.4. Flere q points to a in the first section of the
code, while it points to b in the second section. If we were to do flow-insensitive
may alias computation for the entire procedure (assuming that no other statements
affect the possible aliases), we would simply conclude that q could point to either a
or b. This would prevent us from moving the assignment *q = i out of the fo r loop.
On the other hand, if we computed aliases with finer granularity, we could conclude
that q cannot point to a inside the loop, which would allow us to replace the *q = i
assignment inside the loop with a single *q = 100, or even b = 100, after the loop.
While this degree of discrimination is definitely valuable in many cases, it may be
beyond the scope of what is acceptable in compilation time and memory space. One
choice is that of the Sun compilers (see Section 21.1), namely, (optional) aggressive
computation of alias information, while the other is taken in the m i p s compilers,
which simply assume that any variable whose address is computed can be aliased.

Thus, we leave it to the individual compiler writer to choose the granularity
appropriate for a given implementation. We describe an approach that does distin
guish individual points within a procedure; the reader can easily modify it to one that
does not.

10.1 Aliases in Various Real Programming Languages
Next we consider the forms of alias information that should be collected by a
front end and passed on to the alias propagator. We examine four commonly used
languages, namely, Fortran 77, Pascal, C, and Fortran 90. We assume that the
reader is generally familiar with each of the languages. Following exploration of
aliasing in these four languages, we present an approach to alias gathering that

298 Alias Analysis

is similar in some respects to that taken in the Hewlett-Packard compilers for pa-
risc , but that differs from it significantly in alias propagation. While that compiler’s
propagation method is flow insensitive, ours is specifically flow sensitive—in fact,
the propagation method we use is data-flow-analytic, i.e., it performs a data-flow
analysis to determine the aliases.

10.1.1 Aliases in Fortran 77
In ANSI-standard Fortran 77, there are comparatively few ways to create aliases and
they are mostly detectable exactly during compilation. However, one consideration
we must keep in mind is that established programming practice in this area occasion
ally violates the Fortran 77 standard; and most compilers follow practice, at least to
some degree, rather than the standard.

The EQUIVALENCE statement can be used to specify that two or more scalar
variables, array variables, and/or contiguous portions of array variables begin at
the same storage location. The variables are local to the subprogram in which they
are equivalenced, unless they are also specified in a COMMON statement, in which case
they may be accessible to several subprograms. Thus, the effects of aliases created
by EQUIVALENCE statements are purely local and statically determinable, as long as
the equivalenced variables are not also in common storage, as described in the next
paragraph.

The COMMON statement associates variables in different subprograms with the
same storage. COMMON is unusual for modern programming languages in that it
associates variables by location, rather than by name. Determining the full effects
of variables in common storage requires interprocedural analysis, but one can at
least determine locally that a variable is potentially affected by other subprograms
because it is in common storage.

In Fortran 77, parameters are passed in such a way that, as long as the actual
argument is associated with a named storage location (e.g., it is a variable or an array
element, rather than a constant or an expression), the called subprogram can change
the value of the actual argument by assigning a value to the corresponding formal
parameter.2 It is not specified in the standard whether the mechanism of argument-
parameter association is call by reference or call by value-result; both implement the
Fortran 77 convention correctly.

Section 15.9.3.6 of the Fortran 77 standard says that if one passes the same ac
tual argument to two or more formal parameters of a subprogram or if an argument
is an object in common storage, then neither the subprogram nor any subprograms in
the call chain below it can assign a new value to the argument. If compilers enforced
this rule, the only aliases in Fortran 77 would be those created by EQUIVALENCE and
COMMON statements. Unfortunately, some programs violate this rule and compilers
sometimes use it to decide whether a construct can be optimized in a particular way.
Thus, we might consider there to also exist a “practical” Fortran 77 that includes
aliases created by parameter passing (see Section 15.2 for an example), but we would

2. The actual Fortran terminology is “ actual argument” and “dummy argument.”

Section 10.1 Aliases in Various Real Programming Languages 299

be on dangerous ground in doing so—some compilers would support it consistently,
others inconsistently, and some possibly not at all.

Fortran 77 has no global storage other than variables in common, so there are no
other ways to create aliases with nonlocal objects than by placing them in common
or by violating the parameter-passing conventions as just described.

Several Fortran 77 compilers include the Cray extensions. These provide, among
other things, a limited pointer type. A pointer variable may be set to point to a
scalar variable, an array variable, or an absolute storage location (called the pointer’s
pointee), and the pointer’s value may be changed during execution of a program.
However, it cannot point to another pointer. Also, a pointee cannot appear in a
COMMON or EQUIVALENCE statement or be a formal parameter. This extension greatly
increases the possibilities for alias creation, since multiple pointers may point to the
same location. The Cray compiler, on the other hand, assumes during compilations
performed with optimization enabled that no two pointers point to the same location
and, more generally, that a pointee is never overlaid on another variable’s storage.
Clearly, this places the burden of alias analysis on the programmer and can cause
programs to produce different results according to whether optimization is enabled
or not, but it also allows the compiler to proceed without doing alias analysis on
pointers or to proceed by making worst-case assumptions about them.

10.1.2 Aliases in Pascal
In ANSI-standard Pascal, there are several mechanisms for creating aliases, including
variant records, pointers, variable parameters, access to nonlocal variables by nested
procedures, recursion, and values returned by functions.

Variables of a user-defined record type may have multiple variants and the
variants may be either tagged or untagged. Allowing multiple untagged variants
is similar to having equivalenced variables in Fortran 77—if a variable is of an
untagged variant-record type, its variant fields may be accessed by two or more sets
of names.

A Pascal variable of a pointer type is restricted to have either the value n i l or
to point to objects of a particular specified type. Since the language provides no
way to obtain the address of an existing object, a non-null pointer can point only
to an object allocated dynamically by the procedure new(). new(p) takes a pointer
variable p as its argument, allocates an object of the type declared to be pointed to
by p, and sets p to point to it.3 Pointer variables of a given type may be assigned
to other pointer variables of the same type, so multiple pointers may point to the
same object. Thus, an object may be accessible through several pointers at once, but
it cannot both have its own variable name and be accessible through a pointer.

Pascal procedure parameters are either value parameters or variable parameters.
An actual argument passed to a value parameter cannot be changed by the called
procedure through the parameter, and so value parameters do not create aliases.

3. new() may be given additional arguments that specify nested variants of the record type its first
argument points to; in that case, it allocates an object of the specified variant type.

300 Alias Analysis

Variable parameters, on the other hand, allow the called routine to change the
associated actual argument, and hence do create aliases.

Also, Pascal allows procedure definitions to be nested and inner procedures to
access variables defined in outer ones, as long as they are visible, i.e., as long as
no intervening procedure in the nesting sequence defines a variable with the same
name. Thus, for example, a dynamically allocated object in a Pascal program may
be accessible as a variable parameter, through a locally declared pointer, and through
a nonlocally declared pointer all at once.

A Pascal procedure may be recursive, so that a variable declared in an inner
scope may be accessible to multiple invocations and a local variable of one invoca
tion of it may be accessible as a variable parameter of a deeper invocation.

Finally, a Pascal procedure may return a pointer and hence can create an alias
for a dynamically allocated object.

10.1.3 Aliases in C
In ANSI-standard C, there is one mechanism for creating static aliases, namely, the
union type specifier, which is similar in its effect to Fortran 77’s EQUIVALENCE
construct. A union type may have several fields declared, all of which overlap in
storage. C union types differ from Fortran’s equivalenced variables, however, in that
a union type may be accessed by a pointer and may be dynamically allocated.

Notice that we did not say “ dynamically allocated and so accessed by a pointer”
in the last sentence. C allows objects to be dynamically allocated and, of course,
references to them must be through pointers, since there is no dynamic name-
creation mechanism. Such objects can be referenced through multiple pointers, so
pointers may alias each other. In addition, it is legal in C to compute the address
of an object with the & operator, regardless of whether it is statically, automatically,
or dynamically allocated and to access or store to it through a pointer assigned its
address.

C also allows arithmetic on pointers and considers it equivalent to array
indexing—increasing a pointer to an array element by 1 causes it to point to the
next element of the array. Suppose we have the code fragment

in t a [100], *p ;

p = a ;
p = &a [0] ;
a [l] = 1;
* (p + 2) = 2 ;

Then the two assignments to p assign it exactly the same value, namely, the address
of the zeroth element of array a [] , and the following two assignments assign 1 to
a [1] and 2 to a [2], respectively. Even though a C array b [] declared to be of length
n contains elements numbered from 0 through « — 1, it is legal to address b [«],
as in

Section 10.1 Aliases in Various Real Programming Languages 301

int b[100], p;

fo r (p = b; p < &b[100]; p++)
*p = 0;

but not valid to dereference b M . Thus, a pointer-valued expression may alias an
array element, and the element it aliases may change over time. Pointer arithmetic
could conceivably be used indiscriminately to sweep through memory and create
arbitrary aliases, but the ansi C standard rules the behavior of code that does this
to be undefined (see Section 3.3.6 of the ansi C standard).

C also can create aliases by parameter passing and by returning a pointer value
from a function. Although all arguments in C are passed by value, they can create
aliases because they may be pointers to arbitrary objects. Also, there is no restriction
in C regarding passing the same object as two distinct arguments to a function, so,
for example, a function such as

f (i,j)
int *i, *j;
{ *i = *j + 1;
>

can be invoked with a call such as f (&k,&k), unlike in standard Fortran 77. Further,
an argument may point to a global variable, making it accessible in the procedure
both by name and through the pointer. A pointer returned as the value of a function
may point to any object accessible both to the function and to its caller, and hence
may be aliased to any actual argument to the function that is a pointer or any object
with global scope.

As in Pascal, recursion can also create aliases—a pointer to a local variable of
one invocation of a recursive routine may be passed to a deeper invocation of it and
a static variable may be accessible to multiple levels of invocations.

10.1.4 Aliases in Fortran 90
Standard Fortran 90 includes Fortran 77 as a subset, so all the possibilities for
creating aliases in Fortran 77 also apply to Fortran 90. In addition, three new
mechanisms can create aliases, namely, pointers, recursion, and internal procedures.

A Fortran 90 pointer may refer to any object that has the TARGET attribute,
which may be any dynamically allocated object or a named object declared with
that attribute. Possible targets include simple variables, arrays, and array slices.

Recursion creates aliases in essentially the same way that it does in Pascal and C.
The only significant difference is that a Fortran 90 recursive routine must be declared
RECURSIVE.

Internal procedures create aliases in the same ways as in Pascal—nonlocal vari
ables may be accessed through the argument-parameter association mechanism also.

302 Alias Analysis

The Fortran 90 standard extends the restriction in the Fortran 77 standard concern
ing changes made through such aliases, but, in our opinion, this is as likely to be
observed consistently in practice as the original restriction.

10.2 The Alias Gatherer
To describe the kinds of aliases encountered in Fortran 77, Pascal, C, Fortran 90, and
other compiled languages, we use several relations that represent possible aliasing
relationships among linguistic objects and several functions that map potentially
aliased objects to abstract storage locations. In both cases, the classifications are
“potential” since we must err on the side of conservatism—if there may be an alias
relationship between two objects and we cannot prove that there isn’t, we must
record it as potentially present, lest we miss an alias that actually is present and
possibly optimize the program in a way inconsistent with its semantics as a result.

As we shall see in the development that follows, there is a series of choices we
must make as to how finely we discriminate among possible aliases. For example,
if we have a structure s with two members s i and s2 in either Pascal or C, then
the storage for s overlaps with that for both s . s l and s .s 2 , but s . s l and s .s 2
do not overlap each other. This distinction may or may not be important to make,
and there are trade-offs that can guide our choice. Making the distinction generally
requires more space during compilation, and usually more time, and may result in
better code. As compiler writers, we can either make the choice once and for all, or
we can leave it to the user to select one or the other, generally as just one part of
selecting the amount of effort expended in optimization. The choice to take one or
the other of these approaches may be guided by the amount of effort we can devote
to writing a compiler, but it should also be guided by experience that determines the
differential effectiveness of the approaches.

We can choose to try to distinguish dynamically allocated storage areas from
one another, or not to do so. If we do distinguish them, we need a way to name
such areas and a means to keep the overall representation of aliasing information
bounded in size. In the treatment that follows, we do not attempt to distinguish
dynamically allocated storage areas; instead we simply lump them together by type
or all in one, as appropriate for the language we are processing.

Also, as mentioned at the beginning of this chapter, we can choose flow-sensitive
or flow-insensitive aliasing, i.e., to distinguish alias relationships at individual points
within a procedure or not. Our analysis here distinguishes them; collapsing the
information we collect so as not to differentiate among points within a procedure
is an easy exercise.

We gather individual items of alias information from individual statements in the
source code and pass them on to an optimizer component called the alias propagator
(discussed in the next section) to propagate them to all points within a procedure.
For alias gathering, we consider the flowgraph of a procedure to consist of individual
statements connected by control-flow edges. Alternatively, we could use basic blocks
and compute the effect of a block as the functional composition of the effects of its
individual statements.

Section 10.2 The Alias Gatherer 303

FIG. 10.5 A flowgraph that provides examples of aliasing concepts.

Let P denote a program point, i.e., a point between two statements in a program;
in the flowgraph representation, a program point P labels an edge. The program
points entry+ and e x it- , respectively, immediately follow the entry node and imme
diately precede the exit node. Let stmt(P) denote the (unique) statement immediately
preceding P in the flowgraph.

The flowgraph in Figure 10.5 is designed to illustrate some of the concepts used
in alias gathering and propagation. It has a single instruction in each node, and the
edges are labeled with program points, namely, entry+, 1, 2 , . . . , and e x it- , stm t(l)
is receive p (v a l) and stmt(exi t -) is return q.

Let x denote a scalar variable, an array, a structure, the value of a pointer,
etc., and let memp(x) denote an abstract memory location associated with object
x (at point P in a program). Let star(o) denote a static or automatically allocated
memory area occupied by linguistic object o. Let anon(ty) denote the “ anonymous”
dynamic memory allocated for objects of type ty and anon denote all dynamic
memory allocated in a procedure. We assume that all typed anonymous areas are
distinct, i.e.,

Wyl, ty2, if ty\ ^ ty l , then anon(ty\) ^ anon(ty2)

304 Alias Analysis

For all P and x, memp(x) is either star(x) ifx is statically or automatically allocated,
anon(ty) if x is dynamically allocated (where ty is the type of x), or anon if x is
dynamically allocated and its type is not known. We use nil to denote the null pointer
value.

The memory associated with i at point 2 in Figure 10.5, written raem2(i), is
star{i) and mem^{q) is anon(p tr), where p tr denotes the type of a pointer. Also,
ptr9(p) = ptr9(q).

Let any denote the set of all possible storage locations and any{ty), where ty is a
type, denote all possible locations of that type; the latter and anon(ty) are useful
for Pascal, since it restricts each pointer to point only to objects of a particular
type. Let globals denote the set of all possible globally accessible storage locations.
For Fortran, globals includes all locations in common storage; for C, it includes
all variables declared outside procedure bodies and those declared with the extern
attribute.

We define a series of functions that map program points P and objects x that
may hold values (i.e., variables, arrays, structure fields, etc.) to abstract memory
locations, as follows:

1. ovrp(x) = the set of abstract memory locations that x may overlap with at program
point P.

2. ptrp(x) = the set of abstract memory locations that x may point to at program
point P.

3. refp(x) = the set of abstract memory locations reachable through arbitrarily many
dereferences from x at program point P; note that if we define refp(x) = ptrp(x) and
for i > 1,

refp(x) = ptr? (fields{reflf l {x)))

where fields(x) is x if x is a pointer and is the set of pointer-valued fields in x if x is
a structure, then

oo
refp(x) = (J refp(x)

i= l

In many cases, computing refp(x) could result in nontermination. Any practical alias
propagator needs to include a way to terminate such computations, at worst by re
turning any or any{ty) after some number of iterations. The appropriate method
depends on the problem being solved and the desired degree of detail of the infor
mation obtained.

4. ref(x) = the set of abstract memory locations reachable through arbitrarily many
dereferences from x, independent of the program point.

We also define a predicate extal{x), which is true if and only ifx may have (possibly
unknown) aliases external to the current procedure, and two functions that map
procedure names to sets of abstract memory locations, as follows:

Section 10.2 The Alias Gatherer 305

1. usesp(pn) = the set of abstract memory locations that a call to procedure pn in
stmt(P) may have used, and

2. modsp(pn) = the set of abstract memory locations that a call to procedure pn in
stmt(P) may have modified.

Now, consider standard Fortran 77’s aliasing rules. We can express them quite
simply in our notation as follows:

1. if variables a and b are equivalenced in a subprogram, then for all P in it, ovrp(a) =
ovrp(b) = [memp(a)\ — {memp(b)} and

2. if variable a is declared to be in common storage in a subprogram, then extal(a) is
true.

It follows from (2) that for any call to a subprogram pn that occurs as stmt(P), if
extal(a) then {memp(a)} c usespipn); also, {memp(a)} c modsp(pn) if and only if a
is an actual argument to the call to pn in stmt(P).

The Cray Fortran extensions, Fortran 90, and Pascal all represent increased
levels of complexity in alias determination, compared to Fortran 77. However, the
extreme case is represented by aliasing in C, which we consider next. It requires
many more rules and much greater complexity to describe. We assume for alias
analysis that an array is an aggregate of unknown structure. Thus, a pointer to an
element of an array is assumed to alias the entire array.

Note that the following set of rules does not describe C completely. Instead, it
is sufficient to give the flavor of the types of rules needed and a model for how to
construct them.

In all the rules for C below and in the next section, P is a program point and
P' is a (usually, the only) program point preceding P. If P has multiple predecessors,
the appropriate generalization is to form the union of the right-hand sides over all
predecessors, as shown below in Section 10.3.

1. If stmt(P) assigns a null pointer value to p, then

ptrP(p) = 0

This includes, e.g., failure returns from an allocator such as the C library’s malloc ()
function.

2. If stmt(P) assigns a dynamically allocated storage area to p, e.g., by a call to
m alloc() or c a llo c () , then

ptrp(p) = anon

3. If stmt(P) is “p = &<z” , then

ptrP(p) = {memp(a)} = {memp<{a)}

4. If stmt(P) is “p i = p2” , where p i and p2 are pointers, then

\ tnemeatrj+(*p2) HP' = entry+ptrF<p» = p,rF(PZ> = j puApl) otherw|se

306 Alias Analysis

5. If stmt(P) is “p i = p2->p3” , where p i and p2 are pointers and p3 is a pointer field,
then

ptvp(pl) = ptrP,(p2->p3)

6. If stmt(P) is “p = ka [exprl ” , where p is a pointer and a is an array, then

ptrP(p) = ovrp(a) = ovrp'(a) = {memP>{a)}

7. If stmt(P) is “p = p + /” , where p is a pointer and i is integer-valued, then

ptrP(p) = ptrP,(p)

8. If stmt(P) is “ *p = then

ptrP(p)= p t r P,(p)

and if the value of *p is a pointer, then

ptrP(*p) = ptrP(a) = ptrF (a)

9. If stmt(P) tests “p == g ” for two pointer-valued variables and P labels the Y exit
from the test, then

ptrP(p) = ptrP(q) = ptrP,(p) n ptrP,(q)

since taking the Y exit establishes that p and q point to the same location.4

10. For st a structure type with fields s i through s«, and s a static or automatic object
of type st and every P,

n

ovrp(s) = [memP(s)} = (^J {memP(s.si)}
;=1

and also, for each /,

{memP(s.si)} = ovrP(s.si) c ovrP(s)

and for all j # /,

ovrP(s . si) fl ovrp(s . s/) = 0

11. For st a structure type with fields s i through sn, and p a pointer such that stmt(P)
allocates an object s of type st,

n

ptrp(p) = {memp(*p)\ = \J{m em P(p->si)}
i = l

4. No new information is available on the N exit, unless we use an even more complex approach
to alias analysis involving sets of tuples of the current aliases of individual variables similar to the
relational method of data-flow analysis developed by Jones and Muchnick [JonM81b].

Section 10.3 The Alias Propagator 307

10.3

and for each /,

{memp(*p->si)} = ptrP(p->si) C ptrP(s)

and for all / ^ /,

ptrP(p->si) fl ptrP(p->sj) = 0

and for all other objects x,

ptrP(p) n {memP(x)} = 0
since upon allocation of the object each field has a distinct address.

12. For ut a union type with components ul through un, and u a static or automatic
object of type ut and every P,

ovrp(u) = (m^mp(w)} = {memp(u.ui)}

for / = 1 , . . . ,

13. For a union type with components «1 through and p a pointer such that
stmt(P) allocates an object of type ut,

ptrP(p) = {raerap(*p)} = {memP(p->ui)}

for / = 1 , . . . , also, for all other objects x,

ptrP(p) IT {memP(x)} = 0

14. If stmt(P) includes a call to a function /*(), then

= refF (p)

for all pointers p that are arguments to), for those that are global, or for those
that are assigned the value returned by f ().

Again, as noted above, this is not a complete set of rules for C, but is enough to cover
a significant part of the language and the difficulties it presents to alias analysis. This
description suffices for the three examples we work out in the next section, and may
be extended by the reader as necessary.

The Alias Propagator
Now that we have a method for describing the sources of aliases in a program
in an essentially language-independent way, we proceed to describe the optimizer
component that propagates that information to each individual statement and that
makes it available for other components to use.

To propagate information about aliases from their defining points to all the
points in a procedure that might need it, we use data-flow analysis. The flow func
tions for individual statements are those described in the preceding section, ovrp{)
and ptrP{). The global flow functions are capitalized versions of the same names.

308 Alias Analysis

In particular, let P denote the set of program points in a procedure, O the set of ob
jects visible in it, and S the set of abstract memory locations. Then ovr: P x O -> 2s
and Ptr: P x O -> 2s map pairs of program points and objects to the sets of abstract
memory locations that they may overlap with or point to, respectively, at the given
point in the procedure—in the case of P tr(), the argument objects are all pointers.
O vr() and P tr() are defined as follows:

1. Let P be a program point such that stmt(P) has a single predecessor P'. Then

^ , [ovrp(x) if stmt(P) affects x
Otr(P, jc) = 1 ,

l O vr(P\x) otherwise

and

p (p f , \ - l PtrP(P) if stmt(P) affects p
r(’ P> [Ptr(P',p) otherwise

2. Let stmt(P) have multiple predecessors PI through Pn and assume, for simplicity,
that stmt(P) is the empty statement. Then, for any object x:

n
Ovr(P, x) = Ovr(Pi, x)

i= 1

and for any pointer variable p :
n

P£r(P, p) = Ptr(Pi, p)
/= l

3. Let P be a program point followed by a test (which is assumed for simplicity’s sake
not to call any functions or to modify any variables) with multiple successor points
PI through Pn. Then, for each i and any object x:

Ovr(Pi, x) = Ovr(P, x)

and for any pointer variable p:

Ptr(Pi, p) = Ptr(P, p)

except that if we distinguish the Y exit from a test, we
information available, as indicated in case (9) above.

As initial values for the O v r{) and P tr{) functions, we

Ovr(P, x) = I (stor(*)} if P = entry+
’ I 0 otherwise

may have more precise

use for local objects x:

and for pointers p:

Ptr(P9p)

0
any
{mementTy+(*p)}
0

if P = entry+ and p
if P = entry+ and p
if P = entry+ and p
otherwise

is local
is global
is a parameter

where star(x) denotes the memory area allocated for x to satisfy its local declaration.

Section 10.3 The Alias Propagator 309

typedef struct {int i; char c;} struct_type;
struct.type s, *ps, **ppsl, **pps2, arr[100];
ppsl = &ps;
pps2 = ppsl;
*pps2 = &s;
ps->i = 13;
func(ps);
arr [1].i = 10;

FIG. 10.6 One of Coutant’s C aliasing examples.

1 entry |
entry+

ppsl = &ps
1

pps2 = ppsl
2

| *pps2 = &s |
3

| ps->i = 13 |
4

1 func(ps) 1
5

| arr [1].i = 10 |
exit-

| exit |

FIG. 10.7 Flowgraph for the C code in Figure 10.6.

Next, we work three examples of alias gathering and propagation in C.
The first, from Coutant [Cout86], is for the C code shown in Figure 10.6, for

which we construct the flowgraph shown in Figure 10.7. We proceed by constructing
the flow functions for the individual statements. For ppsl = &ps, we get

ptr t (ppsl) = { m e n t i s) } = {raeraentry+(Ps)} = { s t a r t s) }

For pps2 = ppsl, we get

ptr2(pps2) = p tr2{ ppsl) = p trx(ppsl)

For *pps2 = &s, we get
P^3(pps2) = ptr2(pps2)

ptr 3(*pps2) = ptrz{k s) = p tr2(k s) = ovr2(s)

310 Alias Analysis

For ps->i = 13, we get no equations. For func(ps), we get
ptrb(ps) = ref4(ps)

And, finally, for a rr [1] . i = 10, we get no equations.
The initial values of the Ovr() function are

0&r(entry+, s) = (star(s)}
Ovr (entry+, ps) = (star(ps)}
Otr(entry+, ppsl) = (star(ppsl)}
Ovr(e ntry+, pps2) = [star{ pps2)}
Ovr(entry+, arr) = [star{arr)}

and Oi/r(P, x) = 0 and Ptr(P, p) — 0 for all other P, x, and p. Next, we compute
the values of Ovr(P, x) and P£r(P, p) for P = 1, 2 , . . . , e x it- ; we show only those
values for which the function value differs from its value at the preceding program
point for the same argument object or pointer—in particular, we show no Ovr(P, x)
values, since they are all identical to the corresponding Otr(entry+, x) values. For
P = 1, we get

Ptr(1, ppsl) = (star(ps)}
For P = 2, we get

Ptr{ 2, pps2) = {star (ps)}
For P = 3, we get

P£r(3, ps) = ovr2(s) = (star(s)}
Finally, for P = 5, we get

Ptr(5y ps) = refs(ps) U |̂ J re/*(p) = star(s)
peglobals

since we assume that there are no globals visible. Figure 10.8 shows the result
of translating the code fragment to mir and annotating it with aliasing informa
tion. Our analysis has shown several things. First, we have determined that both
p psl and pps2 point to ps at point 2 in the flowgraph (or, in the mir code, af
ter the assignment pps2 <- ppsl). Thus, any assignment that dereferences either
pointer (such as the one that immediately follows that mir instruction, namely,
*pps2 <- t l) affects the value pointed to by both of them. Also, we have determined
that ps points to s at point 3, so the assignment that immediately follows that point
in the mir code (namely, * p s . i <- 13) affects the value of s.

As a second example, consider the C code shown in Figure 10.9 and the corre
sponding flowgraph in Figure 10.10. There are two nontrivial flow functions for the
individual statements, as follows:

ptrx{p) = {raerai(i)} = [star{ i)}
ptr3(q) = {mem3ij)} = {star(j) }

Section 10.3 The Alias Propagator 311

begin 11 Aliases
ppsl <- addr ps 11 star(ps)
pps2 <- ppsl 11 star{ ps)
*pps2 <- addr s 11 star(s)
*ps.i <- 13
call func,(ps,type1) 11 star(s)
t2 <- addr arr
t3 <- t2 + 4
*t3.i <- 10

end
FIG. 10.8 mir code for the C program fragment in Figure 10.6 annotated with aliasing information.

int arith(n)
int n;

{ int i, j, k, *p, *q;
p = &i;
i = n + 1;
q = &j;
j = n * 2;
k = *p + *q;
return k;

>

FIG. 10.9 A second example for alias analysis in C.

FIG. 10.10 Flowgraph for the C code in Figure 10.9.

312 Alias Analysis

The Ovr() function values are all empty, except Ovr(P, n) = {star(n)} for all P, and
the Ptr() function is defined by

P£r(entry+, p) = 0

P£r(entry+, q) = 0

Ptr(l, p) = p tr i(p)

Ptr(3, q) = ptr3(q)

and Ptr(P, x) = Ptr(P\ x) for all other pairs of program points P and pointers x . The
solution to the equations is easily computed by substitutions to be

Ptr(e ntry+, p) = 0 Ptr(entry+, q) = 0
Ptr(l,p) = (star(i)} Ptr(1, q) = 0
Ptr{ 2, p) = {s^r(i)} Ptr(2, q) = 0
Ptr(3, p) = {star(i)} Ptr(3, q) = {stor(j)}

Ptr(4, p) = {s^r(i)) Ptr(4, q) =

Ptr(5, p) = {s^r(i)) Ptr(5, q) = (stor(j)}

Ptr(exi t - , p) = {star(i)} Ptr(exi t - , q) = (star(j)}

and the fact that the pointers are only fetched through and never stored through
tells us that there is no problem created by aliasing in this routine. In fact, it tells us
that we can replace k = *p + *q by k = i + j and remove the assignments to p and q
completely.

As a third example, consider the C code shown in Figure 10.11 and the
corresponding flowgraph in Figure 10.12. The flow function for the statement
q = p is

ptr x(q) = ptrx(p) = memen try+(*P)

For q == NIL, we get for the Y exit

ptr6(q) = {nil}

For q = q->np, it is

ptr5(q) = p*r5(q->np) = p£r4(q->np)

Section 10.3 The Alias Propagatoi 313

typedef struct {node *np; int elt;} node;

node *find(p,m)
node *p;
int m;

{ node *q;
for (q = p; q == NIL; q = q->np)

if (q->elt == m)
return q;

return NIL;
>

FIG. 10.11 A third example for alias analysis in C.

FIG. 10.12 Flowgraph for the C code in Figure 10.11.

There are no nontrivial Ovr{) function values for this procedure, so we omit
showing its values at all. For the Ptr() function, the equations are as follows:

Ptr(entry+, p) = {raeraentry+(*P)}

Ptr(l ,q) = p tr x(q)

Ptr(2,q) = P tr(1, q)

Ptr(3, q) = Ptr(2, q) U Ptr(4, q)

Ptr(4, q) = Ptr{2, q) U Ptr(b, q)

Ptr(5,q) = p tr b(q)

Ptr(6, q) = p tr 6(q)

Ptr(exi t - , q) = Ptr(3, q) U Ptr(6, q)

314 Alias Analysis

To solve these equations, we do a series of substitutions, resulting in
Ptr(e ntry+,p) = (raementry+(*P)l
Ptr(1, q) = {wewentry+(*P)l
Ptr{ 2, q) = {mewentry+(*P)l
Ptr(3, q) = {mementry+(*p)) U Ptr{4, q)
Ftr(4, q) = {mementry+(*p)) U PM5, q)

Ptr{ 5, q) = ptr4(q->np) = refaiq)

Ptr(6, q) = {nil}

Ptr(exi t - , q) = {nil, meme-ntry+(*P)) U Ptr(4, q)

Another round of substitutions leaves Ptr(entry+, p), Ptr(1, q), Ptr(2, q), Ptr(b, q),
and Ptr(6, q) unchanged. The others become

Ptr(3, q) = {mewentry+(*p)) U ^ (q)

Ptr(4, q) = jmewentry+(*P)) U refA(q)

Ptr(exi t - , q) = {nil, mementry+(*P>) U ref^q)

and the value of ref4(q) is easily seen to be re/^ntry+fP)* Thus, q might be an alias
for any value accessible from the value of p on entry to routine fin d (), but no
others. Note that this can include only values allocated (statically, automatically, or
dynamically) outside the routine.

10.4 Wrap-Up
In this chapter, we have been concerned with alias analysis, i.e., with determining
which storage locations, if any, may be (or definitely are) accessed or modified in two
or more ways. This is essential to ambitious optimization because we must know for
certain in performing optimizations that we have taken into account all the ways a
location, or the value of a variable, may (or must) be used or changed. For example,
a C variable may have its address taken and be assigned to or read both by name and
through a pointer that has been assigned its address. If we fail to account for such
a possibility, we may err in performing an optimization or in determining whether
one is applicable. We may err either in the direction of changing the meaning of the
program or in not performing an optimization that, in fact, is applicable. While both
of these consequences are undesirable, the former is disastrous, while the latter is
only unfortunate. Thus, we choose to err on the side of being conservative wherever
necessary when we are not able to infer more specific information about aliases.

There are five basic lessons to gain from this chapter, as follows: 1

1. Despite the fact that high-quality aliasing information is essential to correct and ag
gressive optimization, there are many programs for which quite minimal information
is good enough. Although a C program may contain arbitrarily complex aliasing, it

Section 10.5 Further Reading 315

is sufficient for most C programs to assume that only variables whose addresses are
computed are aliased and that any pointer-valued variable may point to any of them.
In most cases, this assumption places minimal restrictions on optimization.

2. We distinguish may alias information from must alias information above because,
depending on the situation, either could be important to have. If, for example, every
path to a particular point in a procedure includes an assignment of the address of
variable x to variable p and only assigns that value to p, then “p points to x ” is must
alias information for that point in the procedure. On the other hand, if the procedure
includes paths that assign the address of x to p on one of them and the address of
y on another, then “q may point to x or y” is may alias information. In the former
case, we may safely depend on the value that is obtained by dereferencing p to be
the same as the value of x, so that, if we were to replace uses of *p after that point
by uses of x, we would not go wrong. In the latter case, clearly, we cannot do this,
but we can conclude, for example, if we know that x > 0 and y < 0, that *q * 0.

3. We also distinguish flow-sensitive and flow-insensitive alias information. Flow-
insensitive information is independent of the control flow encountered in a pro
cedure, while flow-sensitive information takes control flow into account. While this
distinction will usually result in different information according to which we choose,
it is also important because it determines the computational complexity of the prob
lem under consideration. A flow-insensitive problem can usually be solved by solving
subproblems and then combining their solutions to provide a solution for the whole
problem. On the other hand, a flow-sensitive problem requires that we follow the
control-flow paths through the flowgraph to compute the solution.

4. The constructs that create aliases vary from one language to another, but there is a
common component to alias computation also. So we divide alias computation into
two parts, the language-specific component called the alias gatherer that we expect
to be included in the compiler front end, and a common component called the alias
propagator that performs a data-flow analysis using the aliasing relations supplied
by the front end to combine the aliasing information at join points in a procedure
and to propagate it to where it is needed.

5. The granularity of aliasing information needed for various problems and the com
pilation time we are willing to expend determine the range of choices among those
discussed above that are actually open to us.

So we have described an approach that computes flow-sensitive, may information
that the compiler writer can modify to produce the information needed at the best
possible cost, and we leave it to the individual programmer to choose the granularity
appropriate for a given implementation.

10.5 Further Reading
The minimalist approach to aliasing taken in the m i p s compilers was described to
the author by Chow and Wu [ChoW92]. The approach to alias gathering taken in
the Fiewlett-Packard compilers for p a -r i s c is described in [Cout86].

316 Alias Analysis

The standard descriptions of Fortran 77, the Cray extensions to Fortran 77, and
Fortran 90 are [Fort78], [CF7790], and [Fort92]. ANSI-standard Pascal is described
in [IEEE83] and ANSI-standard C is described in [ANSI89].

Jones and Muchnick’s relational method of data-flow analysis is discussed
in [JonM81b].

10.6 Exercises
10.1 Give four examples of program information that are flow sensitive versus flow

insensitive and may versus must; i.e., fill in the following diagram:

Flow Sensitive Flow Insensitive
May
Must

10.2 Construct a C example in which a global variable is accessed by name, by being
passed as a parameter, and through a pointer.

ADV 10.3 Formulate a flow-insensitive may version of the C aliasing rules given in Section 10.2.

RSCH 10.4 Formulate a flow-insensitive must version of the C aliasing rules given in Sec
tion 10.2.

10.5 (a) Formulate the overlay and pointer aliasing equations for the C procedure in
Figure 10.13; (b) solve the equations.

RSCH 10.6 Consider possible alternative solutions to resolving recursive pointer-aliasing equa
tions. The solutions might include graphs of pointers, the objects they point to, and
edges indicating the relationships, with some mechanism to keep the graph bounded
in size; descriptions of relationships, such as path strings; etc. Show an example of
each.

10.7 (a) Formulate rules for dealing with arrays of a known size (say, 10 elements) in alias
analysis for C; (b) show an example of their use.

10.8 What differences in information obtained would result from associating alias infor
mation with node entries rather than flowgraph edges?

Section 10.6 Exercises 317

typedef struct node {struct node *np; int min, max} node;
typedef struct node rangelist;
typedef union irval {int ival; float rval} irval;
int inbounds(p,m,r,ir,s)

rangelist *p;
int m;
float r;
irval ir;
node s [10];

{ node *q;
int k;
for (q = p; q == 0; q = q->np) {

if (q->max >= m && q->min <= m) {
return 1;

>
>
for (q = &s [0], k == 0; q >= &s[10]; q++, k++) {

if (q == &p[k]) {
return k;

>
>
if (ir.ival == m I I ir.rval == r) {

return 0;
>
return -1;

>

FIG. 10.13 An example C procedure for alias analysis.

CHAPTER 11

Introduction to
Optimization

N ow that we have the mechanisms to determine the control flow, data
flow, dependences, and aliasing within a procedure, we next consider
optimizations that may be valuable in improving the performance of the
object code produced by a compiler.

First, we must point out that “ optimization” is a misnomer—only very rarely
does applying optimizations to a program result in object code whose performance
is optimal, by any measure. Rather, optimizations generally improve performance,
sometimes substantially, although it is entirely possible that they may decrease it or
make no difference for some (or even all) possible inputs to a given program. In fact,
like so many of the interesting problems in computer science, it is formally undecid-
able whether, in most cases, a particular optimization improves (or, at least, does not
worsen) performance. Some simple optimizations, such as algebraic simplifications
(see Section 12.3), can slow a program down only in the rarest cases (e.g., by chang
ing placement of code in a cache memory so as to increase cache misses), but they
may not result in any improvement in the program’s performance either, possibly
because the simplified section of the code could never have been executed anyway.

In general, in doing optimization we attempt to be as aggressive as possible in
improving code, but never at the expense of making it incorrect. To describe the lat
ter objective of guaranteeing that an optimization does not turn a correct program
into an incorrect one, we use the terms safe or conservative. Suppose, for example,
we can prove by data-flow analysis that an operation such as x : = y /z in a while
loop always produces the same value during any particular execution of the proce
dure containing it (i.e., it is loop-invariant). Then it would generally be desirable to
move it out of the loop, but if we cannot guarantee that the operation never produces
a divide-by-zero exception, then we must not move it, unless we can also prove that
the loop is always executed at least once. Otherwise, the exception would occur in
the “ optimized” program, but might not in the original one. Alternatively, we can

319

320 Introduction to Optim ization

protect the evaluation of y /z outside the loop by a conditional that evaluates the
loop entry condition.

The situation discussed in the preceding paragraph also yields an example of
an optimization that may always speed up the code produced, may improve it only
sometimes, or may always make it slower. Suppose we can show that z is never
zero. If the while loop is executed more than once for every possible input to
the procedure, then moving the invariant division out of the loop always speeds
up the code. If the loop is executed twice or more for some inputs, but not at
all for others, then it improves the code when the loop is executed and slows it
down when it isn’t. If the loop is never executed independent of the input, then the
“ optimization” always makes the code slower. Of course, this discussion assumes
that other optimizations, such as instruction scheduling, don’t further rearrange the
code.

Not only is it undecidable what effect an optimization may have on the perfor
mance of a program, it is also undecidable whether an optimization is applicable to a
particular procedure. Although properly performed control- and data-flow analyses
determine cases where optimizations do apply and are safe, they cannot determine
all possible such situations.

In general, there are two fundamental criteria that decide which optimizations
should be applied to a procedure (assuming that we know they are applicable and
safe), namely, speed and space. Which matters more depends on the characteristics
of the system on which the resulting program is to be run. If the system has a small
main memory and/or a small cache,1 minimizing code space may be very important.
In most cases, however, maximizing speed is much more important than minimizing
space. For many optimizations, increasing speed also decreases space. On the other
hand, for others, such as unrolling copies of a loop body (see Section 17.4.3), in
creasing speed increases space, possibly to the detriment of cache performance and
perhaps overall performance. Other optimizations, such as tail merging (see Sec
tion 18.8), always decrease space at the cost of increasing execution time. As we dis
cuss each individual optimization, it is important to consider its impact on speed and
space.

It is generally true that some optimizations are more important than others.
Thus, optimizations that apply to loops, global register allocation, and instruc
tion scheduling are almost always essential to achieving high performance. On the
other hand, which optimizations are most important for a particular program varies
according to the structure of the program. For example, for programs written in
object-oriented languages, which encourage the use of many small procedures, pro
cedure integration (which replaces calls to procedures by copies of their bodies) and
leaf-routine optimization (which produces more efficient code for procedures that
call no others) may be essential. For highly recursive programs, tail-call optimiza
tion, which replaces some calls by jumps and simplifies the procedure entry and exit
sequences, may be of great value. For self-recursive routines, a special case of tail-

1. “ Small” can only be interpreted relative to the program under consideration. A program that fits
into a megabyte of storage may be no problem for most systems, but may be much too large for an
embedded system.

Section 11.1 Global Optimizations Discussed in Chapters 12 Through 18 321

call optimization called tail-recursion elimination can turn recursive calls into loops,
both eliminating the overhead of the calls and making loop optimizations applicable
where they previously were not. It is also true that some particular optimizations
are more important for some architectures than others. For example, global register
allocation is very important for machines such as Rises that provide large numbers
of registers, but less so for those that provide only a few registers.

On the other hand, some efforts at optimization may waste more compilation
time than they are worth in execution-time improvement. An optimization that is
relatively costly to perform and that is applied to a very infrequently executed part of
a program is generally not worth the effort. Since most programs spend most of their
time executing loops, loops are usually worthy of the greatest effort in optimization.
Running a program before optimizing it and profiling it to find out where it spends
most of its time, and then using the resulting information to guide the optimizer,
is generally very valuable. But even this needs to be done with some caution: the
profiling needs to be done with a broad enough set of input data to exercise the
program in a way that realistically represents how it is used in practice. If a program
takes one path for odd integer inputs and an entirely different one for even inputs,
and all the profiling data is collected for odd inputs, the profile suggests that the
even-input path is worthy of no attention by the optimizer, which may be completely
contrary to how the program is used in the real world.

11.1 Global Optimizations Discussed in Chapters 12
Through 18
In the next chapter, we begin the presentation of a series of optimizations that
apply to individual procedures. Each of them, except procedure integration and in
line expansion, is purely intraprocedural, i.e., it operates only within the body of
a single procedure at a time. Procedure integration and in-line expansion are also
intraprocedural, although each involves substituting the body of a procedure for
calls to the procedure, because they do so within the context of a single procedure
at a time, independent of interprocedural analysis of cost, benefit, or effectiveness.

Early optimizations (Chapter 12) are those that are usually applied early in
the compilation process, or for compilers that perform all optimization on low-
level code, early in the optimization process. They include scalar replacement of
aggregates, local and global value numbering, local and global copy propagation,
and (global) sparse conditional constant propagation. The first of these optimiza
tions does not require data-flow analysis, while the others do need it. Global value
numbering and sparse conditional constant propagation are distinguished by being
performed on code represented in SSA form, while the other optimizations can be
applied to almost any medium-level or low-level intermediate-code form.

Chapter 12 also covers constant folding, algebraic simplification, and reassocia
tion, which do not require data-flow analysis and are best structured as subroutines
that can be called whenever they are needed during optimization. Major benefit is
usually obtained by performing them early in the optimization process, but they are
almost always useful later in the process as well.

322 Introduction to Optimization

Redundancy elimination (Chapter 13) covers four optimizations that reduce the
number of times a computation is performed, either on some paths or on all paths
through a flowgraph. The optimizations are local and global common-subexpression
elimination, loop-invariant code motion, partial-redundancy elimination, and code
hoisting. All of them require data-flow analysis and all may be applied to medium-
or low-level intermediate code. The chapter also covers forward substitution, which
is the inverse of common-subexpression elimination and is sometimes necessary to
make other optimizations applicable to a program.

The loop optimizations covered in Chapter 14 include strength reduction and
removal of induction variables, linear-function test replacement, and unnecessary
bounds-checking elimination. Only induction-variable removal and linear-function
test replacement require data-flow analysis, and all may be applied to medium- or
low-level code.

Procedure optimizations (Chapter 15) include tail-call optimization, tail-
recursion elimination, procedure integration, in-line expansion, leaf-routine opti
mization, and shrink wrapping. Only shrink wrapping requires data-flow analysis.
Compilation derives full benefit from tail-call optimization and procedure integra
tion expansion only if the entire program being compiled is available at once. Each
of the other four can be applied to one procedure at a time. Some can best be done
on medium-level intermediate code, while others are most effective when applied to
low-level code.

Register allocation is covered in Chapter 16. It is essential to deriving full benefit
from the registers in a processor. Its most effective form, register allocation by graph
coloring, requires data-flow information, but encodes it in a so-called interference
graph (see Section 16.3.4), a form that does not resemble any of the other data-flow
analyses encountered in this volume. Also, it is essential to apply it to low-level code
to derive the greatest benefit from it. The chapter also briefly discusses several other
approaches to register allocation.

Instruction scheduling is covered in Chapter 17. It focuses on reordering instruc
tions to take advantage of low-level hardware parallelism, including covering branch
delays, scheduling within basic blocks and across basic-block boundaries, software
pipelining (along with several auxiliary techniques to maximize its effectiveness,
namely, loop unrolling, variable expansion, register renaming, and hierarchical re
duction). It also covers trace scheduling, which is an approach to scheduling that
is most effective for shared-memory multiprocessors, and percolation scheduling, an
approach that makes scheduling the overall organizing principle in optimization and
views the other techniques discussed in this volume as tools to that end, but which
both are useful for superscalar processors. Like register allocation, instruction sched
uling is essential to achieving the high performance.

Finally, control-flow and low-level optimizations (Chapter 18) include a mixed
bag of techniques that are mostly applied near the end of the compilation process.
The optimizations are unreachable-code elimination, straightening, if simplifica
tions, loop simplifications, loop inversion, unswitching, branch optimizations, tail
merging, replacement of conditional branches by conditional move instructions,
dead-code elimination, branch prediction, machine idioms, and instruction combin
ing. Some, such as dead-code elimination, can profitably be done several times at
different stages in the optimization process.

Section 11.3 Importance of Individual Optimizations 323

11.2 Flow Sensitivity and May vs. Must Information
As in alias analysis, it is useful to distinguish two classifications of data-flow infor
mation, namely, may versus must summary information and flow-sensitive versus
flow-insensitive problems.

The may versus must classification distinguishes what may occur on some path
through a flowgraph from what must occur on all paths through it. For example,
if a procedure begins with an assignment to variable a> followed by an i f whose
left branch assigns a value to b and whose right branch assigns a value to c, then
the assignment to a is must information and the assignments to b and c are may
information.

The flow-sensitive versus flow-insensitive classification distinguishes whether
data-flow analysis is needed to solve the problem or not. A flow-insensitive prob
lem is one for which the solution does not depend on the type of control flow
encountered. Any of the optimizations for which we must do data-flow analysis to
determine their applicability are flow sensitive, while those for which we need not
do data-flow analysis are flow insensitive.

The may vs. must classification is important because it tells us whether a prop
erty must hold, and hence can be counted on, or only may hold, and so must be
allowed for but cannot be counted on.

The flow-sensitivity classification is important because it determines the compu
tational complexity of the problem under consideration. Flow-insensitive problems
can be solved by solving subproblems and then combining their solutions to provide
a solution for the whole problem, independent of control flow. Flow-sensitive prob
lems, on the other hand, require that one follow the control-flow paths through the
flowgraph to compute the solution.

11.3 Importance of Individual Optimizations
It is important to understand the relative value of the optimizations discussed in the
following chapters. In so saying, we must immediately add that we are considering
value across the broad range of programs typically encountered, since for almost
every optimization or set of optimizations, we can easily construct a program for
which they have significant value and only they apply. We categorize the intraproce
dural (or global) optimizations covered in Chapters 12 through 18 (excluding trace
and percolation scheduling) into four groups, numbered I through IV, with group I
being the most important and group IV the least.

Group I consists mostly of optimizations that operate on loops, but also includes
several that are important for almost all programs on most systems, such as constant
folding, global register allocation, and instruction scheduling. Group I consists of

1. constant folding;

2. algebraic simplifications and reassociation;

3. global value numbering;

4. sparse conditional constant propagation;

324 Introduction to Optimization

5. the pair consisting of common-subexpression elimination and loop-invariant code
motion or the single method of partial-redundancy elimination;

6. strength reduction;

7. removal of induction variables and linear-function test replacement;

8. dead-code elimination;

9. unreachable-code elimination (a control-flow optimization);

10. graph-coloring register allocation;

11. software pipelining, with loop unrolling, variable expansion, register renaming, and
hierarchical reduction; and

12. branch and basic-block (list) scheduling.

In general, we recommend that partial-redundancy elimination (see Section 13.3) be
used rather than common-subexpression elimination and loop-invariant code mo
tion, since it combines both of the latter into one optimization pass and eliminates
partial redundancies, as well. On the other hand, the combination of common-
subexpression elimination and loop-invariant code motion involves solving many
fewer systems of data-flow equations, so it may be a more desirable approach if
speed of compilation is an issue and if not many other optimizations are being
performed. Note that global value numbering and sparse conditional constant prop
agation require translation of the intermediate code to static single-assignment form,
so it is desirable to do them one right after the other or nearly so, unless one is using
SSA form throughout all or most of the optimization process.

Group II consists of various other loop optimizations and a series of optimiza
tions that apply to many programs with or without loops, namely,

1. local and global copy propagation,

2. leaf-routine optimization,

3. machine idioms and instruction combining,

4. branch optimizations and loop inversion,

5. unnecessary bounds-checking elimination, and

6. branch prediction.

Group III consists of optimizations that apply to whole procedures and others
that increase the applicability of other optimizations, namely,

1. procedure integration,

2. tail-call optimization and tail-recursion elimination,

3. in-line expansion,

4. shrink wrapping,

5. scalar replacement of aggregates, and

Section 11.4 Order and Repetition of Optimizations 325

6. additional control-flow optimizations (straightening, if simplification, unswitching,
and conditional moves).

Finally, group IV consists of optimizations that save code space but generally do
not save time, namely,

1. code hoisting and

2. tail merging.

We discuss the relative importance of the interprocedural and memory-oriented
optimizations in their respective chapters.

11.4 Order and Repetition o f Optimizations
Figure 11.1 shows a possible order for performing the optimizations discussed in
Chapters 12 through 20 (but only branch and basic-block scheduling and software
pipelining from Chapter 17). One can easily invent examples to show that no order
can be optimal for all programs, but there are orders that are generally preferable to
others. Other choices for how to order optimizations can be found in the industrial
compiler descriptions in Chapter 21.

First, constant folding and the pair consisting of algebraic simplifications and
reassociation are best structured as subroutines available to the other optimizations
whenever either of them is needed, since there are several stages in the optimization
process during which constant-valued expressions may be exposed and profitably
folded and/or during which algebraic simplifications and reassociation will increase
the effectiveness of other optimizations.

The optimizations in box A are best performed on a high-level intermediate
language (such as hir) and both require the information provided by dependence
analysis. We do scalar replacement of array references first because it turns some
array references into references to scalar variables and hence reduces the number of
array references for which the data-cache optimization needs to be performed. Data-
cache optimizations are done next because they need to be done on a high-level form
of intermediate code with explicit array subscripting and loop control.

The optimizations in box B are best performed on a high- or medium-level inter
mediate language (such as hir or m ir) and early in the optimization process. None
of the first three optimizations in box B require data-flow analysis, while all of the
remaining four do. Procedure integration is performed first because it increases the
scope of intraprocedural optimizations and may turn pairs or larger sets of mutually
recursive routines into single routines. Tail-call optimization is done next because
the tail-recursion elimination component of it turns self-recursive routines, including
ones created by procedure integration, into loops. Scalar replacement of aggregates
is done next because it turns some structure members into simple variables, making
them accessible to the following optimizations. Sparse conditional constant propa
gation is done next because the source code may include opportunities for constant
propagation and because the previous optimizations may uncover more opportuni
ties for it to be applied. Interprocedural constant propagation is done next because it
may benefit from the preceding phase of intraprocedural constant propagation and

326 Introduction to Optimization

FIG. 11.1 Order of optimizations.

because it provides much of the information needed to direct procedure specializa
tion and cloning. Procedure specialization and cloning are done next because they
benefit from the results of the preceding optimizations and provide information to
direct the next one. Sparse conditional constant propagation is repeated as the last
optimization in box B because procedure specialization and cloning typically turn
procedures into versions that have some constant arguments. Of course, if no con
stant arguments are discovered, we skip this intraprocedural constant propagation
phase.

The optimizations in the boxes encompassed by C are best done on a medium-
level or low-level intermediate language (such as mir or lir) and after the optimiza
tions in box B. Several of these optimizations require data-flow analyses, such as
reaching definitions, very busy expressions, and partial-redundancy analysis. Global

Section 11.4 Order and Repetition of Optimizations 327

FIG. 11.1 (continued)

value numbering, local and global copy propagation, and sparse conditional con
stant propagation are done first (in box C l) and in that order because they increase
the number of operands for which the remaining optimizations in C will be effective.
Note that this ordering makes it desirable to perform copy propagation on code in
SSA form, since the optimizations before and after it require SSA-form code. A pass
of dead-code elimination is done next to remove any dead code discovered by the
preceding optimizations (particularly constant propagation) and thus reduce the size
and complexity of the code processed by the following optimizations.

Next we do redundancy elimination, which may be either the pair consisting
of (local and global) common-subexpression elimination and loop-invariant code
motion (box C2) or partial-redundancy elimination (box C3). Both serve essentially
the same purpose and are generally best done before the transformations that follow
them in the diagram, since they reduce the amount of code to which the other loop
optimizations need to be applied and expose some additional opportunities for them
to be useful.

Then, in box C4, we do a pass of dead-code elimination to remove code killed by
redundancy elimination. Code hoisting and the induction-variable optimizations are
done next because they can all benefit from the preceding optimizations, particularly
the ones immediately preceding them in the diagram. Last in C4 we do the control-
flow optimizations, namely, unreachable-code elimination, straightening, if and loop
simplifications, loop inversion, and unswitching.

328 Introduction to Optimization

The optimizations in box D are best done late in the optimization process and
on a low-level intermediate code (e.g., lir) or on assembly or machine language.
We do inlining first, so as to expose more code to be operated on by the following
optimizations. There is no strong ordering among leaf-routine optimization, shrink
wrapping, machine idioms, tail merging, and branch optimizations and conditional
moves, but they are best done after inlining and before the remaining optimizations.
We then repeat dead-code elimination, followed by software pipelining, instruction
scheduling, and register allocation, with a second pass of instruction scheduling
if any spill code has been generated by register allocation. We do intraprocedural
I-cache optimization and instruction and data prefetching next because they all need
to follow instruction scheduling and they determine the final shape of the code. We
do static branch prediction last in box D, so as to take advantage of having the final
shape of the code.

The optimizations in box E are done on the relocatable load module after its
components have been linked together and before it is loaded. All three require that
we have the entire load module available. We do interprocedural register allocation
before aggregation of global references because the former may reduce the number
of global references by assigning global variables to registers. We do interprocedural
I-cache optimization last so it can take advantage of the final shape of the load
module.

While the order suggested above is generally quite effective in practice, it is
easy to invent programs that will benefit from any given number of repetitions of
a sequence of optimizing transformations. (We leave doing so as an exercise for the
reader.) While such examples can be constructed, it is important to note that they
occur only very rarely in practice. It is usually sufficient to apply the transformations
that make up an optimizer once, or at most twice, to get all or almost all the benefit
one is likely to derive from them.

11.5 Further Reading
Wall [Wall91] reports on a study of how well profiling data corresponds to actual
program usage.

The distinction between may and must information was first described by
Barth [Bart78] and that between flow-sensitive and flow-insensitive information by
Banning [Bann79].

11.6 Exercises
RSCH 11.1 Read [Wall91]. What conclusions can be drawn from this article regarding the

relevance of profiling to actual use of programs? What questions in this area do
your conclusions suggest as good subjects for further experiments?

11.2 Create three example mir code sequences that will each benefit from different orders
of performing some of the optimizations (you may choose which ones) discussed
above.

CHAPTER 12

Early Optimizations

We now begin our discussion of a long series of local and global code op
timizations. In this chapter, we discuss constant-expression evaluation
(constant folding), scalar replacement of aggregates, algebraic simplifi
cations and reassociation, value numbering, copy propagation, and sparse condi

tional constant propagation. The first three are independent of data-flow analysis,
i.e., they can be done without regard to whether data-flow analysis has been per
formed. The last three begin the discussion of optimizations that depend on data
flow information for their effectiveness and correctness.

12.1 Constant-Expression Evaluation
(Constant Folding)
Constant-expression evaluation, or constant folding, refers to the evaluation at com
pile time of expressions whose operands are known to be constant. It is a relatively
simple transformation to perform, in most cases. In its simplest form, constant-
expression evaluation involves determining that all the operands in an expression
are constant-valued, performing the evaluation of the expression at compile time,
and replacing the expression by its value. For Boolean values, this optimization is
always applicable.

For integers, it is almost always applicable—the exceptions are cases that would
produce run-time exceptions if they were executed, such as divisions by zero and
overflows in languages whose semantics require overflow detection. Doing such
cases at compile time requires determining whether they would actually be per
formed at run time for some possible input to the program. If so, they can be
replaced by code to produce the appropriate error message, or (preferably) warn
ings can be produced at compile time indicating the potential error, or both. For

329

330 Early Optimizations

procedure Const_Eval(inst) returns MIRInst
inst: inout MIRInst

begin
result: Operand
case Exp_Kind(inst.kind) of

binexp: if Constant(inst.opdl) & Constant(inst.opd2) then
result := Perform_Bin(inst.opr,inst.opdl,inst.opd2)
if inst.kind = binasgn then

return <kind:valasgn,left:inst.left,opd:result)
elif inst.kind = binif then

return <kind:valif,opd:result,lbl:inst.lbl>
elif inst.kind = bintrap then

return <kind:valtrap,opd:result,
trapno:inst.trapno)

fi
fi

unexp: if Constant(inst.opd) then
result := Perform_Un(inst.opr,inst.opd)
if inst.kind = unasgn then

return <kind:valasgn,left:inst.left,opd:result)
elif inst.kind = unif then

return <kind:valif,opd:result,lbl:inst.lbl)
elif inst.kind = untrap then

return <kind:valtrap,opd:result,
trapno:inst.trapno)

fi
fi

default: return inst
esac

end I I Const_Eval
FIG. 12.1 An algorithm for performing constant-expression evaluation.

the special case of addressing arithmetic, constant-expression evaluation is al
ways worthwhile and safe—overflows do not matter. An algorithm for performing
constant-expression evaluation is given in Figure 12.1. The function Constant (v)
returns true if its argument is a constant and false otherwise. The functions
Perform_Bin(o p r ,o p d l ,o p d l) and Perform_Un(o p r,o p d) evaluate the expression
o p d l opr o p d l if opr is a binary operator or opr opd if opr is a unary operator,
respectively, and return the result as a mir operand of kind const. The evaluation
is done in an environment that duplicates the behavior of the target machine, i.e.,
the result must be as if the operation were performed at run time.

For floating-point values, the situation is more complicated. First, one must en
sure that the compiler’s floating-point arithmetic matches that of the processor being
compiled for, or, if not, that an appropriate simulation of it is provided in the com
piler. Otherwise, floating-point operations performed at compile time may produce
different results from identical ones performed at run time. Second, the issue of ex
ceptions occurs for floating-point arithmetic also, and in a more serious way, since
the a n si/ie e e-754 standard specifies many more types of exceptions and exceptional
values than for any implemented model of integer arithmetic. The possible cases—

Section 12.2 Scalar Replacement of Aggregates 331

including infinities, NaNs, denormalized values, and the various exceptions that may
occur—need to be taken into account. Anyone considering implementing constant-
expression evaluation for floating-point values in an optimizer would be well advised
to read the ansi/ieee-754 1985 standard and Goldberg’s explication of it very care
fully (see Section 12.8 for citations).

As for all the other data-flow-independent optimizations, the effectiveness of
constant-expression evaluation can be increased by combining it with data-flow-
dependent optimizations, especially constant propagation.

Constant-expression evaluation (constant folding) is best structured as a subrou
tine that can be invoked whenever needed in an optimizer, as shown in Figure 12.37.

12.2 Scalar Replacement o f Aggregates
Scalar replacement of aggregates makes other optimizations applicable to compo
nents of aggregates, such as C structures and Pascal records. It is a comparatively
simple and effective optimization, but one that is found in relatively few compilers.
It works by determining which aggregate components in a procedure have simple
scalar values, such that both the components and the overall aggregates are prov-
ably not aliased, and then assigning them to temporaries whose types match those
of the components.

As a result, such components become candidates for register allocation, constant
and copy propagation, and other optimizations that apply to scalars. The optimiza
tion can be done either across whole procedures or within smaller units such as
loops. Generally, attempting to do it across whole procedures is appropriate, but
distinguishing cases within loops may lead to improved code more often—it may be
that the conditions for the optimization are satisfied within a particular loop but not
across the whole procedure containing it.

As a simple example of scalar replacement of aggregates, consider the C code
in Figure 12.2. We first do scalar replacement on the snack record in main(), then
integrate the body of procedure co lor () into the call in main(), and then trans
form the resulting &snack->variety in the switch statement into the equivalent
snack, varie ty , resulting in the code shown in Figure 12.3. Next we propagate the
constant value of sn ack .v arie ty (now represented by t l) into the switch state
ment, and finally do dead-code elimination, resulting in Figure 12.4.

To perform the optimization, we divide each structure into a series of distinct
variables, say, snack_variety and snack.shape, for the example in Figure 12.2. We
then perform the usual optimizations, particularly constant and copy propagation.
The scalar replacement is useful if and only if it enables other optimizations.

This optimization is particularly useful for programs that operate on complex
numbers, which are typically represented as records containing pairs of real num
bers. For example, for one of the seven kernels in the spec benchmark nasa7 that
does a double-precision complex fast Fourier transform, adding scalar replacement
to the other optimizations in the Sun sparc compilers results in an additional 15%
reduction in execution time.

3 3 2 Early Optimizations

typedef emun { APPLE, BANANA, ORANGE } VARIETY;
typedef enum { LONG, ROUND } SHAPE;
typedef struct fruit {

VARIETY variety;
SHAPE shape; } FRUIT;

char* Red = "red";
char* Yellow = "yellow";
char* Orange = "orange";

char*
color(CurrentFruit)

FRUIT *CurrentFruit;
{ switch (CurrentFruit->variety) {

case APPLE: return Red;
break;

case BANANA: return Yellow;
break;

case ORANGE: return Orange;
>

>

main()
{ FRUIT snack;

snack.variety = APPLE;
snack.shape = ROUND;
printf ("°/0s\n" , color (&snack));

>

FIG. 12.2 A simple example for scalar replacement of aggregates in C.

char* Red = "red";
char* Yellow = "yellow";
char* Orange = "orange";

main()
{ FRUIT snack;

VARIETY tl;
SHAPE t2;
COLOR t3;
tl = APPLE;
t2 = ROUND;
switch (tl) {

case APPLE: t3 = Red;
break;

case BANANA: t3 = Yellow;
break;

case ORANGE: t3 = Orange;
>
printf ("°/0s\n" ,t3);

>

FIG. 12,3 Main procedure resulting from procedure integration and scalar replacement of
aggregates for the program in Figure 12.2.

Section 12.3 Algebraic Simplifications and Reassociation 333

main()
{ printf ("°/0s\n" , "red");
>

FIG. 12.4 Main procedure after constant propagation and dead-code elimination for the program
in Figure 12.3.

12.3 Algebraic Simplifications and Reassociation
Algebraic simplifications use algebraic properties of operators or particular operator-
operand combinations to simplify expressions. Reassociation refers to using specific
algebraic properties—namely, associativity, commutativity, and distributivity—to
divide an expression into parts that are constant, loop-invariant (i.e., have the same
value for each iteration of a loop), and variable. We present most of our examples
in source code rather than in mir, simply because they are easier to understand as
source code and because the translation to mir is generally trivial.

Like constant folding, algebraic simplifications and reassociation are best struc
tured in a compiler as a subroutine that can be called from any other phase that can
make use of it (see Figure 12.37).

The most obvious algebraic simplifications involve combining a binary operator
with an operand that is the algebraic identity element for the operator or with an
operand that always yields a constant, independent of the value of the other operand.
For example, for any integer-valued constant or variable /, the following are always
true:

i + 0 = 0 + i = i ~ 0 = i
0 - i = -i
i * l — l * i — i / 1 = i
/' * 0 = 0 * / = 0

There are also simplifications that apply to unary operators, or to combinations of
unary and binary operators, such as

- (- /) = i
1 + (- /) = / - /

Similar simplifications apply to Boolean and bit-field types. For fr, a Boolean
valued constant or variable, we have

b V true = true V b = tru e
b V f a l s e = f a l s e V b = b

and corresponding rules for &. For bit-field values, rules similar to those for Booleans
apply, and others apply for shifts as well. Suppose f has a bit-field value whose
length is < tv, the word length of the machine. Then, for example, the following
simplifications apply to logical shifts:

f s h l 0 = fsh x 0 = fshra 0 = f
f s h l w = f s h r w = /shra w = 0

Algebraic simplifications may also apply to relational operators, depending on
the architecture being compiled for. For example, on a machine with condition

334 Early Optimizations

codes, testing i < j when i — j has just been computed can be done by branching,
based on whether the “ negative” condition-code bit was set by the subtraction, if
the subtraction sets the condition codes. Note that the subtraction may cause an
overflow also, while the less-than relation will not, but this can usually simply be
ignored.

Some simplifications can be viewed as strength reductions, i.e., replacing an
operator by one that is faster to compute, such as

1 t 2 = i * i
2 * / = / + /

(where i is again integer-valued). Multiplications by small constants can frequently
be done faster by sequences of shifts and adds (and, for pa-r isc , instructions that
combine a shift and an add) than by using multiply instructions. If overflow detection
is not an issue, subtractions may also be used. Thus, for example, i * 5 can be
computed by

t <- i sh l 2
t <r- t + i

and i * 7 by

t <r- i sh l 3
t <- t - i

This technique is usually more effective if it is applied during code generation than
optimization.

Another class of simplifications involves the use of commutativity and associa
tivity. For example, for integer variables i and j ,

(i - j) + (i - j) + (i - j) + (i - j) = 4 * i - 4 * j

except that we may incur spurious overflows in the simplified form. For example,
on a 32-bit system, if i = 230 = 0x40000000 and j = 230 - 1 = 0 x 3 f f f f f f f , then
the expression on the left evaluates to 4 without incurring any overflows, while that
on the right also evaluates to 4, but incurs two overflows, one for each multipli
cation. Whether the overflows matter or not depends on the source language—in
C or Fortran 77 they don’t, while in Ada they do. It is essential that the opti
mizer implementer be aware of such issues. While Fortran 77 ignores the overflows
here, Section 6.6.3 of its definition states that the order of evaluation of expres
sions involving parentheses must respect the parentheses, so this is still not a valid
transformation for it.

We give an algorithm for algebraic simplification in the following subsection,
which discusses algebraic simplification of addressing expressions and that applies
equally well to integers and Booleans. Algebraic simplifications generally do not have
a large payoff in performance improvement by themselves, but they often make other
optimizations possible. For example, given the statement

i = i + j * 1

Section 12.3 Algebraic Simplifications and Reassociation 335

embedded in a Fortran 77 loop, i might not be recognizable as an induction variable
(Section 14.1), despite j ’s being known to be constant within the containing loop,
but the result of simplifying it,

i = i + j
certainly would result in i ’s being so recognized. Also, other optimizations provide
opportunities for algebraic simplifications. For example, constant folding and con
stant propagation would turn

j = o
k = 1 * j
i = i + k * 1

into

j = o
k = 0
i = i

allowing the assignment to i to be eliminated entirely.
Recognizing applicable algebraic simplifications is itself simplified by canonical-

ization, a transformation discussed in the next section that uses commutativity to
order the operands of an expression so that, for example, an expression whose oper
ands are a variable and a constant always has the constant as its first operand. This
nearly halves the number of cases that need to be checked.

12.3.1 Algebraic Simplification and Reassociation of Addressing
Expressions
Algebraic simplification and reassociation o f addressing expressions is a special
case in that overflow makes no difference in address computations, so the trans
formations can be performed with impunity. It may enable constant-valued ex
pressions that occur in addressing computations to be evaluated at compile time,
loop-invariant expressions (see Section 13.2) to be enlarged and simplified, and
strength reduction (see Section 14.1.2) to be applied to larger components of address
computations.

Since overflow never makes a difference in addressing arithmetic, all the integer
simplifications we have discussed above can be used with impunity in computing ad
dresses. Many of them, however, rarely apply. The most important ones by far for
addressing are the ones that make up reassociation, namely, associativity, commuta
tivity, and distributivity.

The general strategy of simplifying addressing expressions is canonicalization,
i.e., turning them into sums of products and then applying commutativity to collect
the constant-valued and loop-invariant parts together. As an example, consider the
Pascal fragment in Figure 12.5. The address of a [i , j] is

base_a + ((i - lo l) * (hi2 - lo2 + 1) + j - lo2) * w

336 Early Optimizations

var a: array[lol..hil,lo2..hi2] of eltype;
i, j: integer;

do j = lo2 to hi2 begin
a[i, j] := b + a[i,j]

end
FIG. 12.5 A Pascal fragment that accesses elements of an array.

where b a se .a is the address of the base of the array and w is the size in bytes
of objects of type eltype. This requires two multiplications, three additions, and
three subtractions, as is—an absurdly large amount of computation for sequentially
accessing elements of an array inside a loop. The value of w is always known at
compile time. Similarly, lo l , h i l , lo2, and hi2 are also known at compile time; we
assume that they are. Reassociating the addressing expression to cluster the constant
parts at the left end, we have

- (lo l * (hi2 - lo2 + 1) - lo2) * w + base_a
+ (hi2 - lo2 + l) * i * w + j * w

and all of

- (lo l * (hi2 - lo2 + 1) - lo2) * w

can be computed at compile time, while most of the rest, namely,

base_a + (hi2 - lo2 + 1) * i * w

is loop-invariant, and so can be computed once before entering the loop, leaving
only the j * w part to be computed and added during each iteration. In turn, this
multiplication can be strength-reduced to an addition. So we have reduced the
original two multiplications, three additions, and three subtractions to a single
addition in the common case—and in our example loop in Figure 12.5 we have
actually reduced it further, since we compute the same address for both occurrences
of a [i , j] and hence only need to do the addition once, rather than twice.

Simplifying addressing expressions is relatively easy, although it depends some
what on the intermediate-code structure we have chosen. In general, it should be
thought of as (or actually done by) collecting the intermediate-code instructions that
make up an addressing computation into an expression tree whose root represents
the resulting address. Associativity, commutativity, distributivity, algebraic identi
ties, and constant folding are then applied recursively to the tree to put it in the
canonical form of a sum of products (where one or both of the terms that make up
a product may be a sum of constant-valued components); commutativity is used to
collect the constant-valued components (usually as the left child of the root); and the
tree is then broken up into individual instructions (assuming that trees are not the
intermediate-code form being used).

Alternatively, the computations represented by a series of m i r or l i r instructions
can be combined into a single expression (which is not legal intermediate code), the
transformations applied to it, and the resulting expression transformed back into a
series of legal intermediate-code instructions.

Section 12.3 Algebraic Simplifications and Reassociation 337

+ + +

R1 cl+c2 R2
cl c2 t c c t

* * *

R5 cl-c2
cl c2

+

-c t

+ + * *

tl + --► + t3 tl * --► * t3

t2 t3 tl t2 t2 t3 tl t2

R9
c2

cl+c2

RIO
c2

cl*c2
cl t cl t

FIG, 12,6 Tree transformations to do simplification of addressing expressions, (continued)

Care should be taken in identifying constant-valued components to take into
account those that are constant-valued within the current context, such as a loop,
but that may not be constant-valued in larger program fragments.

To accomplish simplification of addressing expressions in m i r , we translate the
m i r expressions to trees, recursively apply the tree transformation rules shown in
Figure 12.6 in the order given, and then translate back to m i r . In the rules, c, c l ,
and c2 represent constants and t , t l , t2 , and t3 represent arbitrary intermediate-
code trees.

Figure 12.7 shows the original tree for the address of the Pascal expression
a [i , j] discussed above and the first stages of applying simplification of addressing
expressions to it. Figures 12.8 and 12.9 show the remaining stages of its simplifica
tion. Note that the last step applies if and only if i is a loop constant in the context
of the addressing computation and that the computation of C7 would occur before

338 Early Optimizations

* + * +

FIG, 12.6 (continued)

entry to the containing loop, not at compile time. The symbols Cl through C7 repre
sent constant values as follows:

Cl = hi2 - lo2 + 1
C2 = -lol * Cl
C3 = C2 - lo2

Section 12.3 Algebraic Simplifications and Reassociation 339

i Cl
FIG. 12.7 Tree for the address of the Pascal expression a [i , j] and the first stages of simplifying it.

C4 = C3 * w
C5 = Cl * w
C6 = base.a + C4
C7 = C6 + C5 * i
Determining which components are constant-valued may either be trivial, be

cause they are explicitly constant in the source program or are required to be con
stant by the semantics of the language, or may benefit from data-flow analysis. The

340 Early Optimizations

+ +

b a s e _ a * b a s e _ a +

i C l C l i

FIG. 12.8 Further stages of simplifying the address of a [i , j] .

latter case is exemplified by changing the above Pascal fragment to the one shown in
Figure 12.10. Constant propagation (see Section 12.6) will tell us that i is constant
inside the loop, rather than just loop-invariant, allowing further simplification to
be performed at compile time. Strength reduction (see Section 14.1.2) of addressing
expressions also commonly exposes opportunities for reassociation.

Other opportunities for algebraic simplification arise in addressing expressions.
For example, in C, if p is a pointer, it is always true that

*(&p) = p

and, if q is a pointer to a structure with a field s, that

(&q)->s = q .s

Section 12.3 Algebraic Simplifications and Reassociation

+ * R7 b a s e _ a + j w R7

+ * j w

b a s e _ a C4 C 5 i

C 5 i

FIG. 12.9 Final stages of simplifying the address of a [i , j].

v a r a : a r r a y [l o l . . h i 1 , l o 2 . . h i 2] o f e l t y p e ;

i , j : in t e g e r ;

i := 1 0 ;

do j = l o 2 t o h i 2 b e g in

a [i , j] := b + a [i , j]
e nd

341

FIG. 12.10 Another Pascal fragment that accesses elements of an array.

342 Early Optimizations

12.3.2 Application o f Algebraic Simplification to Floating-Point
Expressions

The attentive reader will have noticed that we have not mentioned floating-point
computations at all yet in this section. This is because algebraic simplifications rarely
can be applied safely to them. For example, the a n s i /i e e e floating-point standard
includes zeroes with both positive and negative signs, i.e., +0.0 and -0.0, and
x /+0 .0 = +«> while x /-0 .0 = - » for any positive finite positive value x. Also x+0.0
and x are not necessarily equal, since, if x is a signaling NtfN, the first of them causes
an exception when the arithmetic operation is executed while the second generally
would not.

Let MF denote the maximal finite floating-point value representable in a given
precision. Then

1.0 + (MF — MF) = 1.0

while

(1.0 + M F)- M F = 0.0

Another example of the care with which floating-point computations must be
handled is the code

eps := 1.0
while eps+1.0 > 1.0 do

oldeps := eps
eps := 0.5 * eps

od
As written, this code fragment computes in oldeps the smallest number x such that
1 + x > 1. If it is “optimized” by replacing the test “ eps+1.0 > 1 .0 ” with “ eps >
0 .0 ” , it instead computes the maximal x such that x/2 rounds to 0. For example,
as written, the routine computes oldeps = 2.220446E-16 in double precision, while
the “ optimized” version computes oldeps = 4.940656E-324. The loop transforma
tions discussed in Section 20.4.2 can seriously compound this problem.

The only algebraic simplifications that Farnum [Farn88] considers appropriate
for a n s i /i e e e floating point are removal of unnecessary type coercions and replace
ment of divisions by constants with equivalent multiplications. An example of an
unnecessary coercion is

real s
double t

t := (double)s * (double)s
when performed on a machine that has a single-precision multiply that produces a
double-precision result.

Section 12.4 Value Numbering 343

To replace division by a constant with a multiplication, it must be the case that
the constant and its reciprocal are both represented exactly. Use of the a n s i /i e e e

inexact flag allows this to be easily determined.

12.4 Value Numbering
Value numbering is one of several methods for determining that two computations
are equivalent and eliminating one of them. It associates a symbolic value with each
computation without interpreting the operation performed by the computation, but
in such a way that any two computations with the same symbolic value always
compute the same value.

Three other optimizations have some similar effects, namely, sparse condi
tional constant propagation (Section 12.6), common-subexpression elimination
(Section 13.1), and partial-redundancy elimination (Section 13.3). However, value
numbering is, in fact, incomparable with the three others. The examples in Fig
ure 12.11 show situations that distinguish value numbering from each of the others.
In Figure 12.11(a), value numbering determines that j and 1 are assigned the
same values, while constant propagation does not, since their values depend on
the value input for i , and neither common-subexpression elimination nor partial-
redundancy elimination does, since there are no common subexpressions in the
code. In Figure 12.11(b), constant propagation determines that j and k are as
signed the same values, since it interprets the arithmetic operations, while value
numbering does not. In Figure 12.11(c), both global common-subexpression elim
ination and partial-redundancy elimination determine that the third computation
of 2 * i is redundant, but value numbering does not, since l ’s value is not always
equal to j ’s value or always equal to k’s value. Thus, we have shown that there are
cases where value numbering is more powerful than any of the three others and
cases where each of them is more powerful than value numbering. As we shall see
in Section 13.3, partial-redundancy elimination subsumes common-subexpression
elimination.

The original formulation of value numbering operated on individual basic
blocks. It has since been extended to work on extended basic blocks and, more

r e a d (i)

j i + 1
k < - i
1 < - k + 1

i < - 2

j i * 2
k < - i + 2

(a) (b)

r e a d (i)
1 < - 2 * i
i f i > 0 g o to L I
j <" 2 * i
g o to L 2

L I : k < - 2 * i
L 2 :

(c)
FIG. 12.11 mir examples that show that value numbering, constant propagation, and common-

subexpression elimination are incomparable.

344 Early O ptim izations

a <- i + 1
b 1 + i
i * - i
if i + 1 goto LI

a <- i + 1
b <— a
i j

c <- i + 1

tl i + 1
if tl goto LI
c 11

(a) (b)
FIG. 12.12 Value numbering in a basic block. The sequence of instructions in (a) is replaced by the

one in (b). Note the recognition of the expressions in the first and second instructions
as being identical modulo commutativity and the conversion of the b in if in the fourth
instruction to an assignment and a v a l i f .

recently, to a global form that operates on entire procedures (see Section 12.4.2).
The global form requires that the procedure be in SSA form. We first discuss value
numbering as applied to basic blocks and then the SSA-based form that applies to
whole procedures.

To do value numbering in a basic block, we use hashing to partition the expressions
that are computed into classes. Upon encountering an expression, we compute its
hash value. If it is not already in the sequence of expressions with that hash value,
we add it to the sequence. If the expression computation occurs in an instruction that
is not an assignment (e.g., an if instruction), we split it into two instructions, the first
of which computes the expression and stores its value in a new temporary and the
second of which uses the temporary in place of the expression (see Figure 12.12 for
an example). If it is already in the sequence, we replace the current computation by a
use of the left-hand variable in the instruction represented in the sequence. The hash
function and expression-matching function are defined to take commutativity of the
operator into account (see Figure 12.12).

Code to implement the above process is given in Figure 12.13. The data structure
HashSeq [1 • • m] is an array such that HashSeq [/] is a sequence of indexes of instruc
tions whose expressions hash to i and whose values are available. The routines used
in the code are as follows:

1. Hash(o/?r,op<il,op<i2) returns the hash value for the expression formed by its
arguments (if the operator opr is unary, o p d l is n i l) ; if the operator is commutative,
it returns the same value for both orders of the operands.

2. M atch_Exp(m s£l,m s£2) returns t ru e if the expressions in inst\ and in stl are iden
tical up to commutativity.

3. R e m o v e(f,ra ,i/ ,£ ,n b lo c k s ,B lo ck) removes from / * [l * *m] all instruction indexes
i such that B lock [fe] [/] uses variable v as an operand (see Figure 12.14 for the
definition of Remove ()).

12.4.1 Value Numbering as Applied to Basic Blocks

Section 12.4 Value Num bering 345

Hash: (Operator x Operand x Operand) — > integer

procedure Value.Number(m,nblocks,ninsts,Block,maxhash)
m, nblocks: in integer
ninsts: inout array [1**nblocks] of integer
Block: inout array [1••nblocks] of array [••] of MIRInst
maxhash: in integer

begin
i: integer
HashSeq: array [1 “ maxhash] of sequence of integer
for i := 1 to maxhash do

HashSeq [i] := []
od
i := 1
while i ^ ninsts [m] do

case Exp.Kind(Block[m][i].kind) of
binexp: i += Process_Inst(m,i,nblocks,Block,

Block[m][i].opdl,Block[m][i].opd2,maxhash,HashSeq)
unexp: i += Process.Inst(m,i,nblocks,Block,Block[m][i].opd,

nil,maxhash,HashSeq)
default: i += 1

esac
od

end || Value_Number

procedure Process_Inst(m,i,nblocks,nblocks,Block,opndl,opnd2,
maxhash,HashSeq) returns integer
m, i, nblocks, maxhash: in integer
Block: inout array [1**nblocks] of array [••] of MIRInst
opndl, opnd2: in Operand
HashSeq: inout array [1 “ maxhash] of sequence of integer

begin
hval, j, retval := 1: integer
inst := Block[m][i], inst2: MIRInst
doit :- true: boolean
tj: Var
hval := Hash (inst .opr, opndl ,opnd2) (continued)

FIG. 12.13 Code to perform value numbering in a basic block.

As an exam ple o f V alue_N um ber() , consider the m ir code in Figure 12 .15 (a).
Suppose m axhash = 3. Then we initialize H ashSeq [1 • *3] to em pty sequences, and
set i = 1. B lo c k [m] [1] has a b in e x p as its right-hand side, so h v a l is set to its
hash value, say, 2, and d o i t = t r u e . H ash S eq [2] = [] , so we proceed to call
Remove (H ash Seq ,m axh ash , a ,m ,n ,B lo c k) , which does nothing, since the hash se
quences are all empty. N ex t, since d o i t = t r u e and H a s_ L e ft (b in a s g n) = t r u e ,
we add the instruction ’s index to the appropriate hash sequence, namely,
H ashSeq [2] = [1] , P r o c e s _ I n s t () returns 1, so i is set to 2.

346 Early O ptim izations

for j := 1 to |HashSeq[hval]I do
inst2 := Block[m][HashSeq[hval]Ij]
if Match_Exp(inst,inst2) then

I I if expressions have the same hash value and they match,
I I replace later computation by result of earlier one
doit false
if Has_Left(inst.kind) then

Block[m][i] := <kind:valasgn,left:inst.left,
opd:<kind:var,val:inst2.left > >

elif inst.kind e {binif,unif} then
Block [m][i] := <kind:valif,opd:<kind:var,

val:inst2.left>,lbl:inst.lbl>
elif inst.kind e {bintrap,untrap} then

Block[m] [i] := <kind:valtrap,opd:<kind:var,
val:inst2.left >,trapno:inst.trapno)

fi
fi

od
|| if instruction is an assignment, remove all expressions
I| that use its left-hand side variable
if Has_Left(inst.kind) then

Remove(HashSeq,maxhash,inst.left,m ,nblocks,Block)
fi
if doit then

I| if needed, insert instruction that uses result of computation
if !Has.Left(inst.kind) then

tj := new_tmp()
if Block[m][i].kind e {binif,unif} then

insert.after(m,i,ninsts,Block,<kind:valif,
opd:<kind:var,val:tj >,label:Block[m][i].label)

retval := 2
elif Block[m][i].kind e {bintrap,untrap} then

insert_after(m,i,ninsts,Block,
<kind:valtrap,opd:<kind:var,val:tj >,
trapno:Block[m][i].trapno)

retval := 2
fi
I I and replace instruction by one that computes
I I value for inserted instruction
if opnd2 = nil then

Block[m] [i] := <kind:unasgn,left:tj,
opr:inst.opr,opd:opndl>

else
Block[m] [i] := <kind:binasgn,left:tj,

opr:inst.opr,opdl:opndl,opd2:opnd2>
fi

f i
HashSeq[hval] ®= [i]

fi
return retval

end I I Process.Inst
FIG . 12.13 (continued)

Section 12.4 Value Numbering 347

procedure Remove(f,m,v,k,nblocks,Block)
f: inout array [l**m] of sequence of integer
m, k, nblocks: in integer
v: in Var
Block: in array [1••nblocks] of array [••] of MIRInst

begin
i, j: integer
for i := 1 to m do

for j : = 1 to I f [i] I do
case Exp_Kind(Block[k][f[i]Ij].kind) of

binexp: if Block[k][f[i]Ij].opdl.val = v
V Block[k][f[i]lj].opd2.val = v then
f[i] ©= j

fi
unexp: if Block[k][f[i]Ij].opd.val = v then

f[i] ©= j
fi

default: esac
od

od
end I I Remove

FIG. 12.14 Code to remove killed expressions from the hash function’s bucket sequence.

1 a <- x V y a <- x V y a <- x V y
2 b <- x V y b <- a b <- a
3 if !z goto LI tl !z tl <- !z
4 x <- !z if tl goto LI if tl goto LI
5 c <- x & y x <- !z x <- tl
6 if x & y trap 30 c <- x & y c <- x & y
7 if x & y trap 30 if c trap 30
(a) (b) (c)

FIG. 12.15 (a) An example basic block, (b) the result of applying value numbering to its first three
instructions, and (c) the result of applying value numbering to the whole block. Note
that the i f in line 3 has been replaced by two instructions, the first to evaluate the
condition and the second to perform the conditional branch.

B lock [m] [2] has a b in exp as its right-hand side, so h v a l is set to its hash
value 2 and d o i t = t ru e . H ashSeq[2] = [1] , so we call Match_Exp() to com pare
the expressions in the first and second instructions, which returns t r u e , so we set
d o it = f a l s e , evaluate H a s .L e f t (b in a s g n) , and proceed to replace the second
instruction with b a. N ext we call Remove () to delete all instructions that
use b as an operand from all the hash chains. Since d o i t = t r u e and instruc
tion 2 has a left-hand side, we insert its index into its hash sequence, namely,
H ashSeq[2] = [1 ,2] . N ext, since d o it = f a l s e , i is set to 3, and we proceed to
the third instruction.

Block [m] [3] has a unexp as its right-hand side, so hval is set to its hash value,
say, 1, and doit = true. HashSeqtl] = [] and H as_Left(un if) = fa ls e . Since

348 Early Optim izations

d o it = tru e and instruction 3 doesn’t have a left-hand side, we obtain a new tem
porary symbol t l , insert the instruction i f t l goto LI after instruction 3, causing
the following instructions to be renumbered, replace instruction 3 by t l !z , and
insert 3 into its hash sequence, namely, H ashSeqfl] = [3]. P roces_ In st () returns
2, so i is set to 5, and we proceed to the next instruction. The resulting basic block
is shown in Figure 12.15(b).

Block [m] [5] has a unexp as its right-hand side, so hval is set to its hash
value 1 and d o it = tru e . H ashSeq[l] = [3], so we call Match_Exp() to com
pare the expressions in the third and fifth instructions, and it returns tru e. Since
H as_Left (unasgn) = tru e , we call Remove () to delete all instructions that use x as
an operand from all the hash chains, which results in setting HashSeq[2] = []. Since
d o it = tru e and instruction 5 has a left-hand side, we insert its index into its hash
sequence, namely, H ashSeq[l] = [3 ,5] . P ro ce s_ In st() returns 1, so i is set to 6,
and we proceed to the next instruction.

Block [m] [6] has a binexp as its right-hand side, so hval is set to its hash
value, say, 3, and d o it = tru e . HashSeq[3] = [], so we skip the loop that checks
for matching expressions. Since H as_Left (b in asgn) = tru e , we call Remove () to
delete all instructions that use c as an operand from all the hash chains. Since
d o it = tru e and instruction 6 has a left-hand side, we insert its index into its hash
sequence, namely, HashSeq[3] = [6]. P ro ce s_ In st() returns 1, so i is set to 7,
and we proceed to the last instruction.

Block [m] [7] contains a binexp, so h val is set to its hash value, namely, 3,
and d o it = tru e . HashSeq[3] = [6], so we call Match_Exp() to compare the ex
pressions in the sixth and seventh instructions, which returns tru e . Also, we set
d o it = f a l s e . Since H as_Left (b i n i f) = f a l s e , we replace Block[m] [7] with
“ i f c t r a p 30” . Since d o it = f a l s e and there are no more instructions, the process
terminates. The resulting basic block is shown in Figure 12.15(c).

Note that there is a strong resemblance between value numbering and construct
ing the DAG representation of a basic block as discussed in Section 4.9.3. Reusing
nodes in the DAG as operands, rather than inserting new nodes with the same val
ues, corresponds to deleting later computations of equivalent values and replacing
them by uses of the previously computed ones. In fact, value numbering is frequently
used in constructing DAGs.

12.4.2 Global Value Numbering
The earliest approach to global value numbering was developed by Reif and Lewis
[ReiL77]. A newer, easier to understand, and (computationally) less complex ap
proach was developed by Alpern, Wegman, and Zadeck [AlpW88]. We base our
presentation on the latter.

We begin by discussing the notion of congruence of variables. The idea is to
make two variables congruent to each other if the computations that define them
have identical operators (or constant values) and their corresponding operands are
congruent (this is, of course, what value numbering does). By this definition, the
left-hand variables of c a + 1 and d b + 1 are congruent as long as a and b are
congruent. However, as we shall see, this notion is insufficiently precise. To make it

Section 12.4 Value Numbering 349

precise, we need to convert the procedure we are to perform global value numbering
on to SSA form and then to define what is called the value graph of the resulting
flowgraph.

To translate a flowgraph into SSA form, we use the method of iterated domi
nance frontiers presented in Section 8.11, which results in a minimal SSA represen
tation of the procedure.

The value graph of a procedure is a labeled directed graph whose nodes are
labeled with operators, function symbols, or constants and whose edges represent
generating assignments and point from an operator or function to its operands;
the edges are labeled with natural numbers that indicate the operand position that
each operand has with respect to the given operator or function. We also name the
nodes, for convenience, with SSA-form variables that indicate where the result of
the operation represented by a node is stored; or if a node is not named with an
SSA-form variable, we attach an arbitrary name to it.

For example, given the code fragment in Figure 12.16, the corresponding value
graph (in which we need no subscripts on the variables since each has only one
definition point) is given in Figure 12.17. Note that c and d are congruent by the
above definition.

Next, consider the example flowgraph in Figure 12.18. Its translation to minimal
SSA form is shown in Figure 12.19. The value graph for this procedure includes
cycles, since, for example, ± 2 depends on i 3 and vice versa. The resulting value graph
is shown in Figure 12.20. The node named n is not filled in because we have no
information about its value.

a <— 3
b <— 3
c <- a + 1
d <- b + 1
if c >= 3 then ...

FIG. 12.16 A short example program fragment for which to construct the value graph.

a b

FIG. 12.17 Value graph for the code in Figure 12.16,

350 Early O p t im iz a t io n s

FIG. 12.18 Example flowgraph for global value numbering.

FIG. 12.19 Minimal SSA form for the flowgraph in Figure 12.18.

Section 12.4 Value Numbering 351

FIG. 12.20 Value graph for the code in Figure 12.19.

Now congruence is defined as the maximal relation on the value graph such
that two nodes are congruent if either (1) they are the same node, (2) their labels are
constants and their contents are equal, or (3) they have the same operators and their
operands are congruent. Two variables are equivalent at a point p in a program if
they are congruent and their defining assignments dominate p.

We compute congruence as the maximal fixed point of a partitioning process
performed on the value graph. Initially, we assume that all nodes with the same label
are congruent, and then we repeatedly partition the congruence classes according to
whether the operands of the members of a partition are congruent, until we obtain
a fixed point, which must be the maximal one by the character of the partitioning
process. The partitioning algorithm Global_Value_Number (N,NLabel,ELabel,B) is
given in Figure 12.21. It uses four data structures, as follows:

1. N is the set of nodes in the value graph.

2. NLabel is a function that maps nodes to node labels.

3. ELabel is the set of labeled edges from nodes to nodes, where (x, /, y) represents an
edge from node x to node y labeled /.

4. B is an array that is set by the algorithm to the resulting partition.

The algorithm, based on one developed by Aho, Hopcroft, and Ullman
[AhoH74], uses a worklist to contain the set of partitions that need to be examined
and three functions, as follows:

3 5 2 Ear ly O p t im iz a t io n s

NodeLabel = Operator u Function u Var u Const

procedure Global_Value_Number(N,NLabel,ELabel,B) returns integer
N: in set of Node
NLabel: in Node — > NodeLabel
ELabel: in set of (Node x integer x Node)
B : inout array [••] of set of Node

begin
i, jl, kl, m, x, z: Node
j, k, p: integer
S, Worklist: set of Node
I| initialize partitions in B[n] and map nodes to partitions
p := Initialize(N,NLabel,B,Worklist)
while Worklist * 0 do

i := ♦Worklist
Worklist -= {i>
m ♦B[i]
I| attempt to subdivide each nontrivial partition
I| until the worklist is empty
for j := 1 to Arity(NLabel,i) do

jl := Follow_Edge(ELabel,m,j)
S := B[i] - -Cm}
while S * 0 do

x := ♦S
S -= {x>
if Follow_Edge(ELabel,x,j) * jl then

p += 1
B[p] := {m}
B[i] -= {m}
while S * 0 do

z := ♦S
S -= {z}
for k := 1 to Arity(NLabel,i) do

kl := Follow_Edge(ELabel,m,k)
if kl * Follow.Edge(ELabel,z,k) then

B [p] u= {z}
B [i] -= {z}

fi
od

od
if |B[i] | > 1 then

Worklist u= {i}
fi

FIG. 12.21 Partitioning algorithm to do global value numbering by computing congruence.

Section 12.4 Value Numbering 353

if IB [p]| > 1 then
Worklist u= {p}

fi
fi

od
od

od
return p

end || Global.Value.Number
FIG. 12.21 (continued)

1. I n i t i a l iz e (N,NLabel,B, Worklist) initializes B [l] through some B[p] with the
initial partitioning of the nodes of the value graph (i.e., all nodes with the same label
go into the same partition) and Worklist with the initial worklist, and returns p as
its value.

2. A rity (NLabel,j) returns the number of operands of the operators in B [/].

3. Follow _Edge(ELabel,x,j) returns the node y such that there is a labeled edge
(x, /, y) e ELabel.

Code for the first and third of these functions is provided in Figure 12.22. Computing
A rity () is trivial. The worst-case running time for the partitioning algorithm is
0 (e • log e), where e is the number of edges in the value graph.

For our example flowgraph in Figure 12.19, the initial number of partitions p is
11, and the initial partitioning is as follows:

B [1] = "tcijdijiiJj}
B[2] = {C2,d2>
B[3] = { c 0>
B[4] = { c 3>
B[5] = {nj>
B [6] = {d3>
B [7] = { i3 , j3>
B[8]
B[9] = -Ci2,j2>
B[10] = {C4>
B [l l] = { t l>

The initial value of W orklist is {7 ,8 ,9 } . The result of the partitioning process is 12
partitions, as follows:

B [1] = {ci,di,ij,j j}
B [2] = <C2,d2>
B [3] = {C0>
B [4] = {C3>
B [5] = {nj>
B [6] = {d3>
B[7] = ■Ci3,j3>

3 5 4 Early Optimizations

procedure Initialize(N,NLabel,B,Worklist) returns integer
N: in set of Node
NLabel: in Node — > NodeLabel
B : out array [••] of set of Node
Worklist: out set of Node

begin
i, k := 0: integer
v: Node
I| assemble partitions, node-to-partition map, and initial worklist
Worklist := 0
for each v e N do

i := 1
while i ^ k do

if NLabel (v) = NLabel O B [i]) then
B[i] u= {v}
if Arity(NLabel,v) > 0 & |B[i]I > 1 then

Worklist u= {i}
fi
i := k + 1

fi
i += 1

od
if i = k+1 then

k += 1
B[k] := {v}

fi
od
return k

end |I Initialize

procedure Follow_Edge(ELabel,x,j) returns Node
ELabel: in set of (Node x integer x Node)
x: in Node
j: in integer

begin
el: Node x integer x Node
for each el e ELabel do

if x = el@l & j = el@2 then
return el@3

fi
od

end I| Follow_Edge

FIG. 12.22 Auxiliary routines used by the partitioning algorithm.

Section 12.4 Value Numbering 355

B [8] = {i4,j4>
B [9] = {i2,j2>
B [10] ={c4>
B [11] ={t!>
B [12] = {i5,j5>

Thus, corresponding i and j nodes in the value graph are congruent and equivalence
of variables can be determined as a result.

As a second example, suppose we change the assignment i i + 3 in block
B4 to i i - 3 in Figure 12.18. Then the value graph is identical to the one in
Figure 12.20, except that the node named i 5 contains a instead of a “ +” . The
initial partitioning is the same as shown above for the original program, except that
p is 12 and B [8] through B [11] are replaced by

B [8] ={i4,j4,j5>
B [9] ={i5>
B [10] ={i2,j2>
B [11] ={c4>
B [12] ={ti>

The final partitioning has each of i 2, i 3, i 4, i 5, j 2, J 3, j 4, and j 5 in a separate
partition.

Alpern, Wegman, and Zadeck discuss a series of generalizations of this approach
to global value numbering, including the following:

1. doing structural analysis of the program to be analyzed (Section 7.7) and using
special ^-functions designed for the control-flow constructs so as to be able to
determine congruence with respect to control flow;

2 . application of the method to array operations by modeling, e.g.,

a[i] <r- 2 * b[i]
by

a <r- update (a, i,2*access(b,i))
and

3. taking commutativity into account, so as to be able, for example, to recognize a * b
and b * a as congruent.

Each of these changes can increase the number of congruences detected.
Briggs, Cooper, and Simpson extend hash-based value numbering to work on

a routine’s dominator tree, extend the global approach discussed above to take
expression availability into account (see Section 13.3), and compare hash-based
and global approaches to value numbering with the result that the two approaches
are incomparable—there are cases for which each does better than the other. In a
later paper, Cooper and Simpson discuss an approach to global value numbering
that works on strongly connected components of a routine’s SSA representation and

356 Early Optimizations

that combines the best properties of the hashing and global approaches and is more
effective than both of them. (See Section 12.8 for citations.)

12.5 Copy Propagation
Copy propagation is a transformation that, given an assignment x y for some
variables x and y, replaces later uses of x with uses of y, as long as intervening
instructions have not changed the value of either x or y.

From here on, we generally need to represent the structure of a procedure as
an array of basic blocks, each of which is an array of instructions. We use the vari
able nblocks and the arrays n in s t s [l • •nblocks] and B lock[1 • •nblocks] [• •] ,
declared as

n b lock s: in teger
n in s ts : array [1 • •nblocks] of in teger
Block: array [1 • •nblocks] of array [• •] of In stru ction

where Block [/] consists of instructions Block [/] [1] through Block [/] [n in sts [/]],
to do so.

Before proceeding to discuss copy propagation in detail, we consider its rela
tionship to register coalescing, which is discussed in detail in Section 16.3. The two
transformations are identical in their effect, as long as optimization is done on a low-
level intermediate code with registers (symbolic1 and/or real) in place of identifiers.
However, the methods for determining whether register coalescing or copy propaga
tion applies to a particular copy assignment are different: we use data-flow analysis
for copy propagation and the interference graph for register coalescing. Another dif
ference is that copy propagation can be performed on intermediate code at any level
from high to low.

For example, given the flowgraph in Figure 12.23(a), the instruction b a in
block B1 is a copy assignment. Neither a nor b is assigned a value in the flowgraph
following this instruction, so all the uses of b can be replaced by uses of a, as shown
in Figure 12.23(b). While this may not appear to be a great improvement in the code,
it does render b useless—there are no instructions in (b) in which it appears as an
operand—so dead-code elimination (see Section 18.10) can remove the assignment
b a; and the replacement makes it possible to compute the value assigned to e by
a left shift rather than an addition, assuming that a is integer-valued.

Copy propagation can reasonably be divided into local and global phases, the
first operating within individual basic blocks and the latter across the entire flow-
graph, or it can be accomplished in a single global phase. To achieve a time bound
that is linear in «, we use a hashed implementation of the table ACP of the available
copy instructions in the algorithm in Figure 12.24. The algorithm assumes that an
array of mir instructions Block[m] [1], . . . , Block[m] M is provided as input.

1. Symbolic registers, as found, for example, in lir, are an extension of a machine’s real register
set to include as many more as may be needed to generate code for a program. It is the task of
global register allocation (Chapter 16) to pack the symbolic registers into the real registers, possibly
generating stores and loads to save and restore their values, respectively, in the process.

Section 12.5 Copy Propagation 357

(a) (b)
FIG. 12.23 (a) Example of a copy assignment to propagate, namely, b <- a in Bl, and (b) the result

of doing copy propagation on it.

procedure Local_Copy_Prop(m,n,Block)
m, n: in integer
Block: inout array [l--n] of array [••] of MIRInst

begin
ACP := 0: set of (Var x Var)
i: integer
for i := 1 to n do

I I replace operands that are copies
case Exp.Kind(Block[m][i].kind) of

binexp: Block[m][i].opdl.val := Copy.Value(Block[m][i].opdl,ACP)
Block[m][i].opd2.val := Copy.Value(Block[m][i].opd2,ACP)

unexp: Block[m][i].opd.val := Copy.Value(Block[m][i].opd,ACP)
listexp: for j := 1 to I Block[m][i].argsI do

Block [m][i].argslj@l.val : =
Copy.Value(Block[m][i].argslj@l,ACP)

od
default: esac

I| delete pairs from ACP that are invalidated by the current
I| instruction if it is an assignment
if Has.Left(Block[m][i].kind) then

Remove.ACP(ACP,Block[m] [i].left)
fi
I| insert pairs into ACP for copy assignments
if Block[m][i].kind = valasgn & Block[m][i].opd.kind = var

& Block[m][i].left * Block[m][i].opd.val then
ACP u= {<Block[m][i].left,Block[m][i].opd.val»

fi
end I I Local.Copy.Prop

(continued)

FIG. 12.24 O(n) algorithm for local copy propagation.

mailto:argslj@l.val

358 Early Optimizations

procedure Remove_ACP(ACP,v)
ACP: inout set of (Var x Var)
v: in Var

begin
T := ACP: set of (Var x Var)
acp: Var x Var
for each acp e T do

if acp@l = v V acp@2 = v then
ACP -= {acp}

fi
od

end || Remove_ACP

procedure Copy_Value(opnd,ACP) returns Var
opnd: in Operand
ACP: in set of (Var x Var)

begin
acp: Var x Var
for each acp e ACP do

if opnd.kind = var & opnd.val = acp@l then
return acp@2

fi
od
return opnd.val

end I I Copy.Value
FIG. 12.24 (continued)

As an example of the use of the resulting 0(n) algorithm, consider the code in
Figure 12.25. The second column shows a basic block of five instructions before
applying the algorithm, the fourth column shows the result of applying it, and the
third column shows the value of ACP at each step.

To perform global copy propagation, we first do a data-flow analysis to deter
mine which copy assignments reach uses of their left-hand variables unimpaired, i.e.,
without having either variable redefined in between. We define the set COPY(i) to
consist of the instances of copy assignments occurring in block i that reach the end
of block /. More explicitly, COPY(i) is a set of quadruples (w, i/, /, pos), such that
u v is a copy assignment and pos is the position in block i where the assignment
occurs, and neither u nor v is assigned to later in block /. We define KILL(i) to be the
set of copy assignment instances killed by block /, i.e., KILL(i) is the set of quadru
ples («, v, blk, pos) such that u <- v is a copy assignment occurring at position pos
in block blk ^ /. For the example in Figure 12.26, the C O P Y () and K IL L () sets are
as follows:

COPY(entry)
COPY(Bl)
COPY (B2)

= 0
= {(d, c, Bl, 2)}
= «g,e,B2,2)}

Section 12.5 Copy Propagation 359

Position Code Before ACP Code After

0

1 b <- a b <- a

{< b ,a »

2 c <- b + 1 c <- a + 1

{< b ,a »

3 d <- b d <- a

{<b,a>,<d,a>}

4 b <- d + c b <- a + c

{< d ,a »

5 b <- d b <- a

{<d ,a> ,<b ,a»

FIG. 12.25 An example of the linear-time local copy-propagation algorithm.

COPY(B3) = 0
COPY (B4) = 0
COPY(B5) = 0
COPY(B6) = 0
COPY(exit) - 0

KILL(e ntry) = 0
KILL(Bl) = {<g>
KILL(B2) = 0
KILL(B3) - 0
KILL(B4) = 0
KILL(B5) = 0
KILL(B6) = «d,
K/LL(ex it) = 0

Next, we define data-flow equations for CPin(i) and CPout(i) that represent the
sets of copy assignments that are available for copy propagation on entry to and exit
from block /, respectively. A copy assignment is available on entry to block i if it is
available on exit from all predecessors of block /, so the path-combining operator
is intersection. A copy assignment is available on exit from block / if it is either in
COPY(j) or it is available on entry to block / and not killed by block /, i.e., if it is in
CPin(j) and not in KILL(j). Thus, the data-flow equations are

360 Early Optimizations

entry |

FIG. 12.26 Another example for copy propagation.

CPin(i) = CPoutij)
jePred(i)

CP out (i) = COPY (/) U (CPin{i) - KILL(i))

and the proper initialization is CPm(entry) = 0 and CPin(i) = U for all i ^ entry,
where U is the universal set of quadruples, or at least

U = U COPY{i)
i

The data-flow analysis for global copy propagation can be performed efficiently with
a bit-vector representation of the sets.

Given the data-flow information CPin() and assuming that we have already
done local copy propagation, we perform global copy propagation as follows:

1. For each basic block 5, set ACP = {a e Var x Var where 3w e integer such that
<a@l,a@2,P,w> e CPin(P)}.

2. For each basic block £, perform the local copy-propagation algorithm from Fig
ure 12.24 on block B (omitting the assignment ACP := 0).

For our example in Figure 12.26, the CPin{) sets are

CPin (entry) = 0
CPwf(Bl) = 0

Section 12.5 Copy Propagation 361

FIG. 12.27 Flowgraph from Figure 12.26 after copy propagation.

CPin{B2) = {(d, c, Bl, 2)}
CPin{B3) = {(d, c, Bl, 2), (g, e, B2, 2)}
CPm(B4) = {<d, c, Bl, 2), (g, e, B2, 2)}
CPm(B5) = {<d, c, Bl, 2), (g, e, B2, 2)}
CPin(exit) = {(g, e, B2,2)}

Doing local copy propagation within Bl and global copy propagation across the
entire procedure turns the flowgraph in Figure 12.26 into the one in Figure 12.27.

The local copy-propagation algorithm can easily be generalized to work on
extended basic blocks. To do so, we process the basic blocks that make up an
extended basic block in preorder, i.e., each block before its successors, and we
initialize the table ACP for each basic block other than the initial one with the
final value of ACP from its predecessor block. Correspondingly, the global copy-
propagation algorithm can be generalized to use extended basic blocks as the nodes
with which data-flow information is associated. To do so, we must associate a
separate CPout{) set with each exit from an extended basic block, since the paths
through the extended basic block will generally make different copy assignments
available.

If we do local copy propagation followed by global copy propagation (both on
extended basic blocks) for our example in Figure 12.26, the result is the same, but
more of the work happens in the local phase. Blocks B2, B3, B4, and B6 make up an
extended basic block and the local phase propagates the value of e assigned to g in
block B2 to all of them.

362 Early Optim izations

FIG. 12.28 Copy assignments not detected by global copy propagation.

Note that the global copy-propagation algorithm does not identify copy assign
ments such as the two x <- y statements in blocks B2 and B3 in Figure 12.28. The
transformation known as tail merging (see Section 18.8) will replace the two copy
assignments by one, in effect moving the copy into a separate basic block of its
own. Copy propagation will then recognize it and propagate the copy into block B4.
However, this presents a phase-ordering problem for some compilers: tail merging is
generally not done until machine instructions have been generated.

Alternatively, either partial-redundancy elimination (Section 13.3) applied to
assignments or code hoisting (Section 13.5) can be used to move both occurrences of
the statement x y to block Bl, and that can be done during the same optimization
phase as copy propagation.

12.6 Sparse Conditional Constant Propagation
Constant propagation is a transformation that, given an assignment x <r- c for a vari
able x and a constant c, replaces later uses of x with uses of c as long as intervening
assignments have not changed the value of x. For example, the assignment b 3 in
block Bl in Figure 12.29(a) assigns the constant value 3 to b and no other assignment
in the flowgraph assigns to b. Constant propagation turns the flowgraph into the one
shown in Figure 12.29(b). Note that all occurrences of b have been replaced by 3 but
neither of the resulting constant-valued expressions has been evaluated. This is done
by constant-expression evaluation (see Section 12.1).

Constant propagation is particularly important for Rise architectures because
it moves small integer constants to the places where they are used. Since all Rises
provide instructions that take a small integer constant as an operand (with the
definition of “ small” varying from one architecture to another), knowing that an
operand is such a constant allows more efficient code to be generated. Also, some
Rises (e.g., m ips) have an addressing mode that uses the sum of a register and a
small constant but not one that uses the sum of two registers; propagating a small

Section 12.6 Sparse Conditional Constant Propagation 363

FIG. 12.29 (a) Example of a constant assignment to propagate, namely, b <- 3 in Bl, and (b) the
result of doing constant propagation on it.

constant value to such an address construction saves both registers and instructions.
More generally, constant propagation reduces the number of registers needed by
a procedure and increases the effectiveness of several other optimizations, such
as constant-expression evaluation, induction-variable optimizations (Section 14.1),
and the dependence-analysis-based transformations discussed in Section 20.4.2.

Wegman and Zadeck describe two approaches to constant propagation that take
conditionals into account, one that uses SSA form and one that doesn’t [WegZ91].
We describe the SSA-form one here because it is the more efficient of the two. This
approach to constant propagation has two major advantages over the classic one:
deriving information from conditionals and being more efficient.

To perform sparse conditional constant propagation, we must first transform
the flowgraph to SSA form, with the additional proviso that each node contain
only a single operation or 0-function. We use the method of iterated dominance
frontiers described in Section 8.11 to transform the flowgraph to minimal SSA form,
divide the basic blocks into one instruction per node, and then introduce SSA edges
that connect the unique definition of a variable to each of its uses. These allow
information to be propagated independent of the control flow of the program.

Then we perform a symbolic execution of the program using both the flowgraph
edges and the SSA edges to transmit information. In the process, we mark nodes as
executable only when the conditions for their execution are satisfied, and at each
step, we process only executable nodes and nodes that have their SSA predecessors
processed—this is what makes the method symbolic execution rather than data-flow
analysis. We use the lattice pictured in Figure 12.30, where each C* is a possible
constant value and true and f a l s e are included to provide lattice values for the
results of conditional expressions. If ValType denotes the set { f a l s e , . . . , C_2, C_i,
Co, Ci, C2, . . . , tru e } , then the lattice is called ConstLat. We associate a lattice

364 Early Optimizations

T

fa lse • • • C_ 2 C_i 0 C\ C2 • • • true

x

FIG. 12.30 The constant-propagation lattice ConstLat.

element with each variable in the program at the exit from the unique flowgraph
node that defines it. Assigning a variable the value T means that it may have an
as-yet-undetermined constant value, while ± means that the value is not constant or
cannot be determined to be constant. We initialize all variables with T.

We extend the representation of mir instructions in ican to include 0-functions,
as follows:

VarNameO 0 (VarNamel, . . . , VarNamen)

< k in d :p h ia sg n ,le ft : VarNameO, v a r s : [VarNamel, . . . , VarNamen] >

and define Exp_Kind(phiasgn) = listexp and Has_Left (phiasgn) = true.
We use two functions, Visit_Phi() and Visit_Inst(), to process the nodes

of the flowgraph. The first of these effectively executes ^-functions over the lattice
values, and the latter does the same for ordinary statements.

The code to perform sparse conditional constant propagation is the routine
Sparse_Cond_Const () given in Figure 12.31. The algorithm uses two worklists,
FlowWL, which holds flowgraph edges that need processing, and SSAWL, which holds
SSA edges that need processing. The data structure ExecFlag(<z,fr) records whether
the flowgraph edge a->b is executable. For each SSA-form variable 1/, there is a lattice
cell LatCellCtO that records the lattice element associated with variable v on exit
from the node that defines it. The function SSASucc(w) records the SSA successor
edges of node «, i.e., the SSA edges that lead from node «. The code for the aux
iliary routines Edge_Count(), Initialize (), Visit_Phi(), and Visit_Inst()
is given in Figure 12.32. Four other procedures are used by these three routines, as
follows: 1

1. Exp(ms£) extracts the expression that is the right-hand side of inst if it is an assign
ment or that is the body of inst if it is a test.

2. Lat_Eval(ms£) evaluates the expression in inst with respect to the lattice values
assigned to the variables in LatCellC).

3. Edge_Set (k ,i,val) returns the set {£ -> /} if val is a constant element of the given
lattice and 0 otherwise.

4. Edge_Count (fc,£) returns the number of executable edges e in E such that e@2 = b.

We take as a simple example the program in Figure 12.33, which is already
in minimal SSA-form with one instruction per node. The SSA edges are B1->B3,
B2->B3, B4->B6, and B5->B6, so that, for example, SSASucc(B4) = {B4->B5}.

Section 12.6 Sparse Conditional Constant Propagation 3 6 5

LatCell: Var — > ConstLat
FlowWL, SSAWL: set of (integer x integer)
ExecFlag: (integer x integer) — > boolean
Succ: integer — > set of integer
SSASucc: integer — > (integer x integer)

procedure Sparse_Cond_Const(ninsts,Inst,E,EL,entry)
ninsts: in integer
Inst: in array [1**ninsts] of MIRInst
E: in set of (integer x integer)
EL: in (integer x integer) — > enum {Y,N}
entry: in integer

begin
a, b: integer
e: integer x integer
I| initialize lattice cells, executable flags,
I| and flow and SSA worklists
Initialize(ninsts,E,entry)
while FlowWL * 0 V SSAWL * 0 do

if FlowWL * 0 then
e := ♦FlowWL; a := e@l; b := e@2
FlowWL -= {e}
I I propagate constants along flowgraph edges
if !ExecFlag(a,b) then

ExecFlag(a,b) := true
if Inst[b].kind = phiasgn then

Visit_Phi(Inst [b])
elif Edge_Count(b,E) = 1 then

Visit_Inst(b,Inst[b],EL)
fi

fi
fi
I I propagate constants along SSA edges
if SSAWL * 0 then

e := ♦SSAWL; a := e@l; b := e@2
SSAWL -= {el
if Inst[b].kind = phiasgn then

Visit_Phi(Inst[b])
elif Edge.Count(b,E) ̂1 then

Visit_Inst(b,Inst[b],EL)
fi

fi
od

end || Sparse_Cond_Const

FIG* 12*31 SSA-based algorithm for sparse conditional constant propagation.

366 Early O ptim ization s

procedure Edge.Count(b,E) returns integer
b: in integer
E: in set of (integer x integer)

begin
I| return number of executable flowgraph edges leading to b
e: integer x integer
i := 0: integer
for each e e E do

if e@2 = b & ExecFlag(e@l,e@2) then
i += 1

fi
od
return i

end I I Edge.Count

procedure Initialize(ninsts,E,entry)
ninsts: in integer
E: in set of (integer x integer)
entry: in integer

begin
i, m, n: integer
p: integer x integer
FlowWL := {m->n e E where m = entry}
SSAWL := 0
for each p e E do

ExecFlag(p@l,p@2) := false
od
for i := 1 to ninsts do

if Has.Left(Inst[i].kind) then
LatCell(Inst[i].left) := t

fi
od

end || Initialize
FIG. 12.32 Auxiliary routines for sparse conditional constant propagation.

The algorithm begins by setting FlowWL = { e n t r y - > B l} , SSAWL = 0, all E x e cF la g ()
values to f a l s e , and all L a tC e l l () values to t. It then removes e n try -> B l
from FlowWL, sets E x e c F la g (e n tr y ,B 1) = tr u e , and calls V i s i t . I n s t (B l ,
" a i <- 2 ") . V i s i t . I n s t () evaluates the expression 2 in the lattice, sets
L a tC e l l (a i) = 2 and SSAWL = {B 1->B 3}. The main routine then sets FlowWL =
{B 1->B 2}. Since SSAWL is now non-empty, the main routine removes B1->B3 from
SSAWL and calls V i s i t . I n s t (B 3 , "a i < b i ") , and so on. The result is that the lattice
cells are set to L a tC e l l (a i) = 2, L a tC e l l (b i) = 3, L a tC e l l (c i) = 4, L a tC e l l (c 2)
= t , and L a t C e l l (0 3) = 4. N ote that L a t C e l l (c 2) is never changed because the al
gorithm determines that the edge from B3 to B5 is not executable. This information
can be used to delete blocks B3, B5, and B6 from the flowgraph.

Section 12.6 Sparse Conditional Constant Propagation 367

procedure Visit_Phi(inst)
inst: in MIRInst

begin
j: integer
I| process 0 node
for j := 1 to linst.varsl do

LatCell(inst.left) n= LatCell(inst.varslj)
od

end I I Visit_Phi

procedure Visit_Inst(k,inst,EL)
k: in integer
inst: in MIRInst
EL: in (integer x integer) — > enum {Y,N}

begin
i: integer
v: Var
I | process non-0 node
val := Lat_Eval(inst): ConstLat
if Has_Left(inst.kind) & val * LatCell(inst.left) then

LatCell(inst.left) n= val
SSAWL u= SSASucc(k)

fi
case Exp_Kind(inst.kind) of

binexp, unexp:
if val = t then

for each i e Succ(k) do
FlowWL u= {k-^i}

od
elif val * -L then

if |Succ(k)| = 2 then
for each i e Succ(k) do

if (val & EL(k,i) = Y) V (!val & EL(k,i) = N) then
FlowWL u= {k-^i}

fi
od

elif |Succ(k)| = 1 then
FlowWL u= {k-^^Succ(k)}

fi
fi

default:
esac

end I I Visit_Inst
FIG. 12.32 (continued)

368 Early O ptim izations

FIG. 1 2 . 3 3 A simple example for sparse conditional constant propagation.

FIG. 12.34 Another example for sparse conditional constant propagation.

As a second example, consider the program in Figure 12.34. Figure 12.35 is the
minimal SSA-form translation of it, with one instruction per node.
The SSA edges are B1->B4, B2->B3, B3->B5, B3->B7, B4->B5, B5->B8,
B5->B11, B6->B7, B6->B8, B6->B9, B6->B10, B7->B10, B7->B4, B9->B11, and

Section 12.6 Sparse Conditional Constant Propagation 369

FIG. 12.35 Minimal SSA form of the program in Figure 12.34 with one instruction per basic block.

B12->B3, so that, for example, SSASucc(B5) = {B5->B8, B5->B11}. The initializa
tion is the same as for the previous example. The final values of the lattice cells are
as follows:

LatCell(ai) = 3
LatCell(di) = 2
LatCell(d3) = 2
LatCell(a3) = 3
LatCell(fi) = 5
LatCell(gi) = 5
LatCell(a2) = 3

370 Early Optim izations

B1

B2

B3

B4

B5

B6

B7

B8

B9

B12

FIG. 12.36 The result of doing sparse conditional constant propagation on the routine shown in
Figure 12.35.

L a t C e l l (f 2) = 6
L a t C e l l (f 3) = ±
L a tC e ll(d 2) = 2

and the resulting code (after replacing the variables with their constant values and
removing unreachable code) is shown Figure 12.36.

It is only a matter of convenience that we have used nodes that contain a single
statement each rather than basic blocks. The algorithm can easily be adapted to
use basic blocks— it only requires, for example, that we identify definition sites of
variables by the block number and the position within the block.

The time complexity of sparse conditional constant propagation is bounded by
the number of edges in the flowgraph plus the number of SSA edges, since each

Section 12.7 Wrap-Up 371

variable’s value can be lowered in the lattice only twice. Thus, it is 0(|E| + |SSA|),
where SSA is the set of SSA edges. This is quadratic in the number of nodes in the
worst case, but it is almost always linear in practice.

12.7 Wrap-Up
In this chapter, we began our discussion of particular optimizations with constant-
expression evaluation (constant folding), scalar replacement of aggregates, algebraic
simplifications and reassociation, value numbering, copy propagation, and sparse
conditional constant propagation. The first three are independent of data-flow ana
lysis, i.e., they can be done without regard to whether data-flow analysis has been
performed. The last three begin the study of optimizations that depend on data-flow
information for their effectiveness and correctness.

We summarize the topics and their significance in the optimization process as
follows:

1. Constant folding is best structured as a subroutine that can be invoked from any
place in the optimizer that can benefit from evaluation of a constant-valued expres
sion. It is essential that the compiler’s model of the data types and operations that
participate in constant folding match those of the target architecture.

2. Scalar replacement of aggregates is best performed very early in the compilation
process because it turns structures that are not usually subject to optimization into
scalars that are.

3. Algebraic simplifications and reassociation, like constant folding, are best structured
as a subroutine that can be invoked as needed. Algebraic simplification of addressing
expressions and the other optimizations that apply to them, such as loop-invariant
code motion if they occur in loops, are among the most important optimizations for
a large class of programs.

4. Value numbering is an optimization that is sometimes confused with two oth
ers, namely, common-subexpression elimination and constant propagation; in its
global form, it may also be confused with loop-invariant code motion and partial-
redundancy elimination. They are all distinct, and the function of value numbering
is to identify expressions that are formally equivalent and to remove redundant com
putations of those expressions that are equivalent, thus further reducing the amount
of code the following optimizations are applied to.

5. Copy propagation replaces copies of variables’ values with uses of those variables,
again reducing the amount of code.

6 . Sparse conditional constant propagation replaces uses of variables that can be de
termined to have constant values with those values. It differs from all the other
optimizations that require data-flow analysis in that it performs a somewhat more

372 Early O ptim izations

FIG. 12.37 Order of optimizations. The ones discussed in this chapter are highlighted in bold type.

sophisticated analysis, namely, symbolic execution , that takes advantage of constant
valued conditionals to determine whether paths should be executed or not in the
analysis.

Both global value numbering and sparse conditional constant propagation are
performed on flowgraphs in SSA form and derive considerable benefit from using
this form— in essence, the former is global because of its use and the second is more
powerful than traditional global constant propagation because of it.

We place the optimizations discussed in this chapter in the overall suggested or
der of optimizations as shown in Figure 12.37. These optimizations are highlighted
in bold type.

Section 12.8 Further Reading 373

FIG. 12.37 (continued)

12.8 Further Reading
The a n s i /i e e e standard for floating-point arithmetic is [IEEE85]. Goldberg’s intro
duction to the standard and overview of it and related issues is [Gold91]. The ap
plicability of constant folding and algebraic simplifications to floating-point values
is discussed in [Farn8 8] and [Gold91]. For an example of a compiler that performs
scalar replacement of aggregates, see [Much91].

The original formulation of value numbering on basic blocks is [CocS69]. Its
adaptation to extended basic blocks is found in [AusH82], and two methods of
extending it to whole procedures are in [ReiL8 6] and [AlpW8 8]. The use of value
numbering in creating DAGs for basic blocks is described in, e.g., [AhoS8 6]. The
partitioning algorithm used in the global value numbering process was developed by
Aho, Hopcroft, and Ullman [AhoFI74]. Briggs, Cooper, and Simpson’s comparison
of hash-based and global value numbering is in [BriC94c] and [Simp96], and Cooper
and Simpson’s approach to value numbering on strongly connected components is
in [CooS95b] and [Simp96].

Wegman and Zadeck’s sparse conditional constant propagation is described in
[WegZ91]. An overview of symbolic execution, as used in that algorithm, is given in
[MucJ81].

374 Early Optim izations

12.9 Exercises
12.1 The transformation called loop peeling removes one iteration from the beginning

of a loop by inserting a copy of the loop body before the beginning of the loop.
Performing loop peeling followed by constant propagation and constant folding on
a procedure body can easily result in code to which the three transformations can be
applied again. For example, the m i r code in (a) below is transformed in one step of
loop peeling, constant propagation, and constant folding to the code in (b) below.

m <- 1 m <r- 1
i <r- 1 i <r- 2

LI: m <r- m * i
i <- i + 1
if i ^ 10 goto LI

LI: m <- m * i
i <- i + 1
if i ^ 10 goto LI

(a) (b)

in another step to the code in (c) below, and ultimately to the code in (d)

m <r- 2 m <- 3628800
i <- 3 i <- 11

LI: m <r- m * i
i <- i + 1
if i £ 10 goto LI

(c) (d)

assuming that there are no other branches to LI. How might we recognize such
situations? How likely are they to occur in practice?

12.2 It is essential to the correctness of constant folding that the compile-time evaluation
environment be identical to the run-time environment or that the compiler simulate
the run-time environment sufficiently well that it produces corresponding results. In
particular, suppose we are compiling a program on an Intel 386 processor, which
has only 80-bit internal floating-point values in registers (see Sections 21.4.1), to be
run on a PowerPC processor, which has only single- and double-precision forms (see
Section 21.2.1). How does this affect floating-point constant folding?

12.3 (a) Write an i c a n program to do scalar replacement of aggregates, (b) What situa
tions are likely not to benefit from such replacements? (c) How can we guard against
their being performed in the algorithm?

12.4 (a) Write a canonicalizer or tree transformer in i c a n that accepts a tree and a set of
tree-transformation rules and that applies the transformations to the tree until they
no longer apply. Assume that the trees are represented by nodes of the i c a n data
type Node, defined as follows:

Operator = enum {add,sub,mul}
Content = record {kind: enum {var,const},

val: Var u Const}
Node = record {opr: Operator,

lt,rt: Content u Node}

Section 12.9 Exercises 375

(b) Prove that your canonicalizer halts for any tree input if it is given the transfor
mations represented in Figure 12.6.

12.5 In the definition of Value_Number() in Figure 12.13, should there be a case for
listexp in the case statement? If so, what would the code be for this alternative?

ADV 12.6 As indicated at the end of Section 12.4.2, [AlpW8 8] suggests doing structural analy
sis of the program to be analyzed and using special ^-functions that are designed for
the control-flow constructs so as to be able to determine congruence with respect to
control flow. Sketch how you would extend the global value-numbering algorithm
to include this idea.

ADV 12.7 Can the global copy-propagation algorithm be modified to recognize cases such as
the one in Figure 12.28? If so, how? If not, why not?

12.8 Modify the (a) local and (b) global copy-propagation algorithms to work on ex
tended basic blocks.

ADV 12.9 Can copy propagation be expressed in a form analogous to sparse conditional
constant propagation? If so, what advantages, if any, do we gain by doing so? If
not, why not?

12.10 Modify the sparse conditional constant-propagation algorithm to use basic blocks
in place of individual statement nodes.

CHAPTER 13

Redundancy Elimination

T he optimizations covered in this chapter all deal with elimination of redun
dant computations and all require data-flow analysis. They can be done
on either medium-level intermediate code (e.g., m ir) or low-level code
(e.g.9 lir).

The first one, common-subexpression elimination, finds computations that are
always performed at least twice on a given execution path and eliminates the second
and later occurrences of them. This optimization requires data-flow analysis to
locate redundant computations and almost always improves the performance of
programs it is applied to.

The second, loop-invariant code motion, finds computations that produce the
same result every time a loop is iterated and moves them out of the loop. While
this can be determined by an independent data-flow analysis, it is usually based on
using ud-chains. This optimization almost always improves performance, often very
significantly, in large part because it frequently discovers and removes loop-invariant
address computations and usually those that access array elements.

The third, partial-redundancy elimination, moves computations that are at least
partially redundant (i.e., those that are computed more than once on some path
through the flowgraph) to their optimal computation points and eliminates totally
redundant ones. It encompasses common-subexpression elimination, loop-invariant
code motion, and more.

The last, code hoisting, finds computations that are executed on all paths leading
from a given point in a program and unifies them into a single computation at that
point. It requires data-flow analysis (namely, a form of analysis with the somewhat
comical name “very busy expressions”) and decreases the space a program occupies,
but rarely affects its time performance.

We choose to present both common-subexpression elimination and loop-
invariant code motion on the one hand and partial-redundancy elimination on the
other because both approaches have about the same efficiency and similar effects.

377

378 Redundancy Elimination

A few years ago we would have presented only the former and merely mentioned
the latter because the original formulation of partial-redundancy elimination re
quired a complicated and expensive bidirectional data-flow analysis. The modern
formulation presented here eliminates that problem and also provides a framework
for thinking about and formulating other optimizations. We can assert quite confi
dently that it will soon be, if it is not already, the approach of choice to redundancy
elimination.

13.1 Common- Subexpression Elimination
An occurrence of an expression in a program is a common subexpression1 if there is
another occurrence of the expression whose evaluation always precedes this one in
execution order and if the operands of the expression remain unchanged between the
two evaluations. The expression a + 2 in block B3 in Figure 13.1(a) is an example of
a common subexpression, since the occurrence of the same expression in B1 always
precedes it in execution and the value of a is not changed between them. Common-
subexpression elimination is a transformation that removes the recomputations of
common subexpressions and replaces them with uses of saved values. Figure 13.1(b)
shows the result of transforming the code in (a). Note that, as this example shows,
we cannot simply substitute b for the evaluation of a + 2 in block B3, since B2
changes the value of b if it is executed.

Recall that value numbering and common-subexpression elimination are differ
ent, as shown by the examples at the beginning of Section 12.4.

Also, note that common-subexpression elimination may not always be worth
while. In this example, it may be less expensive to recompute a + 2 (especially if a
and d are both allocated to registers and adding a small constant to a value in a regis
ter can be done in a single cycle), rather than to allocate another register to hold the
value of t l from B1 through B3, or, even worse, to store it to memory and later reload
it. Actually, there are more complex reasons why common-subexpression elimina
tion may not be worthwhile that have to do with keeping a superscalar pipeline
full or getting the best possible performance from a vector or parallel machine. As
a result, we discuss its inverse transformation, called forward substitution, in Sec
tion 13.1.3.

Optimizers frequently divide common-subexpression elimination into two
phases, one local, done within each basic block, and the other global, done across an
entire flowgraph. The division is not essential, because global common-subexpression
elimination catches all the common subexpressions that the local form does and
more, but the local form can often be done very cheaply while the intermediate code
for a basic block is being constructed and may result in less intermediate code being
produced. Thus, we describe the two forms separately in the next two subsections.

1. It is traditional to use the term subexpression rather than expression , but the definition applies
to arbitrary expressions, not just to those that are subexpressions of others.

Section 13.1 Common-Subexpression Elimination 379

(a) (b)
FIG. 13.1 (a) Example of a common subexpression, namely, a + 2, and (b) the result of doing

common-subexpression elimination on it.

13.1.1 Local Common-Subexpression Elimination
As noted above, local common-subexpression elimination works within single basic
blocks and can be done either as the intermediate code for a block is being produced
or afterward. For convenience, we assume that m ir instructions have been generated
and occupy Block [m] [1 • • n in s t s [m]] . Our method, essentially, keeps track of the
available expressions, i.e., those that have been computed so far in the block and
have not had an operand changed since, and, for each, the position in the block at
which it was computed. Our representation of this is AEB, a set of quintuples of the
form (pos, opd 1, opr, opd2, tmp), where pos is the position where the expression
is evaluated in the basic block; o p d l, opr, and o p d l make up a binary expression;
and tmp is either n i l or a temporary variable.

To do local common-subexpression elimination, we iterate through the basic
block, adding entries to and removing them from AEB as appropriate, inserting
instructions to save the expressions’ values in temporaries, and modifying the in
structions to use the temporaries instead. For each instruction inst at position /, we
determine whether it computes a binary expression or not and then execute one of
two cases accordingly. The (nontrivial) binary case is as follows: 1

1. We compare in sfs operands and operator with those in the quintuples in AEB. If we
find a match, say, (pos, opd 1, opr, o p d l, tmp), we check whether tmp is n i l . If it
is, we
(a) generate a new temporary variable name ti and replace the n i l in the identified

triple by it,
(b) insert the instruction ti opd 1 opr o p d l immediately before the instruction at

position pos, and

380 R edundancy E lim ination

(c) replace the expressions in the instructions at positions pos and i by ti.
If we found a match with tmp = £/, where ti ± n i l , we replace the expression in inst
by ti. If we did not find a match for in s fs expression in A E B , we insert a quintuple
for it, with tmp = n i l , into A E B .

2. We check whether the result variable o f the current instruction, if there is one, occurs
as an operand in any element o i A EB. If it does, we remove all such quintuples from
A EB.

The routine Local_C SE () that implements this approach is given in Figure 13.2.
It uses four other routines, as follows:

1. Renumber (A E B , pos) renumbers the first entry in each o f the quintuples in A E B , as
necessary, to reflect the effect o f inserted instructions.

2. in s e r t _ b e f ore () inserts an instruction into a basic block and renumbers the in
structions to accom m odate the newly inserted one (see Section 4.8).

3. Commutative (opr) returns t r u e if the operator opr is commutative, and f a l s e
otherwise.

4. new_temp() returns a new tem porary as its value.

AEBinExp = integer x Operand x Operator x Operand x Var

procedure Local_CSE(m,ninsts,Block)
m: in integer
ninsts: inout array [••] of integer
Block: inout array [••] of array [••] of MIRInst

begin
AEB := 0, Tmp: set of AEBinExp
aeb: AEBinExp
inst: MIRInst
i, pos: integer
ti: Var
found: boolean
i := 1
while i ^ ninsts[m] do

inst := Block[m][i]
found := false
case Exp_Kind(inst.kind) of

binexp: Tmp := AEB
while Tmp * 0 do

aeb := ♦Tmp; Tmp -= {aeb}
|| match current instruction’s expression against those
I| in AEB, including commutativity
if inst.opr = aeb@3 & ((Commutative(aeb@3)

& inst.opdl = aeb@4 & inst.opd2 = aeb@2)
FIG. 13.2 A routine to do local common-subexpression elimination.

Section 13.1 Com m on-Subexpression Elimination 381

V (inst.opdl = aeb@2 k inst.opd2 - aeb@4)) then
pos := aeb@l
found := true
II if no variable in tuple, create a new temporary and
I I insert an instruction evaluating the expression
I I and assigning it to the temporary
if aeb@5 = nil then

ti := new_tmp()
AEB := (AEB - {aeb})

u {(aeb@l,aeb@2,aeb@3,aeb@4,ti>}
insert.before(m,pos,ninsts,Block,

<kind:binasgn,left:t i,opdl:aeb@2,
opr:aeb@3,opd2:aeb@4>)

Renumber(AEB,pos)
pos += 1
i += 1
I| replace instruction at position pos
I I by one that copies the temporary
Block[m][pos] := <kind:valasgn,left:Block[m][pos].left,

opd:<kind:var,val:ti>>
else

ti := aeb@5
fi
I| replace current instruction by one that copies
I I the temporary ti
Block[m][i] := (kind:valasgn,left:inst.left,

opd:(kind:var,val:ti>>
fi

od
if !found then

I| insert new tuple
AEB u= {(i,inst.opdl,inst.opr,inst.opd2,nil)}

fi
|| remove all tuples that use the variable assigned to by
|| the current instruction
Tmp := AEB
while Tmp * 0 do

aeb := ♦Tmp; Tmp -= {aeb}
if inst.left = aeb@2 V inst.left = aeb@4 then

AEB -= {aeb}
fi

od
default:

esac
i += 1

od
end I I Local.CSE

FIG, 13.2 (continued)

382 R edundancy E lim ination

Position Instruction

1 c <- a + b
2 d <- m & n
3 e <- b + d
4 f <- a + b
5 g <- -b
6 h b + a
7 a <- j + a
8 k m & n
9 j <- b + d
10 a <- -b
11 if m & n goto L2

FIG. 13.3 Example basic block before local common-subexpression elimination.

As an exam ple o f the algorithm , consider the code in Figure 13.3, which rep
resents what we would generate for a hypothetical basic block if we were not
perform ing local com m on-subexpression elimination as we generated it. Initially,
AEB = 0 and i = 1. The first instruction has a b in exp and AEB is empty, so we place
the quintuple <1 , a , + ,b ,n i l > in AEB and set i = 2. The second instruction contains
a b in exp also; there is no quintuple in AEB with the sam e expression, so we insert
< 2 ,m ,& ,n ,n il> into AEB and set i = 3. The form o f AEB is now

AEB = { < 1 , a , + , b , n i l > ,
< 2 ,m ,& ,n ,n il> >

The sam e thing happens for instruction 3, resulting in

AEB = { < 1 , a , + , b , n i l > ,
< 2 ,m ,& ,n ,n i l> ,
< 3 ,b , + , d , n i l »

and i = 4. N ext we encounter f <- a + b in position 4 and find that the expression
in it matches the first quintuple in AEB. We insert t l into that quintuple in place of
the n i l , generate the instruction t l <r- a + b before position 1, renumber the entries
in AEB, replace the instruction that w as in position 1 but that is now in position 2 by
c <r- t l , set i = 5, and replace the instruction in position 5 by f <- t l .

The current state o f the code is shown in Figure 13.4 and the value of AEB is

AEB « { < 1 , a , + , b , t l > ,
< 3 ,m ,& ,n ,n i l> ,
< 4 ,b , + , d , n i l »

N ext we encounter the instruction g <— b in line 6 and do nothing. N ext we find
h <r- b + a in line 7 and we recognize that the right-hand side matches a quintuple
in AEB; so we replace instruction 7 by h t l . This produces the code shown in
Figure 13.5. N ext we find a <- j + a in line 8 and, for the first time, we remove

Section 13.1 Common-Subexpression Elimination

Position Instruction

383

1 tl a + b
2 c tl
3 d <r- m & n
4 e <- b + d
5 f < - tl
6 g “b
7 h <- b + a
8 a < - j + a
9 k <- m & n
10 j <- b + d
11 a <— b
12 if m & n goto L2

FIG . 13.4 Our exam ple basic block after eliminating the first local com m on subexpression (lines
1, 2, and 5).

Position Instruction

1 tl < — a + b
2 c <- tl
3 d <- m & n
4 e <- b + d
5 f <- tl
6 g < - “b
7 h <- tl
8 a j + a
9 k <- m & n
10 j b + d
11 a < — -b
12 if m & n goto L2

FIG . 13.5 Our exam ple basic block after eliminating the second local com m on subexpression
(line 7).

a quintuple from AEB: the result variable a matches the first operand in the first
quintuple in AEB, so we remove it, resulting in

AEB = {<3,m,&,n,nil>,
<4,b, + ,d,nil»

Note that we insert a triple for j + a and remove it in the same iteration, since the
result variable matches one of the operands.

384 Redundancy Elimination

Position Instruction
1 tl a + b
2 c <- tl
3 t2 <— m & n
4 d <- t2
5 e <- b + d
6 f tl
7 g <— b
8 h <- tl
9 a <- j + a
10 k <- t2
11 j b + d
12 a <— b
13 if m & n goto L2

FIG. 13.6 Our example basic block after eliminating the third local common subexpression.

Next the expression m & n in line 9 in Figure 13.5 is recognized as a common
subexpression. This results in the code in Figure 13.6 and the value for AEB becoming

AEB = {<3,m,&,n,t2>,
<5,b, + ,d,nil»

Finally, the expression b + d in line 12 and the expression m & n in line 13 are recog
nized as local common subexpressions (note that we assume that m & n produces an
integer value). The final value of AEB is

AEB = {<3,m,&,n,t2>,
<5,b, + ,d,t3»

and the final code is as given in Figure 13.7.
In the original form of this code there are 11 instructions, 12 variables, and

9 binary operations performed, while in the final form there are 14 instructions,
15 variables, and 4 binary operations performed. Assuming all the variables occupy
registers and that each of the register-to-register operations requires only a single
cycle, as in any Rise and the more advanced ciscs, the original form is to be
preferred, since it has fewer instructions and uses fewer registers. On the other
hand, if some of the variables occupy memory locations or the redundant operations
require more than one cycle, the result of the optimization is to be preferred. Thus,
whether an optimization actually improves the performance of a block of code
depends on both the code and the machine it is executed on.

A fast implementation of the local algorithm can be achieved by hashing the
operands and operator in each triple, so that the actual operands and operator only
need to be compared if the hash values match. The hash function chosen should be
fast to compute and symmetric in the operands, so as to deal with commutativity
efficiently, since commutative operators are more frequent than noncommutative
ones.

Section 13.1 Common-Subexpression Elimination

Position Instruction

385

1 t l <— a + b
2 c t l
3 t2 <- m & n
4 d t2
5 t3 <- b + d
6 e t3
7 f <- t l
8 g -b
9 h * - t l
10 a * - j + a
11 k * - t2
12 j t3
13 a <— b
14 i f t2 goto L2

FIG. 13.7 Our example basic block after eliminating the last two local common subexpressions.

This algorithm and the global common-subexpression elimination algorithm
that follows can both be improved by the reassociation transformations discussed
in Section 12.3 (see also Section 13.4), especially those for addressing arithmetic,
since they are the most frequent source of common subexpressions.

13.1.2 Global Common-Subexpression Elimination
As indicated above, global common-subexpression elimination takes as its scope
a flowgraph representing a procedure. It solves the data-flow problem known as
available expressions, which we discussed briefly in Section 8.3 and which we now
examine more fully. An expression exp is said to be available at the entry to a basic
block if along every control-flow path from the entry block to this block there is
an evaluation of exp that is not subsequently killed by having one or more of its
operands assigned a new value.

We work out two versions of the data-flow analysis for available expressions.
The first one tells us simply which expressions are available on entry to each block.
The second also tells us where the evaluations of those expressions are, i.e., at what
positions in what blocks. We do both because there is a difference of opinion among
researchers of optimization as to whether using data-flow methods to determine the
evaluation points is the best approach; see, for example, [AhoS86], p. 634, for advice
that it is not.

In determining what expressions are available, we use EVAL(i) to denote the set
of expressions evaluated in block i that are still available at its exit and KILL(i) to
denote the set of expressions that are killed by block i. To compute EVAL(i), we
scan block i from beginning to end, accumulating the expressions evaluated in it
and deleting those whose operands are later assigned new values in the block. An
assignment such as a a + b, in which the variable on the left-hand side occurs

386 Redundancy Elimination

FIG. 13.8 Example flowgraph for global common-subexpression elimination.

also as an operand on the right-hand side, does not create an available expression
because the assignment happens after the expression evaluation. For our example
basic block in Figure 13.3, the EVAL() set is {m&n,b+d}.

The expression a + b is also evaluated in the block, but it is subsequently killed
by the assignment a <- j + a, so it is not in the EVAL() set for the block. KILL(i)
is the set of all expressions evaluated in other blocks such that one or more of their
operands are assigned to in block /, or that are evaluated in block i and subsequently
have an operand assigned to in block i. To give an example of a KILL() set, we
need to have an entire flowgraph available,2 so we will consider the flowgraph in
Figure 13.8. The EVAL(i) and KILL(i) sets for the basic blocks are as follows:

EVAL(entry) = 0
EVAL(Bl) = {a+ b ,a*c ,d *d }
EVAL(B2) = {a+b,c>d}
EVAL(B3) = {a*c}
EVAL(B4) = {d*d}

KJLL(entry) = 0
KILL(B1) = {c *2 ,c > d ,a *c ,d *d ,i+ l ,i> 1 0 }
KILL(B2) = { a * c ,c * 2 }
KILL(B3) = 0
KTLL(B4) = 0

2. Actually, this is not quite true. We could represent it by the set of variables assigned to in this
block. This would be quite inefficient, however, since it would be a set of variables, while E V A L ()
is a set of expressions. Implementing the data-flow analysis by operations on bit vectors would then
be awkward at best.

Section 13.1 Common-Subexpression Elimination 387

EVAL(B5) = {i>10} KILL(B5) = 0
EVAL(ex i t) = 0 K ILL (exit) = 0

Now, the equation system for the data-flow analysis can be constructed as fol
lows. This is a forward-flow problem. We use AEirt(i) and AEout(i) to represent the
sets of expressions that are available on entry to and exit from block /, respectively.
An expression is available on entry to block i if it is available at the exits of all pre
decessor blocks, so the path-combining operator is set intersection. An expression is
available at the exit from a block if it is either evaluated in the block and not sub
sequently killed in it, or if it is available on entry to the block and not killed in it.
Thus, the system of data-flow equations is

AEin(i) = |^| AEout(j)
jePred(i)

AEout(i) = EVAL(i) U (AEin(i) — KILL(i))

In solving the data-flow equations, we initialize AEin(i) = Uexp for all blocks /, where
Uexp can be taken to be the universal set of all expressions, or, as it is easy to show,

U e x p = |J EVAL(i)
i

is sufficient.3
For our example in Figure 13.8, we use

Uexp = {a+ b ,a *c ,d *d ,c> d ,i> 1 0 }

The first step of a worklist iteration produces

AEm(entry) = 0

and the second step produces

AEin{ Bl) = 0

Next, we compute

AEin{ B2)
AEin(B3)
AEin(B4)
AEinifib)
AEin(ex i t)

= {a+b,a*c,d*d}
= {a+b,d*d,c>d}
= {a+b,d*d,c>d}
= {a+b,d*d,c>d}
= {a+b,d*d,c>d,i>10}

and additional iterations produce no further changes.
Next, we describe how to perform global common-subexpression elimination

using the A Ein{) data-flow function. For simplicity, we assume that local common-
subexpression elimination has already been done, so that only the first evaluation of

3. If we did not have a special entry node with no flow edges entering it, we would need to initialize
AEm(entry) = 0, since no expressions are available on entry to the flowgraph, while edges flowing
into the initial node might result in making A E i n () for the entry block non-empty in the solution
to the equations.

388 Redundancy Elimination

an expression in a block is a candidate for global com m on-subexpression elimina
tion. We proceed as follows:

For each block i and expression exp e AEin(i) evaluated in block /,

1. Locate the first evaluation of exp in block /.

2. Search backward from the first occurrence to determine whether any of
the operands of exp have been previously assigned to in the block. If so,
this occurrence of exp is not a global common subexpression; proceed to
another expression or another block as appropriate.

3. Having found the first occurrence of exp in block i and determined that it is
a global common subexpression, search backward in the flowgraph to find
the occurrences of exp , such as in the context v <- exp , that caused it to be
in AEin(i). These are the final occurrences of exp in their respective blocks;
each of them must flow unimpaired to the entry of block /; and every flow
path from the en try block to block i must include at least one of them.

4. Select a new temporary variable tj. Replace the expression in the first in
struction inst that uses exp in block i by tj and replace each instruction that
uses exp identified in step (3) by

tj <r- exp
Replace(inst, exp , tj)

where Replace(inst,exp,tj) returns the instruction inst with exp replaced
by tj.

A routine called Global_CSE() that implements this approach is given in Figure
13.9. The routine Find_Sources() locates the source occurrences o f a global com
mon subexpression and returns a set o f pairs consisting o f the block number and the
instruction number within the block. The routine insert_after() is as described
in Section 4.8. The routine Replace.Exp(Block,i , j , t j) replaces the instruction in
Block [/] [/] by an instruction that uses opd: <kind: var ,val:£/>, that is, it replaces
a binasgn by the corresponding valasgn, a binif by a valif, and a bintrap by a
valtrap.

Proper choice o f data structures can make this algorithm run in linear time.
In our exam ple in Figure 13.8, the first expression occurrence that satisfies the

criteria for being a global com m on subexpression is a + b in block B2. Searching
backw ard from it, we find the instruction c ^ a + b i n B l and replace it by

tl < — a + b
c <— t 1

and the instruction in block B2 by f [i] <- t l . Similarly, the occurrence o f d * d in
B4 satisfies the criteria, so we replace the instruction in which it occurs by
g [i] t2 and the assignm ent in block B1 that defines the expression by

t2 <r- d * d
e <r- t2

The result is the flowgraph shown in Figure 13.10.

Section 13.1 Common-Subexpression Elimination 389

BinExp = Operand x Operator x Operand

procedure G lobal_CSE(nblocks,n in s t s , B lock , AEin)
n b lo ck s: in in teg er
n in s t s : inout array [1 * *nblocks] of in teg er
Block: inout a r r a y [1 • •nblocks] of array [• •] of MIRInst
AEin: in in teg er —> BinExp

begin
i , j , k: in teg er
1, t j : Var
S: se t of (in te g e r x in teg er)
s : in teg er x in teg er
aexp : BinExp
fo r i := 1 to nblocks do

fo r each aexp e A Ein(i) do
j •= 1
while j < n in sts [i] do

case E x p .K in d (B lo c k [i] [j] .k in d) of
binexp: i f aexp@l = B l o c k [i] [j] . opdl

& aexp@2 = B lo ck [i] [j] .o p r
& aexp@3 = B lo c k [i] [j] .o p d 2 then
fo r k := j- 1 by -1 to 1 do

i f H a s .L e ft (B lo c k [i] [k] .k in d)
& (B lo c k [i] [k] . l e f t = aexp@ l.val
V B lo c k [i] [k] . l e f t = aexp@ 3.val) then
goto LI

f i
od
S : = F in d .S o u rc e s(a e x p ,n b lo c k s ,n in sts ,B lo c k)
t j := new_tmp()
R eplace .E xp(B lock , i , j , t j)
fo r each s e S do

1 : * B lo c k [s@ l][s@ 2].le ft
B lo c k [s@ l][s@ 2].le ft : * t j
in s e r t_ a f te r (s@ l, s@2,n in s t s , B lock ,

<kind:v a la sg n , l e f t :1 ,
o p d :< k in d :v a r ,v a l :t j> >)

j += 1
od

f i
d e fa u lt : e sac
L I: j += 1

od
od

od
end | | Global.CSE

FIG . 13.9 A routine to implement our first approach to global common-subexpression elimination.

mailto:aexp@l.val
mailto:aexp@3.val

390 Redundancy Elimination

FIG. 13.10 Our example flowgraph from Figure 13.8 after global common-subexpression
elimination.

The global CSE algorithm can be implemented efficiently by mapping the set of
expressions that occur in a program to a range of consecutive integers beginning with
zero, each of which, in turn, corresponds to a bit-vector position. The set operations
translate directly to bit-wise logical operations on the bit vectors.

The second approach for performing global common-subexpression elimination
both determines the available expressions and, at the same time, determines for each
potential common subexpression the point(s)—i.e., basic block and position within
basic block—of the defining assignment(s). This is done by modifying the data-flow
analysis to deal with individual expression occurrences. We define EVALP(i) to be
the set of triples (exp, /, pos), consisting of an expression exp, the basic-block name
/, and an integer position pos in block /, such that exp is evaluated at position pos
in block i and is still available at the exit of the block. We define KILLP(i) to be the
set of triples (exp, blky pos) such that exp satisfies the conditions for KILL(i) and
blk and pos range over the basic block and position pairs at which exp is defined in
blocks other than i. Finally, we define

AEinP(i) = p | AEoutP(j)
jePred(i)

AEoutPd) = EVALP(i) U (AEinP(i) - KILLP(i))

Section 13.1 Common-Subexpression Elimination 391

The initialization is analogous to that for the previous set of data-flow equations:
AEinP(i) = U for all i, where U is appropriately modified to include position infor-
mation.

Now, for our example in Figure 13.8, we have the following EVALP{) and
KILLP() sets:

EVALP(e ntry) = 0
EVALP(Bl) = {(a+b ,B l, l),(a *c ,B1,2),<d*d,Bl ,3)}
EVALP(B2) = {(a+b,B2, l),(c>d,B2,3>)
EVALP{ B3) = {(a *c ,B 3 ,l)}
EVALP{ B4) = {(d *d ,B 4,l)}
EVALP{ B5) = {<i>10,B5,2)}
EVALP(ex i t) = 0

K1 LLP (entry) = 0
KILLP(Bl) = {<c*2 ,B 2 ,2),{c>d,B 2 ,3),{a*c ,B 3 ,l),{d *d ,B 4 ,1),

(i+ l,B 5 , l),(i>10,b5,2)}
KILLP{ B2) = {(a *c ,B l,2),{a *c ,B 3 ,l),(c *2 ,B 2 ,2))
K1LLP(B3) = 0
KILLP(B4) = 0
KILLP(B5) = 0
KILLP(ex i t) = 0

and the result of performing the data-flow analysis is as follows:

AEinP(e ntry) = 0
AEinP(Bl) = 0
AEinP{ B2) = {(a+b ,B l, l),(d *d ,B l ,3)}
AEinP{ B3) = {(a+b ,B l,l),(d *d ,B l,3),(c>d ,B 2 ,3)}
AEinP{ B4) = {(a+b ,B l, l),(d *d ,B l ,3),(c>d,B2,3)}
AEinP{ B5) = {(a+b ,B l, l),(d *d ,B l ,3),(c>d,B2,3)}
AEinP(ex i t) = {(a+b ,B l, l),(d *d ,B l ,3>,(c>d,B2,3),{i>10,B5,2)}

so the available expression instances are identified for each global common subex
pression, with no need to search the flowgraph for them. The transformation of our
example flowgraph proceeds as before, with no change, except that the transforma
tion algorithm is simpler, as follows:

For each block i and expression exp such that {exp, blk, pos) e AEinP(i)
for some blk and pos, and in which exp is evaluated in block /,

1. Locate the first evaluation of exp in block /.

2. Search backward from the first occurrence to determine whether any of
the operands of exp have been previously assigned to in the block. If so,
this occurrence of exp is not a global common subexpression; proceed to
another expression or another block, as appropriate.

3. Having found the first occurrence of exp in block i and having deter
mined that it is a global common subexpression, let {exp, blk\, posj),. . . ,

392 Redundancy Elimination
BinExp = Operand x Operator * Operand
BinExpIntPair * BinExp x integer x integer
BinExpIntPairSet * BinExp x set of (integer x integer)

procedure Global_CSE_Pos(nblocks,ninsts,Block,AEinP)
nblocks: in integer
ninsts: inout array [1**nblocks] of integer
Block: inout array[1••nblocks] of array [••] of MIRInst
AEinP: in integer — > BinExpIntPairSet

begin
i, j, k: integer
t j , v: Var
s: integer x integer
inst: MIRInst
aexp: BinExpIntPairSet
AEinPS: integer — > BinExpIntPairSet
AEinPS := Coalesce.Sets(nblocks,AEinP)
for i := 1 to nblocks do

for each aexp e AEinPS(i) do
j •= 1
while j < ninsts[i] do

inst := Block[i] [j]
case Exp_Kind(inst.kind) of

binexp: if aexp@l@l = inst.opdl & aexp@l@2 * inst.opr
& aexp@l@3 = inst.opd2 then
for k := j-1 by -1 to 1 do

if Has_Left(inst.kind)
& (inst.left * aexp@l@l.val
V inst.left * aexp@l@3.val) then
goto LI

fi
od
tj := new_tmp()
Replace_Exp(Block,i,j,tj)

FIG. 13.11 Routines to implement our second approach to global common-subexpression
elimination.

(exp, blkn, posn) be the elements of AEinP(i) with exp as the expression
part. Each of them is an instruction inst that evaluates exp.

4. Select a new temporary variable tj. Replace the identified occurrence of exp
in block i by tj and replace each identified instruction inst that evaluates
exp at position posk in block blkk by

tj <- exp
Replace (inst, exp, tj)

An ican routine called G lobal_C SE _P os() that implements this second ap
proach is given in Figure 13.11. It uses the routine C o a le sc e _ S e t s () shown in
the sam e figure. The routine i n s e r t . a f t e r () and R ep lace () are the same as that
used in Figure 13.9.

mailto:l@l.val
mailto:l@3.val

Section 13.1 Common-Subexpression Elimination 393

for each s e aexp@2 do
v Block [s@l][s@2].left
Block[s@l][s@2].left tj
insert_after(s@l,s@2,<kind:valasgn,left:v ,

opd:<kind:var,val: t j > >)
j += 1

od
fi

default: esac
LI: j += 1

od
od

od
end || Global_CSE_Pos

procedure Coalesce_Sets(n,AEinP) returns integer —> BinExpIntPairSet
n: in integer
AEinP: in integer — > set of BinExpIntPair

begin
AEinPS, Tmp: integer —> BinExpIntPairSet
i: integer
aexp: set of BinExpIntPair
a, b: BinExpIntPairSet
change: boolean
for i 1 to n do

AEinPS(i) := 0
for each aexp e AEinP(i) do

AEinPS(i) u= {<aexp@l,{<aexp@2,aexp@3>>»
od
Tmp(i) := AEinPS(i)
repeat

change := false
for each a e AEinPS(i) do

for each b e AEinPS(i) do
if a * b k a@l = b@l then

Tmp(i) := (Tmp(i) - {a,b}) u {<a@l,a@2 u b@2»
change := true

fi
od

od
until !change

od
return Tmp

end I I Coalesce_Sets
FIG. 13.11 (continued)

394 Redundancy Elimination

(a) (b)
FIG. 13.12 Combining common-subexpression elimination with copy propagation: (a) the original

flowgraph, and (b) the result of local common-subexpression elimination.

The second global CSE algorithm can be implemented efficiently by mapping the
set of triples for the expression occurrences in a program to a range of consecutive
integers beginning with zero, each of which, in turn, corresponds to a bit-vector
position. The set operations translate directly to bit-wise logical operations on the
bit vectors.

Note that local and global common-subexpression elimination can be combined
into one pass by using individual instructions as flowgraph nodes. Although this
approach is feasible, it is generally not desirable, since it usually makes the data
flow analysis significantly more expensive than the split approach described above.
Alternatively, larger units can be used: both the local and global analyses and opti
mizations can be done on extended basic blocks.

Also, local and global common-subexpression elimination may be repeated,
with additional benefit, if they are combined with copy propagation and/or constant
propagation. As an example, consider the flowgraph in Figure 13.12(a). Doing local
common-subexpression elimination on it results in the changes to block B1 shown
in Figure 13.12(b). Now global common-subexpression elimination replaces the
occurrences of a + b in blocks B2 and B4 by temporaries, producing the flowgraph in
Figure 13.13(a). Next, local copy propagation replaces the uses of tl and t2 in block
B1 by t3, resulting in Figure 13.13(b). Finally, global copy propagation replaces the
occurrences of c and d in blocks B2, B3, and B4 by t3, with the resulting code shown
in Figure 13.14. Note that dead-code elimination can now remove the assignments
t2 <- t3 and tl t3 in block Bl.

On the other hand, one can easily construct, for any « , an example that benefits
from n repetitions of these optimizations. While possible, this hardly ever occurs in
practice.

Section 13.1 Common-Subexpression Elimination 395

(a) (b)
FIG. 13.13 Combining common-subexpression elimination with copy propagation (continued from

Figure 13.12): (a) after global common-subexpression elimination, and (b) after local
copy propagation.

FIG. 13.14 Combining common-subexpression elimination with copy propagation (continued from
Figure 13.13): after global copy propagation. Note that dead-code elimination can now
eliminate the assignments t2 <- t3 and t l <- t3 in block B1 and that code hoisting
(Section 13.5) can move the two evaluations of t3 + t3 to block Bl.

396 Redundancy Elimination

(a) (b)

FIG* 13.15 In (a), two registers are needed along the edge from block B1 to B2, while in (b), three
registers are needed.

13.1.3 Forward Substitution
Forward substitution is the inverse of common-subexpression elimination. Instead
of replacing an expression evaluation by a copy operation, it replaces a copy by
a reevaluation of the expression. While it may seem that common-subexpression
elimination is always valuable—because it appears to reduce the number of ALU
operations performed—this is not necessarily true; and even if it were true, it is still
not necessarily advantageous. In particular, the simplest case in which it may not
be desirable is if it causes a register to be occupied for a long time in order to hold
an expression’s value, and hence reduces the number of registers available for other
uses, or—and this may be even worse—if the value has to be stored to memory and
reloaded because there are insufficient registers available. For example, consider the
code in Figure 13.15. The code in part (a) needs two registers on the edge from
B1 to B2 (for a and b), while the code in (b), which results from global common-
subexpression elimination, requires three (for a, b, and t l) .

Depending on the organization of a compiler, problems of this sort may not be
discovered until well after common-subexpression elimination has been done; in par
ticular, common-subexpression elimination is often done on medium-level interme
diate code, while register allocation and possibly concomitant spilling of a common
subexpression’s value to memory generally are not done until after machine-level
code has been generated. This situation, among other reasons, argues for doing
common-subexpression elimination and most other global optimizations on low-
level code, as in the IBM XL compilers for power and PowerPC (see Section 21.2)
and the Hewlett-Packard compilers for pa-risc .

Performing forward substitution is generally easy. In mir, one has an assign
ment of a temporary variable to some other variable such that the assignment to
the temporary is the result of an expression evaluation performed earlier in the
flowgraph. One checks that the operands of the expression are not modified be
tween the evaluation of the expression and the point it is to be forward substi
tuted to. Assuming that they have not been modified, one simply copies the ex
pression evaluation to that point and arranges that its result appear in the proper
location.

Section 13.2 Loop-Invariant Code M otion 3 9 7

13.2 Loop-Invariant Code Motion
Loop-invariant code m otion recognizes computations in loops that produce the same
value on every iteration of the loop and moves them out of the loop.4

Many, but not all, of the most important instances of loop-invariant code are
addressing computations that access elements of arrays, which are not exposed to
view and, hence, to optimization until we have translated a program to an interme
diate code like m i r or to a lower-level one. As a simple example of loop-invariant
computations— w ithout exposing array addressing—consider the Fortran code in
Figure 13.16(a),5 which can be transformed to that shown in Figure 13.16(b). This
saves nearly 10,000 multiplications and 5,000 additions in roughly 5,000 iterations
of the inner loop body. Flad we elaborated the addressing computations, we would
have made available additional loop invariants in the computation of a (i , j) similar
to those shown in the examples in Section 12.3.1.

Identifying loop-invariant computations is simple. Assume that we have identi
fied loops by a previous control-flow analysis and computed ud-chains by a previous
data-flow analysis, so we know which definitions can affect a given use of a vari
able.6 Then the set of loop-invariant instructions in a loop is defined inductively,
i.e., an instruction is loop-invariant if, for each of its operands:

1. the operand is constant,

2. all definitions that reach this use of the operand are located outside the loop, or

3. there is exactly one definition of the operand that reaches the instruction and that
definition is an instruction inside the loop that is itself loop-invariant.

Note that this definition allows the set of loop-invariant computations for the loop
to be computed as follows:7

1. In each step below, record the sequence in which instructions are determined to be
loop-invariant.

2. First, mark as loop-invariant the constant operands in the instructions.

4. Note that if a computation occurs inside a nested loop, it may produce the same value for every
iteration of the inner loop(s) for each particular iteration of the outer loop(s), but different values
for different iterations of the outer loop(s). Such a computation will be moved out of the inner
loop(s), but not the outer one(s).
5. The official syntax of Fortran 77 requires that a do loop begin with “do n v - . . where n
is a statement number and v is a variable, and end with the statement labeled n. However, it is
customary in the compiler literature to use the “do v = . . . ” and “enddo” form we use here instead,
and we do so throughout this book.
6. If we do not have ud-chains available, the identification of loop invariants can still be carried out,
but it requires checking, for each use, which definitions might flow to it, i.e., in effect, computing
ud-chains.
7. We could formulate this as an explicit data-flow analysis problem, but there is little point
in doing so. As is, it uses ud- and du-chains implicitly in computing Reach_Defs_0ut() and
Reach_Defs_In().

3 9 8 Redundancy Elimination

do i = 1, 100
1 = i * (n + 2)
do j = i, 100

a(i,j) = 100 * n
+ 10 * 1 + j

enddo
enddo

(a)

tl = 10 * (n + 2)
t2 = 100 * n
do i = 1, 100

t3 = t2 + i * tl
do j = i, 100

a(i,j) = t3 + j
enddo

enddo
(b)

FIG. 13.16 (a) Example of loop-invariant computations in Fortran, and (b) the result of
transforming it.

3. Next, mark the operands that have all definitions that reach them located outside
the loop.

4. Then, mark as loop-invariant instructions that (a) have all operands marked as loop-
invariant, or (b) that have only one reaching definition and that definition is an
instruction in the loop that is already marked loop-invariant, and there are no uses of
the variable assigned to by that instruction in the loop located before the instruction.

5. Repeat steps 2 through 4 above until no operand or instruction is newly marked as
invariant in an iteration.

Figure 13.17 shows a pair of routines that implement this algorithm. We use bset
to denote the set of indexes of basic blocks that make up a loop. Mark_Invar()

Instlnvar: (integer x integer) — > boolean
InvarOrder: sequence of (integer x integer)
Succ: integer — > set of integer

procedure Mark_Invar(bset,en,nblocks,ninsts,Block)
bset: in set of integer
en, nblocks: in integer
ninsts: in array [1 • •nblocks] of integer
Block: in array [1**nblocks] of array [••] of MIRInst

begin
i, j: integer
change: boolean
Order :* Breadth.First(bset,Succ,en): sequence of integer
InvarOrder : * []
for i := 1 to nblocks do

for j :s 1 to ninsts[i] do
InstInvar(i,j) := false

od
od
repeat

change := false
I I process blocks in loop in breadth-first order

FIG. 13.17 Code to mark loop-invariant instructions in a loop body.

Section 13.2 Loop-Invariant C ode M otion 399

for i := 1 to I Order I do
change V= Mark_Block(bset,en,Orderli,

nblocks,ninsts,Block)
od

until !change
end I I Mark_Invar

procedure Mark_Block(bset,en,i,nblocks,ninsts,Block) returns boolean
bset: in set of integer
en, i, nblocks: in integer
ninsts: in array [1*-nblocks] of integer
Block: in array [1•-nblocks] of array [••] of MIRInst

begin
j: integer
inst: MIRInst
change := false: boolean
for j := 1 to ninsts[i] do

I| check whether each instruction in this block has loop-constant
I I operands and appropriate reaching definitions; if so,
I| mark it as loop-invariant
if !InstInvar(i,j) then

inst := Block[i] [j]
case Exp_Kind(inst.kind) of

binexp: if Loop_Const(inst.opdl,bset,nblocks,ninsts, Block)
V Reach.Defs_0ut(Block,inst.opdl,i,bset)
V Reach_Defs_In(Block,inst.opdl,i,j,bset) then
InstInvar(i,j) := true

fi
if Loop_Const(inst.opd2,bset,nblocks,ninsts, Block)

V Reach_Defs_0ut(Block,inst.opd2,i,bset)
V Reach_Defs_In(Block,inst.opd2,i,j,bset) then
Instlnvar(i,j) &= true

fi
unexp: if Loop.Const(inst.opd,bset,nblocks,ninsts,Block)

V Reach_Defs_0ut(Block,inst.opd,i,bset)
V Reach_Defs_In(Block,inst.opd,i,j,bset) then
Instlnvar(i,j) := true

fi
default: esac

fi
if Instlnvar(i,j) then

I I record order in which loop invariants are found
InvarOrder ®= [<i,j>]
change := true

fi
od
return change

end I I Mark_Block
FIG. 13.17 (continued)

400 Redundancy Elimination

initializes the data structures and then calls Mark_Block() for each block in the
loop in breadth-first order, which marks the loop-invariant instructions in the block.
The functions used in the code are as follows:

1. B rea d th .F irst (bset ,Succ ,en) returns a sequence that enumerates the blocks in
bset in breadth-first order, where en is the entry block of bset (see Figure 7.13).

2. Loop_Const (opnd, bset ,nblocks ,n in s t s ,Block) determines whether opnd is a
loop constant in the loop made up of the blocks whose indexes are in bset.

3. Reach.Defs_0ut (B lo ck ,op n d ,i, bset) returns tru e if all definitions of opnd that
reach block i are in blocks whose indexes are not in bset and f a l s e otherwise.

4. Reach.Defs_ ln (B lock , opnd 9i 9j 9 bset) returns true if there is exactly one defini
tion of opnd that reaches Block [/] [/]; that definition is in the loop consisting of
the blocks in bset, is marked as loop-invariant, and is executed before Block [/] [/];
and there are no uses of the result variable (if any) of Block [/] [/] in the loop before
instruction j in block /. Otherwise it returns f a ls e .

As an example of Mark_Invar (), consider the flowgraph shown in Figure 13.18.
Calling

Mark_Invar({ 2 ,3 ,4 ,5 ,6 } ,2 ,8 ,n in s t s ,Block)

FIG. 13.18 An example for loop-invariant code motion.

Section 13.2 Loop-Invariant Code Motion 401

results in setting Order = [2,3,4,5,6], initializing all Inst Invar (i,/) to false,
and setting change = false, followed by invoking Mark_Block() for each block in
the breadth-first order given by Order. Applying Mark_Block() to block B2 exe
cutes the binexp case for Block[2] [1], which leaves InstInvar(2,1) unchanged
and returns false.

Applying Mark_Block() to block B3 executes the binexp case for Block [3] [1],
which sets Inst Invar (3,1) = true and InvarOrder = [<3,1>]. Next it executes
the unexp case for Block [3] [2], which sets Inst Invar (3,2) = true, InvarOrder =
[<3,1 >, <3,2>], and returns true. Next it executes the binexp case for Block [3] [3],
which leaves Inst Invar (3,3) and InvarOrder unchanged and returns true.

Applying Mark_Block() to block B4 executes the binexp case, for Block [4] [1],
which leaves Inst Invar (4,1) unchanged. Next it executes the binexp case for
Block [4] [2], which leaves Inst Invar (4,2) unchanged and returns false.

Applying Mark_Block() to block B5 executes the unexp case for Block [5] [1],
which leaves InstInvar(5,1) unchanged. Next it executes the binexp case for
Block[5][2], which sets InstInvar(5,2) = true, InvarOrder = [<3,1>,<3,2>,
<5,2>], and returns true.

Applying Mark_Block() to block B6 executes the binexp case for Block [6] [1],
which leaves InstInvar(6,1) unchanged. Next it executes the binexp case for
Block [6] [2], which determines that Block [6] [2] is loop-invariant, so it sets
InstInvar(6,2) = true, InvarOrder = [<3,1>,<3,2>,<5,2>,<6,2>], and returns
true.

Now change = true in Mark.Invar (), so we execute Mark_Block() again for
each block in the loop. The reader can check that no further instructions are marked
as loop-invariant and no further passes of the while loop are executed.

Note that the number of instructions that may be determined by this method
to be loop-invariant may be increased if we perform reassociation of operations
during determination of the invariants. In particular, suppose we have the mir code
in Figure 13.19(a) inside a loop, where i is the loop index variable and j is loop-
invariant. In such a case, neither mir instruction is loop-invariant. However, if we
reassociate the additions as shown in Figure 13.19(b), then the first instruction is
loop-invariant. Also, note that our definition of loop invariant needs to be restricted
somewhat to be accurate, because of the potential effects of aliasing. For example,
the mir instruction

m <r- call f, (1,int;2,int)
may be loop-invariant, but only if the call produces the same result each time it
is called with the same arguments and has no side effects, which can be found
out only by interprocedural analysis (see Chapter 19). Thus the list exp case in
Mark_Block() leaves Inst Invar (/,/) = false.

Now, having identified loop-invariant computations, we can move them to the
preheader of the loop containing them (see Section 7.4). On the face of it, it would
seem that we could simply move each instruction identified as loop-invariant, in the
order they were identified, to the preheader. Unfortunately, this approach is often
too aggressive in practice. There are two possible sources of error that this method
introduces (as illustrated in Figure 13.20). Note that these possible errors apply only

402 Redundancy Elimination

tl <- i + j t2 <- j + 1
n tl + 1 n <- i + t2
(a) (b)

FIG. 13.19 Example of a computation in (a) for which reassociation results in recognition of a
loop-invariant in (b).

(a) (b)

FIG. 13.20 Illustrations of two flaws in our basic approach to code motion. In both cases, if n <- 2
is moved to the preheader, it is always executed, although originally it might have been
executed only in some iterations or in none.

to assignment instructions. Thus, if we had a loop-invariant conditional, say, a < 0,
then it would always be safe to replace it by a temporary t and to put the assignment
t <- a < 0 in the preheader. The situations are as follows: 1

1. All uses of a moved assignment’s left-hand-side variable might be reached only by
that particular definition, while originally it was only one of several definitions that
might reach the uses. The assignment might be executed only in some iterations of
the loop, while if it were moved to the preheader, it would have the same effect as if it
were executed in every iteration of the loop. This is illustrated in Figure 13.20(a): the
use of n in block B5 can be reached by the value assigned it in both the assignments
n <r- 0 and n 2. Yet if n 2 is moved to the preheader, n is assigned the value 2
regardless.

2. The basic block originally containing an instruction to be moved might not be
executed during any pass through the loop. This could happen if execution of the
basic block were conditional and it could result in a different value’s being assigned
to the target variable or the occurrence of an exception for the transformed code that
would not occur in the original code. It could also happen if it were possible that
the loop body might be executed zero times, i.e., if the termination condition were

Section 13.2 Loop-Invariant Code Motion 403

satisfied immediately. This is illustrated in Figure 13.20(b): the assignment n <r- 2 is
not executed if the block containing it is bypassed for every pass through the loop,
yet if it is moved to the preheader, n is assigned the value 2 regardless. This can be
protected against by requiring that the basic block dominate all exit blocks of the
loop (where an exit block is one that has a successor outside the loop), because then
it must be executed on some iteration.

To fix the algorithm, we need a condition to guard against each of these situ
ations. Let v be the variable assigned to by an instruction that is a candidate for
movement to the preheader. Then the conditions are as follows:

1. The statement defining v must be in a basic block that dominates all uses of v in the
loop.

2. The statement defining v must be in a basic block that dominates all exit blocks of
the loop.

With these provisos, the resulting algorithm is correct, as follows: Move each in
struction identified as loop-invariant and satisfying conditions (1) and (2) above, in
the order they were identified, to the preheader.

The ican routine Move_Invar() to implement this algorithm is shown in Fig
ure 13.21. The routine uses the sequence Invar Order, computed by Mark. Invar ()
and four functions as follows:

1. in se r t .preheader (fese£,nblocks,n insts, Block) creates a preheader for the loop
made up of the blocks in bset and inserts it into the flowgraph, if there is not one
already.

2. Dom.Exits(i>bset) returns true if basic block i dominates all exits from the loop
consisting of the set of basic blocks whose indexes are in bset and f a l s e otherwise.

3. Dom.UsesO', bset tv) returns true if basic block i dominates all uses of variable v in
the loop consisting of the set of basic blocks whose indexes are in bset and false
otherwise.

4. append.preheader (bset, ninsts, Block, inst) appends instruction inst to the end
of the preheader of the loop consisting of the basic blocks whose indexes are in bset.
It can be implemented by using append_block() in Section 4.8.

Note that the second proviso includes the case in which a loop may be executed
zero times because its exit test is performed at the top of the loop and it may be
true when the loop begins executing. There are two approaches to handling this
problem; one, called loop inversion, is discussed in Section 18.5. The other simply
moves the code to the preheader and protects it by a conditional that tests whether
the loop is entered, i.e., by identifying whether the termination condition is initially
false. This method is always safe, but it increases code size and may slow it down
as well, if the test is always true or always false. On the other hand, this approach
may also enable constant-propagation analysis to determine that the resulting con
dition is constant-valued and hence removable (along with the code it guards, if the
condition is always false).

404 Redundancy Elim ination

procedure Move_Invar(bset,nblocks,ninsts,Block,Succ,Pred)
bset: in set of integer
nblocks: in integer
ninsts: inout array [1*‘nblocks] of integer
Inst: inout array [1 “ nblocks] of array [••] of MIRInst
Succ, Pred: inout integer — > set of integer

begin
i, blk, pos: integer
P: set of (integer x integer)
tj: Var
inst: MIRInst
insert_preheader(bset,nblocks,ninsts,Block)
for i := 1 to IlnvarOrderl do

blk := (InvarOrderli)@l
pos := (Invar0rderli)@2
inst := Block[blk][pos]
if Has_Left(inst.kind) & (Dom_Exits(blk,bset)

& Dom.Uses(blk,bset,inst.left) then
I I move loop-invariant assignments to preheader
case inst.kind of

binasgn, unasgn: append_preheader(Block[blk][pos],bset)
delete_inst(blk,pos,ninsts,Block,Succ,Pred)

default: esac
elif !Has_Left(inst.kind) then

I I turn loop-invariant non-assignments to assignments in preheader
tj new_tmp()
case inst.kind of

binif, bintrap: append.preheader(bset,ninsts,Block,<kind:binasgn,left: tj ,
opr:inst.opr,opdl:inst.opdl,opd2:inst.opd2>)

unif, untrap: append.preheader(bset,ninsts,Block,<kind:binasgn,left:tj,
opr:inst.opr,opd:inst.opd>)

default: esac
case inst.kind of

I| and replace instructions by uses of result temporary
binif, unif: Block[blk][pos] := <kind:valif,opd:<kind:var,val:tj>,

label:inst.lbl>
bintrap, untrap:

Block[blk][pos] := <kind:valtrap,opd:<kind:var,val:tj>,
trapno:inst.trapno)

default: esac
fi

od
end I I Move.Invar

FIG. 13.21 Code to move loop-invariant instructions out of a loop body.

As an example of applying M ove.Invar(), we continue with the example flow-
graph in Figure 13.18. We call

Move.Invar({2,3,4,5,6},2,8,ninsts,Block)

Section 13.2 Loop-Invariant Code Motion 405

The outermost for loop iterates for i = 1, 2, 3, 4, since

InvarOrder = [<3,1 > ,< 3 ,2>,< 5 ,2>,< 6 ,2>]

For i = 1, it sets blk = 3 and pos = 1, and determines that block B3 does dominate
the loop exit, that Block [3] [1] has a left-hand side, and that

D om _U ses(3 ,{2 ,3 ,4 ,5 ,6 },a) = true

so it executes the binasgn case, which appends instruction Block [3] [1] to the
loop’s preheader, namely, block Bl. For i = 2, the routine behaves similarly, except
that it chooses the unasgn case (which is the binasgn case also). For i = 3, it sets
blk = 5 and pos = 2, determines that block B5 does not dominate the loop exit, and
thus makes no further changes. For i = 4, it sets b lk = 6 and pos = 2, determines
that block B6 dominates the loop exit, and determines that Block [6] [2] has no left-
hand side. So it executes the b in if case, which creates a new temporary t l , appends
t l <r- a < 2 to block Bl, and changes Block [6] [2] to a test of t l . The resulting code
is shown in Figure 13.22. Note that if we were to do constant folding at this point,
we would determine that t l is always f a l s e , so the loop is nonterminating.

In performing loop-invariant code motion on nested loops, we work from the
innermost loop outward. This sequence achieves maximal identification of invariants

FIG. 13.22 The result of applying loop-invariant code motion to the flowgraph in Figure 13.18.

4 0 6 R edundancy E lim ination

do i = 1,100
m = 2*i + 3*1
do j * 1, i - 1

a(i,j) - j + m + 3*k
enddo

enddo
(a)

do i = 1,100
m = 2*i + 3*1
tl = i - 1
t2 = m + 3*k
do j = 1, tl

a(i,j) = j + t2
enddo

enddo
(c)

t3 = 3*1
t4 = 3*k
do i = 1,100

m = 2*i + t3
tl = i - 1
t2 « m + t4
do j = 1, tl

a(i,j) = j + t2
enddo

enddo
(e)

do i = 1,100
m - 2*i + 3*1
do j - 1, i - 1

a(i,j) = j + m + 3*k
enddo

enddo
(b)
do i = 1,100

m = 2*i + 3*1
tl = i - 1
t2 = m + 3*k
do j = l,tl

a(i,j) = j + t2
enddo

enddo
(d)

FIG. 13.23 Loop-invariant code motion on nested Fortran loops (invariants are underlined).

and code motion. For example, consider the Fortran 77 loop nest in Figure 13.23(a).
Identifying the loop invariants in the innermost loop results in Figure 13.23(b)—
the invariants are underlined—and moving them results in Figure 13.23(c). Next,
identifying the loop invariants in the outer loop results in Figure 13.23(d) and
moving them produces the final code in Figure 13.23(e).

A special case of loop-invariant code motion occurs in loops that perform re
ductions. A reduction is an operation such as addition, multiplication, or maximum
that simply accumulates values, such as in the loop shown in Figure 13.24, where
the four instructions can be replaced by s = n *a (j) . If the operand of the reduction
is loop-invariant, the loop can be replaced with a single operation, as follows:

1. If the loop is additive, it can be replaced by a single multiplication.

2. If the loop is multiplicative, it can be replaced by a single exponentiation.

3. If the loop performs maximum or minimum, it can be replaced by assigning the
loop-invariant value to the accumulator variable.

4. And so on.

Section 13.3 Partial-Redundancy Elimination 407

s = 0.0
do i - l,n

s = s + a(j)
enddo

FIG. 13.24 An example of a reduction.

13.3 Partial-Redundancy Elimination
Partial-redundancy elimination is an optimization that combines global common-
subexpression elimination and loop-invariant code motion and that also makes some
additional code improvements as well.

In essence, a partial redundancy is a computation that is done more than once
on some path through a flowgraph, i.e., some path through the flowgraph contains
a point at which the given computation has already been computed and will be
computed again. Partial-redundancy elimination inserts and deletes computations
in the flowgraph in such a way that after the transformation each path contains
no more—and, generally, fewer—occurrences of any such computation than before;
moving computations out of loops is a subcase. Formulating this as a data-flow
problem is more complex than any other case we consider.

Partial-redundancy elimination originated with the work of Morel and Ren-
voise [MorR79], who later extended it to an interprocedural form [MorR81]. As
formulated by them, the intraprocedural version involves performing a bidirectional
data-flow analysis, but as we shall see, the modern version we discuss here avoids
this. It is based on a more recent formulation called lazy code motion that was de
veloped by Knoop, Riithing, and Steffen [KnoR92]. The use of the word “ lazy” in
the name of the optimization refers to the placement of computations as late in the
flowgraph as they can be without sacrificing the reduction in redundant computa
tions of the classic algorithm. The laziness is intended to reduce register pressure (see
Section 16.3.10), i.e., to minimize the range of instructions across which a register
holds a particular value.

To formulate the data-flow analyses for partial-redundancy elimination, we need
to define a series of local and global data-flow properties of expressions and to show
how to compute each of them. Note that fetching the value of a variable is a type of
expression and the same analysis applies to it.

A key point in the algorithm is that it can be much more effective if the critical
edges in the flowgraph have been split before the flow analysis is performed. A
critical edge is one that connects a node with two or more successors to one with
two or more predecessors, such as the edge from B1 to B4 in Figure 13.25(a).
Splitting the edge (introducing the new block Bla) allows redundancy elimination to
be performed, as shown in Figure 13.25(b). As Dhamdhere and others have shown,
this graph transformation is essential to getting the greatest impact from partial-
redundancy elimination.

We use the example in Figure 13.26 throughout this section. Note that the
computation of x * y in B4 is redundant because it is computed in B2 and the one
in B7 is partially redundant for the same reason. In our example, it is crucial to split

408 Redundancy Elimination

FIG* 13*25 In (a), the edge from B1 to B4 is a critical edge. In (b), it has been split by the introduction
of Bla.

the edge from B3 to B5 so as to have a place to which to move the computation of
x * y in B7 that is not on a path leading from B2 and that does not precede B6.

We begin by identifying and splitting critical edges. In particular, for our exam
ple in Figure 13.26, the edges from B2 and B3 to B5 are both critical. For example, for
the edge from B3 to B5 we have Succ{B3) = {B5, B6} and Pred(B5) = {B2, B3}. Splitting
the edges requires creating new blocks B2a and B3a and replacing the split edges by
edges into the new (initially empty) blocks from the tails of the original edges, and
edges from the new blocks to the heads of the original edges. The resulting flowgraph
is shown in Figure 13.27.

The first property we consider is local transparency.8 An expression’s value is
locally transparent in basic block i if there are no assignments in the block to
variables that occur in the expression. We denote the set of expressions that are
transparent in block i by TRANSloc(i).

8. Note that local transparency is analogous to the property we call PRSV in Chapter 8.

Section 13.3 Partial-Redundancy Elimination 409

FIG. 13*26 An example of partially redundant expressions.

B2

B4

FIG. 13.27 The example from Figure 13.26 with the edges from B2 to B5 and B3 to B5 split. The
new blocks B2a and B3a have been added to the flowgraph.

410 R ed u n dan cy E lim in ation

For our example,
TRANSloc(B2) = {x*y}
TRANSloc(i) = Uexp = {a+1 ,x*y} for i ^ B2

where U exp denotes the set of all expressions in the program being analyzed.
An expression’s value is locally anticipatable in basic block i if there is a compu

tation of the expression in the block and if moving that computation to the beginning
of the block would leave the effect of the block unchanged, i.e., if there are neither
uses of the expression nor assignments to its variables in the block ahead of the com
putation under consideration. We denote the set of locally anticipatable expressions
in block i by ANTloc(i).

For our example, the values of ANTloc() are as follows:
ANTloc(entry) = 0
ANTloc(Bl) = {a+1}
ANTloc(B2) = {x*y}
ANTloc(B2a) = 0
ANTloc{ B3) = 0
ANTloc(B3a) = 0
ANTloc(B4) = {x*y}
ANTloc{ B5) = 0
ANTloc(B6) = 0
ANTloc(B7) = {x*y}
ANTloc(ex it) = 0
An expression’s value is globally anticipatable on entry to block i if every path

from that point includes a computation of the expression and if placing that compu
tation at any point on these paths produces the same value. The set of expressions
anticipatable at the entry to block i is denoted ANTin(i). An expression’s value is
anticipatable on exit from a block if it is anticipatable on entry to each successor
block; we use ANTout(i) to denote the set of expressions that are globally anticipat
able on exit from block /. To compute ANTin() and ANTout() for all blocks i in a
flowgraph, we solve the following system of data-flow equations:

ANTin(i) = ANTloc(i) U (TRANSloc(i) D ANTout(i))

ANTout(i) = P| ANTin(j)
jeSucc(i)

with the initialization ANTout(exit) = 0.
For our example, the values of ANTin() and ANTout() are as follows:
ANTin(e ntry) = {a+1} ANTout (entry) = {a+1}
ANTin(Bl) = {a+1} ANTout(Bl) = 0
ANTin(B2) = {x*y} ANTout(B2) = {x*y}
ANTin(B2a) = {x*y} ANTout(B2a) = {x*y}
ANTin(B3) = 0 ANTout(B3) = 0

Section 13.3 Partial-Redundancy Elimination 411

ANTin(B3a) = {x*y} ANTout(B3a) = {x*y}
ANTin{ B4) = lx*y} ANTout(B4) = 0
ANTin(B5) = lx *y} ANTout(B5) = {x*y}
ANTin(B6) = 0 ANTout(B6) = 0
ANTin(B7) = {x*y} ANTout(B7) = 0
ANTm(exit) = 0 ANTout (exit) — 0

The next property needed to do lazy code motion is earliestness. An expression
is earliest at the entrance to basic block i if no block leading from the entry to block
i both evaluates the expression and produces the same value as evaluating it at the
entrance to block i does. The definition of earliestness at the exit from a block is
similar. The properties EARLin() and EARLout() are computed as follows:

EARLin(i) = |J EARLout(j)
jePred(t)

EARLout(i) = TRANSloc(i) U ̂ ANTin(i) n EARLin(i)^

where A = Uexp - A, with the initialization EARLin(entry) = Uexp.
The values of EARLin{) for our example are as follows:
EARLin(e ntry) = {a+l,x*y} EARLout(e ntry) = (x*yl
EARLin(Bl) = lx*y} EARLouti Bl) = (x*yl
EARLin(B2) = {x*y} EARLout(B2) = (a+1)
EARLin(B2a) = la+1} EARLouti B2a) = {a+1}
EARLin(B3) = lx*y} EARLouti B3) = {x*y}
EARLin(B3a) = {x*y} EARLouti B3a) = 0
EARLin(B4) = la+1) EARLouti B4) = {a+1}
EARLin(B5) = {a+1} EARLouti B5) = {a+1}
EARLin(B6) = {x*y} EARLouti B6) = {x*y}
EARLin(B7) = (a+1) EARLouti B7) = {a+1}
EARLin(ex it) = {a+l,x*y} EARLout(ex it) = {a+1,x*y}
Next we need a property called delayedness. An expression is delayed at the

entrance to block i if it is anticipatable and earliest at that point and if all subsequent
computations of it are in block i. The equations for delayedness are

DELAYoutd) = ANTloc(i) n DELAYin(i)
DELAYin{i) = ANEAind) U p| DELAYoutd)

jePred(i)

where
ANEAin(i) = ANTin(i) 0 EARLin(i)

with the initialization DELAYin(entry) = ANEAin(entry).

412 R ed u n dan cy E lim in ation

The values of ANEAin{) for our example are as follows:
ANEAm (entry) = {a+1}
ANEAin{ Bl) = 0
ANEAin{ B2) = {x*y}
ANEAin(B2a) = 0
ANEAin{ B3) = 0
ANEAin{ B3a) = {x*y}
ANEAin{ B4) = 0
ANEAin(Bb) = 0
ANEAin{ B6) = 0
ANEAin{Bl) = 0
A N EA m (exit) = 0

and the values of DELAYin() and DELAYout() are as follows:
DELAYin(entry) = {a+1} DEL AYout (entry) = {a+1}
DELAYin{ Bl) = {a+1} DELAYout(Bl) = 0
DELAYin(B2) = {x*y} DELAYout(B2) = 0
DELAYin(B2a) = 0 DELAYout(B2a) = 0
DELAYin{ B3) = 0 DELAYout(B3) = 0
DELAYin(B3a) = {x*y} DELAYout(B3a) = {x*y}
DELAYin{ B4) = 0 DELAYout(B4) = 0
DELAYin(B5) = 0 DEL AYout (B5) = 0
DELAYin(B6) = 0 DELAYout(B6) = 0
DELAYin{ B7) = 0 DELAYout(B7) = 0
DELAYin(ex it) = 0 DEL AYout (exit) = 0
Next we define a property called latestness. An expression is latest at the en

trance to block i if that is an optimal point for computing the expression and if on
every path from block /’s entrance to the exit block, any optimal computation point
for the expression occurs after one of the points at which the expression was com
puted in the original flowgraph. The data-flow equation for LATEin() is as follows:

LATEin(i) = DELAYin(i) Pi ANTloc(i) U p| DELAYin(j)]
jeSucc(i)

For our example, LATEin{) is as follows:
LATEin(e ntry) = 0
LATEin(Bl) = {a+1}
LATEin(B2) = {x*y}
LATEin(B2a) = 0
LATEin(B3) = 0
LATEin(B3a) = {x*y}
LATEin(B4) = 0
LATEin(B5) = 0

Section 13.3 Partial-Redundancy Elimination 4 1 3

LATEin{ B6) = 0
LATEin{ B7) = 0
LATEin(ex it) = 0
A computationally optimal placement for the evaluation of an expression is

defined to be isolated if and only if on every path from a successor of the block in
which it is computed to the exit block, every original computation of the expression
is preceded by the optimal placement point. The data-flow properties ISOLin{) and
ISOLout() are defined by the equations

ISOLin(i) = LATEin(i) U (ANTloc(i) fl ISOLout(i))

ISOLout(i) = 1̂) ISOLin(j)
jeSucc(i)

with the initialization ISOLout(exit) = 0.
For our example, the values of ISOLin() and ISOLout{) are as follows:
ISOLin(entry) = 0 ISOLout(e ntry) = 0
ISOLin{ Bl) = {a+1} ISOLout (Bl) = 0
ISOLin{ B2) = (x*y) ISOLout(B2) = 0
lSOLin{ B2a) = 0 ISOLout(B2a) = 0
ISOLin{ B3) = 0 ISOLout(B3) = 0
ISOLin(B3a) = fx*y} ISOLout(B3a) = 0
ISOLin(B4) = 0 ISO Lou t (BA) = 0
lSOLin(B5) = 0 ISOLout(B5) = 0
ISOLin{ B6) = 0 ISOLout{ B6) = 0
ISOLin(B7) = 0 ISOLout(B7) = 0
ISOLin(ex i t) = 0 ISOLout(exit) = 0

The set of expressions for which a block is the optimal computation point is the
set of expressions that are latest but that are not isolated for that block, i.e.,

OPT(i) = LATEin(i) fl ISOLout(i)

and the set of redundant computations in a block consists of those that are used in
the block (i.e., in ANTloc()) and that are neither isolated nor latest in it, i.e.,

REDN(i) = ANTloc{i) n LATEin(i) U ISOLout(i)

For our example, the values of OPT() and R E D N () are as follows:
OPT (entry) = 0 REDN(e ntry) = 0
OPT(Bl) = {a+1} REDN(Bl) = {a+1}
OPT (B2) = {x*y} REDN(B2) = {x*y)
OPT (B2a) = 0 REDN(B2a) = 0
OPT (B3) = 0 REDN (B3) - 0
OPT (B3a) = {**y} REDN (B3a) - 0
OPT (B4) = 0 REDN (B4) = {x*y}

414 Redundancy Elimination

62

B4

FIG. 13.28 The result of applying modern partial-redundancy elimination to the example in
Figure 13.27.

OPT (B5) = 0 REDN(B5) = 0
OPT (B6) = 0 REDN(B6) = 0
OPT(B7) = 0 REDN (B7) = {x*y}
OPT(ex it) = 0 REDN(ex it) - 0

and so we remove the computations of x * y in B4 and B7, leave the one in B2, and
add one in B3a, as shown in Figure 13.28.

The code required to implement partial-redundancy motion is similar to
Move_Invar (). We leave it as an exercise for the reader.

Modern partial-redundancy elimination can be extended to include strength
reduction. However, the strength reduction is of a particularly weak form, because it
does not recognize loop constants. For example, the code in Figure 13.29(a) can be
strength-reduced by the method described in Section 14.1.2 to produce the code in
Figure 13.29(b), but the approach to strength reduction based on partial-redundancy
elimination cannot produce this code because it has no notion of loop constants.

Briggs and Cooper [BriC94b] improve the effectiveness of partial-redundancy
elimination by combining it with global reassociation and global value numbering
(see Section 12.4.2); Cooper and Simpson ([CooS95c] and [Simp96]) improve it

Section 13.4 Redundancy Elimination and Reassociation 415

k = 0
fo r i = l ,n

fo r j = l ,n
k = k + i * j

en dfor

en dfor

(a)

k = 0
fo r i = l ,n

1 = 0
fo r j = l ,n

i = i + j
endfor
k = k + i * 1

en dfor

(b)
FIG. 13.29 An example of the weakness of strength reduction when it is derived from partial-

redundancy elimination. The h i r code in (a) can be strength-reduced to the code in
(b) by the algorithm in Section 14.1.2, but not by the method derived from partial-
redundancy elimination, because it does not recognize i as a loop invariant in the
inner loop.

still further by using SSA form to operate on values rather than identifiers. The
combination with reassociation is discussed briefly in the next section.

13.4 Redundancy Elimination and Reassociation
Reassociation can significantly enhance the applicability and effectiveness of all
forms of redundancy elimination. For example, in the Fortran code in Figure 13.30,
only common-subexpression elimination applies to loop A, resulting in loop B. With
reassociation included, there is another possible sequence of the optimizations that
applies, as shown in Figure 13.31.

Further, note that one of the sequences requires common-subexpression elimi
nation, and the other does not; at least they both end up with the same (best) result.
This suggests that the combination of the three optimizations should be applied re
peatedly, but this may easily lead to a combinatorial explosion, so it is not advised.

The combination of partial-redundancy elimination and reassociation alleviates
this problem somewhat, as shown in Figure 13.32. Note that if we apply partial-
redundancy elimination first, we still need to apply it again after reassociation to get
the best result.

® do i = m,n
a = b +
c = a -
d = b +

i
i
i

enddo

CSE

CSE = common-subexpression
elimination

do i = m,n
a = b + i
c = a - i
d = a

enddo

FIG. 13.30 Only common-subexpression elimination applies to the loop in A, producing the one
in B.

416 Redundancy Elimination

do i = m,n
a = b + i
c = a - i
d = b + i

enddo
Reassociation

do i = m,n
a = b + i
c = a - i
d = a

enddo

Reassociation

Loop-invariant

© code motion
----------------►

do i = m,n
a = b + i
c = b
d = a

do i = m,n
a = b + i
c = b
d = b + i

enddo

c = b
do i = m,n

a = b + i
d = a

enddo

FIG. 13.31 Combining common-subexpression elimination and loop-invariant code motion with
reassociation results in more possible transformation sequences and an improved result,
compared to Figure 13.30.

do i = m,n
a = b + i
c = a - i
d = a

enddo

Reassociation
-----------------►

(d) do i = m,n
a = b + i
c = b
d = a

enddo

Partial-redundancy
elimination /

do i = m,n
a = b + i
c = a - i
d = b + i

enddo

enddo

Partial-redundancy
elimination

E c = b
do i = m,n

a = b + i
d = a

enddo

Partial-redundancy
elimination

FIG. 13.32 Combining partial-redundancy elimination with reassociation produces the same result
as in Figure 13.31.

Section 13.5 Code Hoisting 417

13.5 Code Hoisting
Code hoisting (also called unification—see Section 17.6) finds expressions that are
always evaluated following some point in a program, regardless of the execution
path, and moves them to the latest point beyond which they would always be
evaluated. It is a transformation that almost always reduces the space occupied
by a program but that may affect its execution time positively, negatively, or not
at all. Whether it improves the execution time or not may depend on its effect on
instruction scheduling, instruction-cache effects, and several other factors.

An expression that is evaluated regardless of the path taken from a given point
is said to be very busy at that point. To determine very busy expressions, we do
a backward data-flow analysis on expressions. Define EVAL(i) to be the set of
expressions that are evaluated in basic block i before any of the operands are
assigned to (if at all) in the block and KILL(i) to be the set of expressions killed
by block /. In this context, an expression is killed by a basic block if one (or more)
of its operands is assigned to in the block, either before it is evaluated or if it is not
evaluated in the block at all. Then the sets of very busy expressions at the entry to
and exit from basic block i are VBEin(i) and VBEout(i), respectively, defined by

VBEin(i) = EVAL(i) U (VBEout(i) — KILL(i))

VBEout(i) = P | VBEin{j)
jeSucc(i)

where, in solving the data-flow equations, VBEout(i) = 0 initially for all /. The data
flow analysis can be implemented efficiently using bit vectors.

For example, given the flowgraph in Figure 13.33, the EVAL() and K IL L () sets
are as follows:

FIG. 13.33 An example for code hoisting.

418 Redundancy Elimination

EVAL(e ntry) = 0 KILL(e ntry) = 0
EVAL(Bl) = 0 KILL(Bl) - 0
EVAL(B2) = {c+d} KILL(B2) = {a+d}
EVAL(B3) = {a+c,c+d} KILL{ B3) = 0
EVAL(B4) = {a+b,a+c} KILL(B4) = 0
EVAL(B5) = {a+b,a+d} KILL(B5) = 0
EVAL(exit) = 0 K /L L (ex it) - 0

and the VBEin{) and VBEout{) sets are as follows:

VBEm(entry)
VBEin(Bl)
VBEin(B2)
VBEin(B3)
VBEin{ B4)
VBEin{ B5)
VBEin(ex i t)

= {c+d}
= {c+d}
= {c+d}
= {a+b,a+c,c+d}
= {a+b,a+c}
= {a+b,a+c,a+d,c+d}
= 0

VBEout(e ntry)
VBEout(Bl)
VBEout(B2)
VEEow£(B3)
VBEow£(B4)
VEEow£(B5)
VBEout(ex i t)

{c+d}
{c+d}
0
{a+b,a+c}
0
{a+b,a+c,c+d}
0

Now, for any i ^ entry, each expression exp in VBEout(i) is a candidate for
hoisting. Let S be the set of basic blocks j such that block i dominates block /, exp
is computed in block /, and a computation of exp at the end of block i would reach
the first computation of exp in block / unimpaired. Let th be a new temporary. Then
we append th <r- exp to the end of block i (except that if the block ends with a
conditional, we place the assignment before it) and we replace the first use of exp
in each block / in S by th. ican code to perform this transformation is given in
Figure 13.34. The following routines are used in the code:

1. Exp_Kind(£) returns the kind of expression contained in a mir instruction of kind
k (as defined in Section 4.7).

2. Reach {exp. Block, i , j ,k) returns true if a definition of exp at the end of block i
would reach the kth instruction in block / unimpaired, and f a l s e otherwise.

3. append.block O’, n in s t s , B lock , inst) inserts the instruction inst at the end of block
/, or if the last instruction in block i is a conditional, it inserts it immediately before
the conditional; in either case, it updates n in sts [/] accordingly (see Section 4.8).

4. Dominate(/,/) returns true if block i dominates block /, and f a l s e otherwise.

Thus, for our example, we hoist the computations of c + d in blocks B2 and B3
to block Bl, the computations of a + c in B3 and B4 to B3, and the computations of
a + b in B4 and B5 also to B3, as shown in Figure 13.35. Note that local common-
subexpression elimination can now replace the redundant computation of a + c in
B3 by

t3 <” a + c
f <- t3

Section 13.5 Code Hoisting 419

BinExp = Operand x Operator x Operand

procedure Hoist_Exps(nblocks,ninsts,Block,VBEout)
nblocks: in integer
ninsts: inout array [1•-nblocks] of integer
Block: inout array [1--nblocks] of array [••] of MIRInst
VBEout: in integer — > set of Binexp

begin
i, j, k: integer
S: set of (integer x integer)
exp: BinExp
th: Var
s: integer x integer
inst: MIRInst
for i :s 1 to nblocks do

for each exp e VBEout(i) do
S : = 0
for j := 1 to nblocks do

if !Dominate(i,j) then
goto LI

fi
for k := 1 to ninsts[j] do

inst := Block[j][k]
if Exp_Kind(inst.kind) = binexp

& inst.opdl = exp@l & inst.opr = exp@2
& inst.opd2 = exp@3 & Reach(exp,Block,i,j,k) then
S u= {<j,k»
goto LI

fi
od

LI: od
th := new_tmp()
append_block(i,ninst s,Block,<kind:binasgn,

left:th,opdl:exp@l,opr:exp@2,opd2:exp@3>)
for each s e S do

inst := Block[s@l][s@2]
case inst.kind of

binasgn: Block[s@l][s@2] := <kind:valasgn,
left:inst.left,opd:<kind:var,val:th> >

binif: Block[s@l][s@2] := <kind:valif,
opd:<kind:var,val:th>,lbl:inst.lbl>

bintrap: Block[s@l][s@2] := <kind:valtrap,
opd:<kind:var,val:th>,trapno:inst.trapno)

esac
od

od
od

end I| Hoist_Exps
FIG. 13.34 An ican routine to perform code hoisting.

420 Redundancy Elimination

FIG. 13.35 The result of performing code hoisting on the example program in Figure 13.33.

13.6 Wrap-Up
The optimizations in this chapter have all dealt with elimination of redundant com
putations and all require data-flow analysis, either explicitly or implicitly. They can
all be done effectively on either medium-level or low-level intermediate code.

These four optimizations have significant overlap between the first and second
versus the third one. We summarize them as follows: 1

1. The first, common-subexpression elimination, finds expressions that are performed
twice or more often on a path through a procedure and eliminates the occurrences
after the first one, as long as the values of the arguments have not changed in
between. It almost always improves performance.

2. The second, loop-invariant code motion, finds expressions that produce the same
result every time a loop is repeated and moves them out of the loop. It almost always
significantly improves performance because it mostly discovers and moves address
computations that access array elements.

3. The third, partial-redundancy elimination, moves computations that are at least par
tially redundant (i.e., that are computed more than once on some path through the
flowgraph) to their optimal computation points and eliminates totally redundant
ones. It encompasses common-subexpression elimination, loop-invariant code mo
tion, and more.

4. The last, code hoisting, finds expressions that are evaluated on all paths leading
from a given point and unifies them into a single one at that point. It reduces the
space occupied by a procedure but does not generally improve run-time performance
unless there are numerous instances for its application.

Section 13.6 Wrap-Up 421

FIG. 13.36 Place of redundancy-related optimizations (highlighted in bold type) in an aggressive
optimizing compiler, (continued)

We presented both the pair of optimizations common-subexpression elimination and
loop-invariant code motion, and partial-redundancy elimination as well, because
both approaches have about the same efficiency and have similar effects. The m od
ern formulation of partial-redundancy elimination also provides a framework for
thinking about and formulating other optimizations that share some of the data
flow information it requires. This optimization can be expected to be used in newly
written compilers much more frequently in coming years and is replacing the former
combination in some commercial compilers.

As shown in Figure 13.36, the redundancy-elimination transform ations are gen
erally placed roughly in the middle of the optimization process.

422 Redundancy Elimination

FIG. 13.36 (continued)

13.7 Further Reading
Partial-redundancy elimination originated with the work of Morel and Renvoise
[MorR79], who later extended it to an interprocedural form [MorR81]. Extend
ing classic partial-redundancy analysis to include strength reduction and induction-
variable simplifications is discussed in [Chow83].

More recently Knoop, Riithing, and Steffen have introduced a form that re
quires only unidirectional data-flow analysis [KnoR92]. The edge-splitting trans
formation described in Section 13.3 was developed by Dhamdhere [Dham88]. Ex
tension of partial-redundancy elimination to include strength reduction is described
in [KnoR93]. Briggs and Cooper’s improved approach to partial-redundancy elimi
nation is described in [BriC94b], and Cooper and Simpson’s further improvements
are described in [CooS95c] and in [Simp96].

13.8 Exercises
13.1 As noted in Section 13.1, common-subexpression elimination may not always be

profitable. Give (a) a list of criteria that guarantee its profitability and (b) a list
that guarantee that it is unprofitable. (Note that there are intermediate situations
for which neither can be ensured.)

Section 13.8 Exercises 423

13.2 Formulate the data-flow analysis that is the inverse of available expressions, i.e., the
backward-flow problem in which an expression is in EVAL(i) if it is evaluated in
block i and none of the variables in it are changed between the entrance to the block
and the given evaluation, with the path-combining operator being intersection. Is
there an optimization problem for which this analysis is useful?

13.3 Give an infinite sequence of programs Pi, ? 2 , . . . and a set of optimizations covered
in Chapters 12 and 13, such that P„ for each /, derives more benefit from i repetitions
of the optimizations than it does from i — 1 repetitions.

13.4 Write an ican routine Fw d_Subst(n ,n insts,Block) to perform forward substitu
tion on an entire procedure.

13.5 Explain how you would modify Mark.Invar () and Mark_Block() in Figure 13.17
to deal with reassociation. What effect would this be expected to have on the running
time of the algorithm?

13.6 Give an example of a loop nest that makes it clear that doing invariant code motion
from the innermost loop out is superior to doing it from the outermost loop in.

13.7 Formulate an algorithm to recognize reductions and to perform loop-invariant code
motion on them. Use the function Reductor (opr) to determine whether the operator
opr is an operator useful for performing a reduction.

13.8 Downward store motion is a variety of code motion that moves stores in a loop to
the exits of the loop. For example, in the Fortran code in part E of Figure 13.31, the
variable d is a candidate for downward store motion—each assignment to it except
the last one is useless, so moving it to follow the loop produces the same result,
as long as the loop body is executed at least once. Design a method for detecting
candidates for downward store motion and write ican code to detect and move
them. What effect does downward store motion have on the need for registers in a
loop?

13.9 Write a l is t e x p case for the routine Local_CSE() given in Figure 13.2.

13.10 Write a routine Move_Partial_Redun() that implements partial-redundancy
motion.

CHAPTER 14

Loop Optimizations

T he optimizations covered in this chapter either operate on loops or are most
effective when applied to loops. They can be done on either medium-level
(e.g., m ir) or low-level (e.g., lir) intermediate code.

They apply directly to the disciplined source-language loop constructs in Fortran
and Pascal but, for a language like C, require that we define a subclass of loops that
they apply to. In particular, we define the class of well-behaved loops in C (with
reference to the code in Figure 14.1) as those in which exp 1 assigns a value to an
integer-valued variable /, exp2 compares i to a loop constant, exp3 increments or
decrements i by a loop constant, and stmt contains no assignments to /. A similar
definition describes the class of well-behaved loops constructed from ifs and gotos
in any modern programming language.

14.1 Induction-Variable Optimizations
In their simplest form, induction variables are variables whose successive values form
an arithmetic progression over some part of a program, usually a loop. Usually the
loop’s iterations are counted by an integer-valued variable that proceeds upward (or
downward) by a constant amount with each iteration. Often, additional variables,
most notably subscript values and so the addresses of array elements, follow a pat
tern similar to the loop-control variable’s, although perhaps with different starting
values, increments, and directions.

For example, the Fortran 77 loop in Figure 14.2(a) is counted by the variable i ,
which has the initial value 1, increments by 1 with each repetition of the loop body,

for (exp 1 ;expl;exp3)
stmt

FIG, 14.1 Form of a for loop in C.

425

426 Loop Optimizations

integer a(100)
do i = 1,100

a(i) = 202 - 2 * i
enddo

(a)

integer a(100)
tl = 202
do i « 1,100

tl * tl - 2
a(i) = tl

enddo
(b)

FIG. 14.2 An example of induction variables in Fortran 77. The value assigned to a (i) in (a)
decreases by 2 in each iteration of the loop. It can be replaced by the variable t l , as
shown in (b), replacing a multiplication by an addition in the process.

and finishes with the value 100. Correspondingly, the expression assigned to a (i)
has the initial value 200, decreases by 2 each time through the loop body, and has
the final value 2. The address of a (i) has the initial value (in mir) addr a, increases
by 4 with each loop iteration, and has the final value (addr a) + 396. At least one
of these three progressions is unnecessary. In particular, if we substitute a temporary
t l for the value of 202 - 2 * i , we can transform the loop to the form shown in
Figure 14.2(b), or to its equivalent in mir, shown in Figure 14.3(a). This is an
example of an induction-variable optimization called strength reduction: it replaces
a multiplication (and a subtraction) by a subtraction alone (see Section 14.1.2). Now
i is used only to count the iterations, and

addr a (i) = (addr a) + 4 * i - 4

so we can replace the loop counter i by a temporary whose initial value is addr a,
counts up by 4s, and has a final value of (addr a) + 396. The mir form of the result
is shown in Figure 14.3(b).

All of the induction-variable optimizations described here are improved in effec
tiveness by being preceded by constant propagation.

An issue to keep in mind in performing induction-variable optimizations is that
some architectures provide a base + index addressing mode in which the index may
be scaled by a factor of 2, 4, or 8 before it is added to the base (e.g., pa-risc
and the Intel 386 architecture) and some provide a “ modify” mode in which the
sum of the base and the index may be stored into the base register either before or
after the storage reference (e.g., pa-risc , power, and the VAX). The availability of
such instructions may bias removal of induction variables because, given a choice
of which of two induction variables to eliminate, one may be susceptible to scaling
or base register modification and the other may not. Also, pa-risc ’s add and branch
instructions and power’s decrement and branch conditional instructions may bias
linear-function test replacement (see Figure 14.4 and Section 14.1.4) for similar
reasons.

14.1.1 Identifying Induction Variables
Induction variables are often divided, for purposes of identification, into basic or
fundamental induction variables, which are explicitly modified by the same con
stant amount during each iteration of a loop, and dependent induction variables,

Section 14.1 Induction-Variable Optimizations 427

LI:

tl <- 202 tl <- 202
i «s- :L t3 «- addr a

t4 <- t3 - 4
t5 <- 4
t6 <- t4
t7 <- t3 + 396

t2 <- i > 100 LI: t2 <- t6 > t7
if t2 goto L2 if t2 goto L2
tl <- tl - 2 tl <- tl - 2
t3 <- addr a
t4 <- t3 - 4
t5 <- 4 * :i
t6 <- t4 + t5 t6 <- t4 + t5
*t6 <-- tl *t6 <- tl
i «e-]L + 1 t5 <- t5 + 4
goto LI

L2:
(a)

goto LI
L2:
(b)

FIG. 14.3 In (a), the mir form of the loop in Figure 14.2(b) and, in (b), the same code with
induction variable i eliminated, the loop-invariant assignments t3 <- addr a and
t4 <- t3 - 4 removed from the loop, strength reduction performed on t5, and induction
variable i removed.

tl <- 202
t3 <- addr a
t4 <--396
t5 t3 + 396
t2 <- t4 > 0
if t2 goto L2

LI: tl <- tl - 2
t6 <- t4 + t5
*t6 <- tl
t4 <- t4 + 4
t2 <- t4 <= 0
if t2 goto LI

L2:
FIG. 14.4 The result of biasing the value of t4 in the code in Figure 14.3(b) so that a test against 0

can be used for termination of the loop. Loop inversion (see Section 18.5) has also been
performed.

which may be modified or computed in more complex ways. Thus, for example, in
Figure 14.2(a), i is a basic induction variable, while the value of the expression
200 - 2 * i and the address of a (i) are dependent induction variables. By contrast,
in the expanded and transformed m ir version of this code in Figure 14.3(b), the in
duction variable i has been eliminated and t5 has been strength-reduced. Both t l
and t5 (which contain the value of 200 - 2 * i and the offset of the address of a (i)
from the address of a (0) , respectively) are now basic induction variables.

428 Loop Optimizations

i <- 0
LI: . . .

use of i
i <- i + 2
use of i
i <- i + 4
use of i
goto LI

(a)

tl <--4
i <- 0

LI: . . .
use of i
tl <- tl + 6
use of tl
i <- i + 6
use of i
goto LI

(b)
FIG* 14*5 Example of splitting a basic induction variable with two modifications (a) into two

induction variables (b).

To identify induction variables, we initially consider all variables in a loop
as candidates, and we associate with each induction variable j we find (including
temporaries) a linear equation of the form j = b * biv + c, which relates the values
of j and biv within the loop, where biv is a basic induction variable and b and
c are constants (they may either be actual constants or previously identified loop
invariants); biv9 b, and c are all initially n il . Induction variables with the same
basic induction variable in their linear equations are said to form a class and the
basic induction variable is called its basis. As we identify a variable / as potentially
an induction variable, we fill in its linear equation.

The identification can be done by sequentially inspecting the instructions in the
body of a loop, or it can be formulated as a data-flow analysis. We follow the
first approach. First, we identify basic induction variables by looking for variables i
whose only modifications in the loop are of the form i i + d or i <- d + /, where d
is a (positive or negative) loop constant. For such a variable /, the linear equation is
simply / = 1 * i + 0, and i forms the basis for a class of induction variables. If there
are two or more such modifications of i in the loop, we split the basic induction
variable into several, one for each modification. For example, given the code in
Figure 14.5(a), we split i into the two induction variables i and t l , as shown in
Figure 14.5(b). In general, given a basic induction variable with two modifications,
as shown in Figure 14.6(a), the transformed code is as shown in Figure 14.6(b);
generalization to three or more modifications is straightforward.

Next, we repetitively inspect the instructions in the body of the loop for variables
/ that occur on the left-hand side of an assignment, such that the assignment has
any of the forms shown in Table 14.1, where i is an induction variable (basic or
dependent) and e is a loop constant. If i is a basic induction variable, then / is in
the class of i and its linear equation can be derived from the form of the assignment
defining it; e.g., for / <- e * /, the linear equation for / is / = e * i + 0. If i is not basic,
then it belongs to the class of some basic induction variable i\ with linear equation
i = b\ * i\ + c\\ then / also belongs to the class of i\ and its linear equation (again
supposing that the defining assignment is j <- e * i) is / = (e * b\) * i\ + e * c\. Two
further requirements apply to a dependent induction variable /. First, there must
be no assignment to i\ between the assignment to i and the assignment to / in the
loop, for this would alter the relationship between / and /*i, possibly making / not an

Section 14.1 Induction-Variable Optimizations 429

11 <— io - Cl2
1 <r~ iQ i <- io

L I: . . .
use of i use of i

i i + a \ t \ t l + + Cl2)

use of i use of t l

i i + #2 i < - i + (a \ + a i)

use of i use of i

goto LI goto LI
(a) (b)

FIG* 14.6 Template for splitting a basic induction variable with two modifications (a) into two
induction variables (b).

TABLE 14.1 Assignment types that may
generate dependent
induction variables.

/ <- i * e

j <- e * i

j i+e

j <- e+i

j <- i- e

j < - e - i

j <- ~i

induction variable at all; second, there must be no definition of i from outside the
loop that reaches the definition of /. Reaching definitions or ud-chains can be used
to check the latter condition.

If there is more than one assignment to /, but all of them are of one of these
forms, then we split / into several induction variables, one for each such assignment,
each with its own linear equation.

Assignments of the form

j <r- i / e

can be accommodated also if we first unroll the loop body by a factor f that is a
multiple of e (see Section 17.4.3). Then the linear equation for / is / = (f /e) * i + 0,
assuming that i is a basic induction variable.

If we ever need to fill in a different basic induction variable, b value, or c value
in the linear equation for a variable / for which they are already set, we split the
induction variable into two, as described above.

430 Loop O ptim izations

IVrecord: record {tiv,biv: Var,
blk,pos: integer,
fctr,diff: Const}

IVs: set of IVrecord

procedure Find.IVs(bset,nblocks,ninsts,Block)
bset: in set of integer
nblocks: in integer
ninsts: in array [1**nblocks] of integer
Block: in array [1 • •nblocks] of array [••] of MIRInst

begin
inst: MIRInst
i, j : integer
var: Var
change: boolean
opsl, ops2: enum {opdl,opd2}
iv: IVrecord
IVs := 0
for each i e bset do

for j := 1 to ninsts[i] do
inst := Block[i][j]
case inst.kind of

I| search for instructions that compute fundamental induction
I| variables and accumulate information about them in IVs

binasgn: if IV_Pattern(inst,opdl,opd2,bset,nblocks,Block)
V IV_Pattern(inst,opd2,opdl,bset,nblocks,Block) then
IVs u= {<tiv:inst.left,blk:i,pos:j,fctr:l,

biv: inst. left,diff: 0 »
fi

default: esac
od

od
FIG . 14.7 Code to identify induction variables.

If a m odification o f a potential induction variable occurs in one arm o f a condi
tional, there m ust be a balancing m odification in the other arm .

The routine F in d _ IV s () in Figure 14 .7 and the auxiliary routines in Figure 14.8
im plem ent m ost o f the above. They om it induction variab les with m ore than one
assignm ent in the loop and the requirem ent that an induction-variable definition in
one arm o f a conditional m ust be balanced by such a definition in the other arm.
They use several functions, as follow s:

1. L o o p . C o n s t (o p t t d , n b l o c k s , B lo c k) returns t r u e if operand opnd is a con
stant or if it is a variab le that is a loop constant in the loop consisting o f the set o f
blocks bset, and f a l s e otherw ise.

Section 14.1 Induction-Variable O ptim izations 431

repeat
change := false
for each i e bset do

for j :s 1 to ninsts[i] do
inst := Block[i] [j]
case inst.kind of

I| check for dependent induction variables
I| and accumulate information in the IVs structure

binasgn: change := Mul_IV(i,j,opdl,opd2,
bset,nblocks,ninsts,Block)

change V= Mul_IV(i,j,opd2,opdl,
bset,nblocks,ninsts,Block)

change V= Add_IV(i,j,opdl,opd2,
bset,nblocks,ninsts,Block)

change V= Add_IV(i,j,opd2,opdl,
bset,ninsts,Block)

default: esac
od

od
until !change

end I I Find_IVs

procedure IV_Pattern(inst,ops1,ops2,bset,nblocks,Block)
returns boolean
inst: in Instruction
opsl,ops2: in enum {opdl,opd2}
bset: in set of integer
nblocks: in integer
Block: in array [1••nblocks] of array [••] of MIRInst

begin
return inst.left = inst.ops1.val & inst.opr = add

& Loop_Const(inst.ops2,bset,nblocks,Block)
& !3iv e IVs (iv.tiv = inst.left)

end || IV_Pattern

FIG. 14.7 (continued)

2 . A s s ig n _ B e t w e e n (i / < z r , / , / ,£ , / , f e s e £ ,n b l o c k s ,B lo c k) re tu rn s t r u e if v a r ia b le var
is a ss ig n e d to on so m e p a th betw een in stru c tio n B lo c k [/] [/] a n d in stru c tio n
B lo c k [£] [/] , a n d f a l s e o th e rw ise .

3 . N o _R each _D ef s n b l o c k s , B lo c k) re tu rn s t r u e if there are n o in stru c
tio n s o u ts id e the lo o p th a t define v a r ia b le var a n d reach in stru c tio n B lo c k [/] [/] ,
a n d o th e rw ise f a l s e .

They also use the set IVs of IVrecords that records induction variables, their linear
equations, and the block and position of the statement in which they are defined.
The record

<t iv iv a r l ,blk:/,pos:/,f ctr :c l ,b i v : v a r ,d if f :c2)

432 Loop O ptim izations

procedure Mul_IV(i,j,opsl,ops2,bset,nblocks,ninsts,Block) returns boolean
i, j: in integer
opsl, ops2: in enum {opdl,opd2}
bset: in set of integer
nblocks: in integer
ninsts: in array [1**nblocks] of integer
Block: in array [1 •-nblocks] of array [••] of MIRInst

begin
inst :* Block[i][j]: MIRInst
ivl, iv2: IVrecord
if Loop_Const(inst.opsl,bset,nblocks,Block)

& inst.opr = mul then
if 3ivl e IVs (inst.ops2.val = ivl.tiv

& ivl.tiv = ivl.biv & ivl.fctr = 1
& ivl.diff = 0) then
IVs u= {<tiv:inst.left,blk:i,pos:j,

fctr:inst.opsl.val,biv:ivl.biv,diff:0>>
elif 3iv2 e IVs (inst.ops2.val = iv2.tiv) then

if !Assign_Between(iv2.biv,i,j,iv2.blk,iv2.pos,
bset,nblocks,Block)
& No_Reach_Defs(inst.ops2.val,i,j,bset,
nblocks,Block) then
IVs u= {<tiv:inst.left,blk:i,pos:j,

fctr:inst.opsl.val*iv2.fctr,biv:iv2.biv,
diff:inst.opsl.val*iv2.diff»

fi
fi
return true

fi
return false

end || Mul.IV
F IG . 14 .8 A uxiliary routines used in identifying induction variables.

declared in F igure 1 4 .7 describes an in duction variab le varl defined in instruction
B lo c k [/] [/] , in the c la ss o f basic induction variab le var, an d w ith the linear equation

varl = cl * var + cl

N o te th at exp ressio n s th at are con stan t-valued w ithin a loop , such as

i n s t . o p d l . v a l * i v 2 . f c t r

i v 2 . d i f f + i n s t . o p d l . v a l

m ay n ot have their va lues know n at com pile tim e— they m ay sim ply be loop con
stan ts. In this situ atio n , w e need to carry the loop -co n stan t expression s in the
IV re c o rd s an d generate in struction s to com pute their values in the lo o p ’s preheader.

Section 14.1 Induction-Variable Optimizations 433

procedure Add_IV(i,j,opsl,ops2,bset,nblocks,ninsts,Block) returns boolean
i, j: in integer
opsl, ops2: in enum {opdl,opd2>
bset: in set of integer
nblocks: in integer
ninsts: in array [••] of integer
Block: in array [••] of array [••] of MIRInst

begin
inst := Block[i][j]: in MIRInst
ivl, iv2: IVrecord
if Loop_Const(inst.opsl,bset,nblocks,Block)

& inst.opr = add then
if 3ivl e iVs (inst.ops2.val = ivl.tiv

& ivl.tiv = ivl.biv & ivl.fctr = 1
& ivl.diff * 0) then
IVs u= {<tiv:inst.left,blk:i,pos:j,

fctr:1,biv:ivl.biv,diff:inst.opsl.val>}
elif 3iv2 e IVs (inst.ops2.val = iv.tiv) then

if !Assign.Between(iv2.biv,i,j,iv2.blk,iv2.pos,
bset,nblocks,Block)
& No_Reach_Defs(inst.ops2.val,i,j,bset,
nblocks,Block) then
IVs u= {<tiv:inst.left,blk:i,pos:j,

fctr:iv2.fctr,biv:iv2.biv,
dif f: iv2. dif f+inst. opsl. val»

fi
fi
return true

fi
return false

end || Add.IV
FIG. 14.8 (continued)

As a small example of this method for identifying induction variables, con
sider the m ir code in Figure 14.3(a). The first basic induction variable we encounter
is t l , whose only assignment in the loop is t l <r- t l - 2; its linear equation is
t l = l * t l + 0. The only other basic induction variable is i with a linear equa
tion i = 1 * i + 0. Next, we find that t5 is a dependent induction variable with a
linear equation t5 = 4 * i + 0. Finally, we identify t6 as another dependent induc
tion variable (since addr a, the value of t3 , is a loop constant) in the class of i with
linear equation t6 = 4 * i + addr a.

As another example of the process of identifying induction variables, consider
the m ir code in Figure 14.9. We begin with the inner loop consisting of blocks B4
and B5. The only basic induction variable in the loop is k, so IVs (which is initially
empty) becomes

IVs - { < t iv :k ,b lk :B 5 ,p o s : 1 7 , f c t r : l , b i v : k , d i f f : 0 »

434 Loop Optimizations

FIG. 14.9 A second example for induction-variable identification.

Next t l2 is recognizable as an induction variable in the class of k, so I Vs becomes

IVs = {< t iv :k ,b lk :B 5 ,p o s :1 7 ,fc t r :1 , b i v : k , d i f f :0 > ,
< t iv :t l2 ,b lk :B 5 ,p o s :1 1 , f c t r : 1 0 0 ,b iv :k ,d i f f :0 > }

Then t l3 is recognized as an induction variable in the class of k, so we have

IVs = {<tiv:k, blk:B5,pos:17,fctr:1, biv:k,diff:0>,
<tiv:tl2,blk:B5,pos:ll,fctr:100,biv:k,diff:0),
<tiv:tl3,blk:B5,pos: 12, f ctr: 100,biv:k,dif f: j »

Temporaries t l4 , t l5 , and t l6 are also recognized as induction variables in the class
of k, so we finally have

Section 14.1 Induction-Variable Optimizations 435

IVs = {<tiv:k, blk:B5,pos:17,fctr:1, biv:k,diff:0>,
<tiv:tl2,blk:B5,pos:ll,fctr:100,biv:k,diff:0>,
<tiv:tl3,blk:B5,pos:12,fctr:100,biv:k,diff:j > ,
<tiv:tl4,blk:B5,pos:13,fctr:100,biv:k,diff:j —101>,
<t iv:115,blk:B5,pos:14,f ctr:400,biv:k,dif f:4*j-404),
<tiv:116,blk:B5,pos:15,f ctr:400,biv:k,

diff:(addr a)+4*j-404)}
Note that t2, t3, t4, t5, t6, t7, t9, and til are all loop invariants in the

inner loop, but that does not concern us here, because none of them, except til,
contribute to defining any of the induction variables.

Now, in the outer loop, consisting of blocks B2, B3, B4, B5, and B6, variable 1 is
the first induction variable identified, setting

IVs = {<tiv:l,blk:B6,pos:l,fctr:l,biv:l,diff:0»
and i is discovered next, resulting in

IVs = {<tiv:l,blk:B6,pos:l,fctr:l,biv:l,diff:0>,
<tiv:i,blk:B6,pos:2,fctr:l,biv:i,diff:0>>

Then tl in B3 is added, yielding

IVs = {<tiv:l, blk:B6,pos:1,fctr:1,biv:l,diff:0>,
<tiv:i, blk:B6,pos:2,fctr:1,biv:i,diff:0>,
<tiv:tl,blk:B3,pos:l,fctr:3,biv:i,diff:0>}

Now, notice that j is an induction variable also. However, this fact is unlikely
to be discovered by most compilers. It requires algebra or symbolic arithmetic to
determine the following: on exit from block Bl, we have 1 + i = 101, and B6, the
only block that modifies either 1 or i, maintains this relationship, thus

j = tl + 1 = 3*i + 1 = 2*i + (i + 1) = 2*i + 101
This is unfortunate, because several of the loop invariants in the inner loop (men
tioned above) have values that would also be induction variables in the outer loop if
j were recognizable as one.

Once we have identified induction variables, there are three important trans
formations that apply to them: strength reduction, induction-variable removal, and
linear-function test replacement.

14.1.2 Strength Reduction
Strength reduction replaces expensive operations, such as multiplications and divi
sions, by less expensive ones, such as additions and subtractions. It is a special case
of the method o f finite differences applied to computer programs. For example, the
sequence

0 ,3 ,6 , 9 ,1 2 , . . .

has first differences (i.e., differences between successive elements) that consist of all
3s. Thus, it can be written as s* = 3 * i for / = 0 ,1 ,2 , . . . or as s/+ \ = s* + 3 with sq = 0.

436 Loop Optimizations

The second form is the strength-reduced version—instead of doing multiplications,
we do additions. Similarly, the sequence

0 ,1 ,4 ,9 ,1 6 ,2 5 , . . .

has first differences

1 ,3 ,5 , 7, 9 , . . .

and second differences that consist of all 2s. It can be written as s, = i1 for
i = 0 ,1 , 2, 3 , . . . , or as s,+\ = s, + 2 * / + 1 for so = 0, or as s,-+\ = s, + ti where
£/+l = ti + 2, so = 0, and t$ = \ . Here, after two finite differencing operations, we
have reduced computing a sequence of squares to two additions for each square.
Strength reduction is not limited to replacing multiplication by additions and re
placing addition by increment operations. Allen and Cocke [A11C81] discuss a series
of applications for it, such as replacing exponentiation by multiplications, division
and modulo by subtractions, and continuous differentiable functions by quadratic
interpolations. Nevertheless, we restrict ourselves to discussing only simple strength
reductions, because they are by far the most frequently occurring ones and, as a
result, the ones that typically provide the greatest benefit. Methods for handling
the other cases are broadly similar and can be found in the references given in Sec
tion 14.4.

To perform strength reduction on the induction variables identified in a loop,
we work on each class of induction variables in turn.

1. Let i be a basic induction variable, and let / be in the class of i with linear equation
/ = b * i + c.

2. Allocate a new temporary tj and replace the single assignment to / in the loop by
/ <“ tj.

3. After each assignment i <r- i + d to i in the loop, insert the assignment tj tj + db,
where db is the value of the constant-valued expression d * b (if this value is not
actually constant, but only a loop constant, allocate a new temporary db and put
the assignment db <- d * b in the preheader of the loop).

4. Put the pair of assignments

tj <r- b * i
tj <r- tj + c

at the end of the preheader to ensure that tj is properly initialized.

5. Replace each use of j in the loop by tj.

6. Finally, add tj to the class of induction variables based on i with linear equation
tj = b * i + c.

The routine Strength.R educe() in Figure 14.10 implements this algorithm.
The array SRdone has SRdone [/] [/] = tru e if strength reduction has been performed
on instruction / in block /, and f a l s e otherwise. Strength_Reduce () uses two
functions, as follows:

Section 14.1 Induction-Variable Optimizations 437

procedure Strength.Reduce(bset,nblocks,ninsts,Block,IVs,SRdone)
bset: in set of integer
nblocks: in integer
ninsts: inout array [1••nblocks] of integer
Block: inout array [1**nblocks] of array [••] of MIRInst
IVs: inout set of IVrecord
SRdone: out array [l**nblocks] of [••] of boolean

begin
i, j: integer
tj, db: Var
iv, ivl, iv2: IVrecord
inst: MIRInst
for each i e bset do

for j := 1 to ninsts[i] do
SRdone[i][j] := false

od
od
I| search for uses of induction variables
for each ivl e IVs (ivl.fctr = 1 & ivl.diff = 0) do

for each iv2 e IVs (iv2.biv = ivl.biv
& iv2.tiv * iv2.biv) do
tj := new_tmp(); db := new_tmp()
i := iv2.blk; j iv2.pos
SRdone[i][j] := true
I| and split their computation between preheader and
I| this use, replacing operations by less expensive ones
append.preheader(bset,ninsts,Block,<kind:binasgn,

left:db,opr:mul,opdl:<kind:const,val:ivl.diff >,
opd2:<kind:const,val:iv2.f ctr> >)

append_preheader(bset,ninsts,Block,<kind:binasgn,
left:tj,opr:mul,opdl:<kind:const,val:iv2.fctr>,
opd2:<kind:var,val:iv2.biv> >)

append_preheader(bset,ninsts,Block,<kind:binasgn,
left:tj,opr:add,opdl:<kind:var,val:tj >,
opd2:<kind:const,val:iv2.diff >>)

insert_after(i,j,ninsts,Block,<kind:binasgn,left:tj,opr:add,
opdl:<kind:var,val:tj >,opd2:<kind:var,val:db> >)

(continued)

FIG, 14.10 Code to strength-reduce induction variables.

1. in s e r t .a f t e r (/ , / ,n in s t s ,B lo c k , in st) inserts instruction inst into B lo c k [/] after
the /th instruction and updates the program-representation data structures to reflect
its having done so (see Figure 4.14).

2. append_preheader(& se£,ninsts,B lock,in st) inserts instruction inst at the end of
Block [i], where block i is the preheader of the loop made up of the blocks in bset,
and updates the program-representation data structures to reflect its having done so.

For our m i r example in Figure 14.3(a), which we reproduce here as Figure
14.11(a), we first consider induction variable t5 with linear equation t5 = 4 * i + 0.

438 Loop Optim izations

IVs u= {<tiv:tj,blk:i,pos:j+1,fctr:iv2.fctr*ivl.fctr,biv:iv2.biv,
diff:iv2.diff>>

for each i e bset do
if ivl.tiv = iv2.tiv then

for each iv e IVs do
IVs := (IVs - {iv}) u {<tiv:iv.tiv,

blk:iv.blk,pos:iv.pos,fctr:iv.fctr,
biv:tj,diff:iv.diff>}

od
fi
for j := 1 to ninsts[i] do

inst := Block[i][j]
case Exp_Kind(inst.kind) of

binexp: if inst.opdl.val - iv2.tiv then
Block[i][j].opdl := <kind:var,val:tj>

fi
if inst.opd2.val = iv2.tiv then

Block[i][j].opd2 := <kind:var,val:tj>
fi

unexp: if inst.opd.val - iv2.tiv then
Block[i][j].opd := <kind:var,val:tj>

fi

listexp: for j :s 1 to linst.argsl do
if inst.argsii@l.val = iv2.tiv then

Block[i][j].argsli@l := <kind:var,val:tj>
noexp: esac

od
od

od
od

end I I Strength_Reduce
FIG. 14.10 (continued)

We allocate a new temporary t7 and replace the assignment to t5 by t5 t7 . We
insert t7 t7 + 4 after i <r- i + 1, and t7 <r- 4 in the preheader. Finally, we create
the linear equation t7 = 4 * i + 0 for the induction variable t7 in the class of i , and
we put the resulting record into IVs. This results in the code in Figure 14.11(b).
Performing the same transformation on t6 with linear equation t6 = 4 * i + t4
and removing the loop invariants t3 and t4 from the loop results in the code in
Figure 14.12. Note that these transformations have increased the size of the code—
there are now 11 instructions in the loop, rather than the 9 we started with. Our
next task, induction-variable removal, shows how to regain and often improve the
code size.

For the second example in the preceding section, Figure 14.9, we show the inner
loop with its preheader in Figure 14.13. The set of induction-variable records for it
(as computed in the preceding section, but with the positions renumbered to reflect
removal of the loop invariants) is as follows:

mailto:inst.argsii@l.val

Section 14.1 Induction-Variable Optimizations 439

tl <- 202
i <- 1

LI: t2 <- i > 100
if t2 goto L2
tl <- tl - 2
t3 <- addr a
t4 <- t3 - 4
t5 <- 4 * i
t6 <- t4 + t5
*t6 <- tl
i <- i + 1

goto LI
L2:
(a)

tl <- 202
i <- 1
t7 <- 4

LI: t2 <- i > 100
if t2 goto L2
tl <- tl - 2
t3 <- addr a
t4 <- t3 - 4
t5 <- t7
t6 <- t4 + t5
*t6 <- tl
i <- i + 1
t7 <- t7 + 4
goto LI

L2:
(b)

FIG. 14.11 In (a), the mir form of the loop in Figure 14.3(a) and, in (b), the same code with strength
reduction performed on the induction variable t5 .

tl <- 202
i <- 1
t7 <- 4
t3 <- addr a
t4 <- t3 - 4
t8 <- t4 + t7

LI: t2 <- i > 100
if t2 goto L2
tl <- tl - 2
t5 <- t7
t6 <- t8
*t6 <- tl
i <- i + 1
t8 <- t8 + 4
t7 <- t7 + 4
goto LI

L2:
FIG. 14.12 The result of removing the loop invariants t3 and t4 and strength-reducing t6 in the

code in Figure 14.11(b).

IVs = {<tiv:k, blk:B5,pos:9,fctr:1, biv:k,diff:0>,
<tiv:tl2,blk:B5,pos:3,fctr:100,biv:k,diff:0>,
<tiv:tl3,blk:B5,pos:4,fctr:100,biv:k,diff:j>,
<tiv:tl4,blk:B5,pos:5,fctr:100,biv:k,diff:j-101>,
<tiv:tl5,blk:B5,pos:6,fctr:400,biv:k,diff:4*j-404>,
<tiv:116,blk:B5,pos:7,f ctr:400,biv:k ,

diff:(addr a)+4*j-404)}

4 4 0 Loop O ptim izations

FIG. 14.13 The result of removing loop invariants from the inner loop of our second example,
Figure 14.9, and deleting the outer loop, except B3, which is the preheader of the
inner loop.

The algorithm initially sets

ivl = <tiv:k, blk:B5,pos:9,fctr:1, biv:k,diff:0>
iv2 = <tiv:tl2,blk:B5,pos:3,fctr:100,biv:k,diff:0>

allocates temporaries t l7 and t l8 as the values of t j and db, respectively, sets
i = B5, j =3 , and SRdone [B5] [3] = true. Next, it appends to the preheader (block
B3) the instructions

t l8 <- 100 * 1
t l7 <- 100 * k
t l7 <- t l7 + 0

appends to block B5 the instruction

t l7 t l7 + t l8

and sets

IVs = {< t iv :k , blk :B5,pos:9, f c t r : l , b iv :k ,d i f f :0 > ,
< t iv :t l2 ,b lk :B 5 ,p o s :3 , f c t r : 100 ,b iv :k ,d iff :0> ,

Section 14.1 Induction-Variable Optim izations 441

FIG. 14.14 The result of strength-reducing t l2 on the code in Figure 14.13.

< t iv :t l3 ,b lk :B 5 ,p o s :4 , f c t r :1 0 0 ,b i v :k ,d i f f : j> ,
< t iv :t l4 ,b lk :B 5 ,p o s :5 , f c t r :1 0 0 ,b i v :k ,d i f f : j-T01>,
< t i v : 1 1 5 ,b l k : B 5 , p o s :6 , f c t r :4 0 0 ,b i v : k , d i f f : 4 * j - 4 0 4) ,
< t i v : 1 1 6 ,b l k : B 5 , p o s : 7 , f c t r : 4 0 0 , b i v : k ,

d i f f : (a ddr a) + 4 * j - 4 0 4) ,
< t iv :t l7 ,b lk :B 5 ,p o s :1 0 ,f c t r :1 0 0 ,b i v :k ,d i f f : 100>>

Finally, the routine replaces all uses of t l 2 by t l7 . Note that two of the instruc
tions inserted into the preheader (namely, t l 8 <- 100 * 1 and t l 7 <- t l 7 + 0) are
unnecessary (see Exercise 14.3 for a way to eliminate them) and that the instruction
that sets t l2 remains in block B5 (induction-variable removal will eliminate it). The
result is shown in Figure 14.14.

Next, the routine sets

iv2 = < t i v : t !3 ,b lk :B 5 ,p o s :4 , f c t r :1 0 0 ,b i v :k ,d i f f : j>

442 L oop O ptim ization s

and acts similarly: it allocates t l 9 and t20 as the values of t j and db, respectively,
sets i = B5, j = 4, and SRdone [B5] [4] = true. Next, it appends to the preheader
(block B3) the instructions

t20 <- 100 * 1
t l 9 <- 100 * k
t l 9 <- t l 7 + j

appends to block B5 the instruction

t l 9 t l 9 + t20

and sets

IVs = {< t iv :k , b lk :B 5 ,pos :9 , f c t r r l , b i v : k , d i f f :0>,
< t iv : t l2 ,b lk :B 5 ,p o s :3 , f c t r :1 0 0 ,b i v :k ,d i f f :0 > ,
< t iv : t l3 ,b lk :B 5 ,p o s :4 , f c t r : 1 0 0 ,b i v :k ,d i f f : j> ,
< t iv : t l4 ,b lk :B 5 ,p o s :5 , f c t r : 1 0 0 , b i v : k , d i f f : j-101>,
< t iv : t l5 ,b lk :B 5 ,p o s :6 , f c t r :4 0 0 ,b i v :k ,d i f f :4 * j - 4 0 4 > ,
< t i v :116,b lk :B5,p o s :7, f c t r :400,b i v :k ,

d if f :4 * j-4 0 4 + (ad d r a)> ,
< t i v : t l7 ,b lk :B 5 ,p o s :10,f c t r : 100,b i v : k , d i f f :100),
< t iv : t l9 ,b lk :B 5 ,p o s : 11,f c t r : 100,b i v :k ,d i f f : j »

Finally, the routine replaces all uses of t l 3 by t l9 . Note that, again, two of the
instructions inserted into the preheader (namely, t l 8 100 * 1 and t l 7 t l 7 +
0) are unnecessary and the instruction that sets t l 3 remains in block B5. The result
is shown in Figure 14.15.

We leave it to the reader to complete the example. The resulting set IVs
should be

IVs = {< t iv :k , b lk :B 5 ,pos :9 , f c t r : l , b i v : k , d i f f : 0>,
< t iv : t l2 ,b lk :B 5 ,p o s :3 , f c t r : 100,b i v :k ,d i f f :0 > ,
< t iv : t l3 ,b lk :B 5 ,p o s :4 , f c t r :100,b i v : k , d i f f : j> ,
< t iv : t l4 ,b lk :B 5 ,p o s :5 , f c t r : 100,b i v : k , d i f f : j-101>,
< t i v :115,b lk :B5, p o s :6, f c t r :400,b i v :k , d i f f :4 * j -404),
< t i v :116,b lk :B5,p o s :7, f c t r :400,b i v :k ,

d if f :4 * j-4 0 4 + (a d d r a)>,
< t i v : t l7 ,b lk :B 5 ,p o s :10,f c t r :100,b i v :k ,d i f f :0 > ,
< t i v : t l9 ,b lk :B 5 ,p o s :11,f c t r :100,b i v : k , d i f f : j> ,
< t iv :t2 1 ,b lk :B 5 ,p o s :1 2 ,f c t r :100,b i v : k , d i f f : j-101>,
<t i v :123 ,b lk :B5, p o s :1 3 ,f c t r :400,b i v :k , d i f f :4 * j -404),
< t i v : t 2 5 ,b lk :B5, p o s :1 4 ,f c t r :400,b i v :k ,

d i f f : 4*j-404+(addr a)> }

SRdone [B5] [/] = true only for i = 3, 4 , . . . , 7 and the resulting partial flow-
graph is shown in Figure 14.16.

Of course, some of the expressions in B3, such as 4*j-404+(addr a), are not
legal m ir code, but their expansion to legal code is obvious.

Removing dead code, doing constant folding, and removing trivial assignments
in B3 results in the partial flowgraph in Figure 14.17. Note that t8, tlO, t l2 , t l3 ,
t !4 , t l5 , and t l 6 are all dead also.

Section 14.1 Induction-Variable Optimizations 443

B3

11 <— 3 * i
j tl + 1
k 1
t2 <- addr a
t3 <- 100 * i
t4 <- t3 + j
t5 <- t4 - 101
t6 <- 4 * t5
t7 <- t6 + t2
t9 <— 3 * i
til <- addr a
tl8 <- 100 * 1
117 100 * k
tl7 <- tl7 + 0
t20 <- 100 * 1
tl9 <- 100 * k
119 tl7 + j

B5

t8 <- [t6](4)
tlO <- t8 + t9
tl2 <- 100 * k
tl3 <- tl7 + j
tl4 tl9 - 101
tl5 <- 4 * tl4
tl6 <- tl5 + til
[t16](4) <- tlO
k k + 1
tl7 tl7 + tl8
tl9 tl9 + t20

FIG . 14.15 The result of strength-reducing t l 3 on the partial flowgraph in Figure 14.14.

Knoop, Riithing, and Steffen [KnoR93] give a method for doing strength reduc
tion based on their approach to partial-redundancy elimination (see Section 13.3).
However, as discussed at the end of that section, it is a particularly weak variety of
strength reduction, so the traditional method given here should be preferred over it.

On the other hand, Cooper and Simpson ([CooS95a] and [Simp96]) give a
method that extends strength reduction to work on the SSA form of a procedure. The
resulting algorithm is as effective as the one described above, and is more efficient.

14.1.3 Live Variables Analysis
One tool we need in order to perform the induction-variable transformations that
follow as well as for other optimizations, such as register allocation by graph col
oring and dead-code elimination, is live variables analysis. A variable is live at a

444 Loop Optimizations

FIG. 14,16 The result of strength-reducing the remaining induction variables in the partial flowgraph
in Figure 14.15.

Section 14.1 Induction-Variable Optimizations 445

B3

t l

J
k
t 2
t 3
t4
t 5
t6
t l
t9
t i l < -
t l 7 < -
t l 9 < -
t 2 1 < -
t 2 3 < -
t 2 7 < -
t 2 3 <“
t 2 5

3 * i
t l + 1
1

a d d r a
100 * i
t 3 + j
t 4 - 10 1
4 * t 5
t6 + t 2
3 * i

j - a d d r a
100 * k
t l 7 J
t l 9 - 10 1
400 * k

t 2 1
t 2 7

t 2 3 + t i l

4
t 2 3

B5

t8 «e- [t 6] (4)
t lO <r- t8 HH t9
t l 2 < - 100 * k
t l 3 < - t l 7 + J
t l 4 < - t l 9 - 10 1
t l 5 < - 4 * t 2 1
t l 6 <r-

COCN + t i l
[t2 5] (4) - t lO

k <-- k + 1
t l 7 < - t l 7 + 100
t l 9 <r- t l 9 + 100
t 2 1 <r~ t 2 1 + 100
t 2 3 <r- t 2 3 + 400
t 2 5 < - t 2 5 + 400

FIG. 14.17 The result of doing constant folding and elimination of trivial assignments in block B3
for the partial flowgraph in Figure 14.16.

particular point in a program if there is a path to the exit along which its value may
be used before it is redefined. It is dead if there is no such path.

To determine which variables are live at each point in a flowgraph, we perform
a backward data-flow analysis. Define USE(i) to be the set of variables that are used
in basic block i before they are defined (if at all) in the block and DEF(i) to be the
set of variables that are defined in the block before they are used (if at all) in the
block. A variable is live on entry to block i if it is live at the exit of block i and not
in DE£(/), or if it is in USE(i), so

4 4 6 L o o p O pt im izat ion s

FIG. 14.18 Example flowgraph for computing live variables.

LVin(i) = (LVout(i) - DEF(i)) U USE(i)

and a variable is live at the exit of a basic block if it is live at the entry to any of its
successors, so

LVout(i) = |̂J LVin(j)
jeSucc(i)

The proper initialization is LVout(exit) = 0.
As an example of the data-flow analysis for live variables, consider the flow-

graph in Figure 14.18. The values of D E F() and USE() are as follows:
DEF (entry) = 0 USE(entry) = 0
DEF(Bl) = {a,b} USE(B1) = 0
DEF (B2) = {c} USE(B2) = {a,b}
DEF(B3) = 0 USE(B3) = {a,c}
DEF(ex it) = 0 USE(exit) = 0

[the values of LVin() and LVout() are asfollows:
LVin(e ntry) = 0 LVout(e ntry) = 0
LVin(Bl) = 0 LVout(Bl) = {a,t
LVin(B2) = {a,b} LVout(B2) = fa.t
LVin(B3) = {a,c} LVout(B3) = 0
LVm(exit) = 0 LVout(ex it) = 0

so a and b are live at the entrance to block B2, and a and c are live at the entrance
to block B3.

Section 14.1 Induction-Variable Optimizations 447

j = 2
do i = 1,10

a(i) = i + 1
j = J + 1

enddo
(a)

j = 2
do i = 1,10

a(i) = j
j = j + 1

enddo
(b)

FIG. 14.19 Examples of useless induction variables in Fortran 77 code.

14.1.4 Removal of Induction Variables and Linear-Function
Test Replacement
In addition to strength-reducing induction variables, we can often remove them
entirely. The basic criterion for doing so is obvious—that the induction variable serve
no useful purpose in the program—but this is not always easy to identify. There are
several ways this situation may arise, as follows:

1. The variable may have contributed nothing to the computation to begin with.

2. The variable may have become useless as a result of another transformation, such as
strength reduction.

3. The variable may have been created in the process of performing a strength reduction
and then become useless as a result of another one.

4. The variable may be used only in the loop-closing test and may be replaceable by
another induction variable in that context. This case is known as linear-function test
replacement.

As an example of the first case, consider the variable j in Figure 14.19(a). It
serves no purpose at all in the loop; assuming that its final value is not used after
the loop, it can simply be removed. Even if its final value is used, it can be replaced
by the single assignment j = 12 after the loop. This case is covered by dead-code
elimination (see Section 18.10).

As an example of the second case, consider j in Figure 14.19(b). Here the value
of j is actually used in the loop, but it is an induction variable in the class of i and
its value at each use is exactly i + 1, so we can easily remove it.

An example of the third case can be seen by transforming the code in Fig
ure 14.12. Consider the variable t7, which is initialized to 4 before entering the
loop and then is assigned to t5 and incremented by 4 inside the loop. We eliminate
the assignment t5 <- t7 and replace the use of t5 by t7, which results in the code
in Figure 14.20(a). Now there is no use of the value of t7 in the loop (except to
increment it), so it and its initialization before the loop can be removed, resulting in
the code shown in Figure 14.20(b).1

1. Note that we could also do loop inversion on this example, but we choose not to, so as to deal
with one issue at a time.

448 Loop Optimizations

t l < - 2 0 2
i 1
t 7 4

t l 2 0 2
i < - 1

t 3 a d d r a

t 4 < - t 3 - 4
t 8 < - t 4 + 4

t 3 < - a d d r a
t 4 < - t 3 - 4
t 8 t 4 + 4

L I : t 2 < - i > 10 0 L I : t 2 < - i > 10 0
i f t 2 g o to L 2
t l < - t l - 2
t 6 < - t 8

i f t 2 g o to L 2
t l < - t l - 2
t 6 t 8

* t6 t l
i < - i + 1

* t6 < - t l

i < - i + 1
t 8 < - t 8 + 4
t 7 <— t 7 + 4
g o to L I g o to L I

t 8 < - t 8 + 4

L 2 : L 2 :

(a) (b)
FIG. 14.20 Transformed versions of code in Figure 14.12: (a) after removing the induction variable

t5 , and (b) after removing t7 also.

If the architecture we are compiling for has loads and stores with base register
updating, we bias the choice of induction variables we keep to be those that can
benefit from such instructions, i.e., those that are used to address storage and that
are incremented by an appropriate amount.

The last case, linear-function test replacement, is illustrated by the variable i in
Figure 14.20—i is initialized before the loop, tested to determine loop termination,
and incremented inside the loop. It is not used in any other way, except that its final
value might be needed after the loop. It can be eliminated by determining the final
value of t8 in the loop, namely, (addr a) + 400 and assigning it to a new temporary
t9 , replacing the termination test computation by t2 <- t8 > t9 , and removing all
the statements that use i , which results in the code in Figure 14.21. (Note that we
have also eliminated t6 by replacing its one use with its value, to simplify the code
further and to make it more readable.) If i were known to be live at the end of the
loop, or not known not to be live, we would also insert i <- 100 at L2.

To perform induction-variable removal and linear-function test replacement on
a given loop, we proceed as follows.

For each assignment j <- tj that is inserted by the strength-reduction algorithm
in the previous section, if there are no definitions of tj between the inserted statement
and any uses of /, then we replace all uses of / by uses of tj and remove the
inserted statement / tj. This is exactly what we did in transforming the code in
Figure 14.20(b) to that in Figure 14.21, along with linear-function test replacement.
Note that this is a local form of copy propagation.

Let i be a basic induction variable used only in computations of other induction
variables and relations, and let / be an induction variable in the class of i with linear

Section 14.1 Induction-Variable Optimizations 449

tl <- 202
t3 <- addr a
t4 <- t3 - 4
t8 <- t4 + 4
t9 <- +COp 400
t2 <- A00p t9
if t2 goto L2
tl <- tl - 2400p* - tl
t8 <- t8 + 4
goto LI

FIG. 14.21 Result of induction-variable removal (of i and t6) and linear-function test replacement
on variable i in the code in Figure 14.20(b).

equation j = b * i + c. We replace the relation computation i ? vy where ? represents
a relational operator and v is not an induction variable, by

tj <r- b * v
tj <r- tj + c
j ? tj

and delete all assignments to i in the loop. If i is live along some paths exiting the
loop, we place an assignment to i of its final value from the loop at each such exit.

One complication in this process is less than obvious and has tripped up several
compiler writers and authors on strength reduction (see, for example, Section 3.5
of [A11C81]). Namely, for the relation to remain ? in the replacement statements,
we must know that b is positive. If it is negative, we need to use the negation of
the relation, which we denote by ! ? in the replacement expression; specifically, the
relational expression above becomes

/ 1? tj

If b is only a loop invariant, rather than a known constant, we may not know
whether it is positive or negative. In this case, it may not be worthwhile to do the
linear-function test replacement, but it can be done nevertheless at the expense of
increased code size if it is judged to be desirable. One merely needs to test the loop
invariant’s sign before entering the loop and branch to one of two copies of the
optimized loop, one of which assumes that it is positive and the other that it is
negative. While this may not seem profitable, it can be a big win on parallel or vector
hardware if it allows more parallelism or vectorization to be achieved. Alternatively,
we can simply split the loop-closing code to test the sign and then branch to the
appropriate one of two loop-closing tests.

If the relation computation involves two induction variables, e.g., i l ? /2, both of
which are used only in computations of other induction variables and relations, the
transformation is somewhat more complex. If there are induction variables j \ and j l
with linear equations j l = b * il + c and j l = b * i l + c, respectively, then we can

450 L oop O ptim ization s

procedure Remove_IVs_LFTR(bset,nblocks,ninsts,Block,IVs,SRdone,Succ,Pred)
bset: in set of integer
nblocks: inout integer
ninsts: inout array [1••nblocks] of integer
Block: inout array [1 “ nblocks] of array [••] of MIRInst
IVs: in set of IVrecord
SRdone: in array [1-*nblocks] of array [••] of boolean
Succ, Pred: inout integer — > set of integer

begin
oplt, op2t: enum {con,ind,var}
ivl, iv2: IVrecord
i, j: integer
tj: Var
v: Const
inst: MIRInst
oper: Operator
for each ivl e IVs (SRdone[ivl.blk][ivl.pos]) do

for each iv2 e IVs (!SRdone[iv2.blk][iv2.pos]
& ivl.biv = iv2.biv & ivl.fctr = iv2.fctr
& ivl.diff = iv2.diff) do
I| if ivl and iv2 have matching equations and ivl
I| has been strength-reduced and iv2 has not,
I I replaces uses of iv2 by uses of ivl
for each i e bset do

for j := 1 to ninsts[i] do
Replace_Uses(i,j,Block,ivl,iv2)

od
od

od
FIG. 14.22 Code to implement removal of induction variables and linear-function test replacement.

simply replace i l ? i2 by /I ? /2, again assuming that b is positive. If there are no
such induction variables j \ and j l with the same b and c values, the replacement
is generally not worth doing, since it may introduce two multiplications and an
addition to the loop in place of less expensive operations.

ic a n code that implements the above is shown in Figure 14.22. It uses several
functions, as follows: 1

1. in sert_ b e fo re (/,/’ ,n in s ts ,B lo c k , inst) inserts instruction inst immediately be
fore Block [z] [/] and adjusts the data structures accordingly (see Figure 4.14).

2. d e le te_ in st (/ , / ,nb locks,n in sts,B lock ,Succ,P red) deletes the/th instruction in
Block [z] and adjusts the data structures accordingly (see Figure 4.15).

3. R ep lace_ U ses (/ ',/ , B lo c k , iv l ,iv 2) replaces all uses o f z V l .t iv by iv l . t i v in the
instruction B lo ck [z] [/].

Section 14.1 Induction-Variable Optimizations 451

for each i e bset do
for j :s 1 to ninsts[i] do

if Has_Left(Block[i] [j] .kind) & SRdone[i][j] then
if Live_on_Exit(inst.left,bset,Block) then

I| if result variable is live at some exit from the loop,
I I compute its final value, assign it to result variable
I I at loop exits
v := Final.Value(inst.left,bset,Block)
Insert_Exits(bset,Block,<kind:valasgn,

left:inst.left,opd:<kind:const,val:v > >)
fi
I| delete instruction Block[i][j] and renumber the tuples
I I in IVs to reflect the deletion
delete_inst(i,j,nblocks,ninst s,Block,Succ,Pred)
IVs -= {ivl>
for each iv2 e IVs do

if iv2.blk = i & iv2.pos > j then
IVs := (IVs - {iv2»

u {<tiv:iv2.tiv,blk:i,pos:iv2.pos-l,
fctr:iv2.fctr,biv:iv2.biv,diff:iv2.diff>>

fi
od

fi
od

od
od

FIG. 14.22 (continued)

(continued)

4. H as.L e ft (kd) returns tru e if a mir instruction of kind kd has a left-hand side, and
f a l s e otherwise (see Figure 4.8).

5. C an on icalize(m sf ,£l ,£2), given a mir instruction inst containing a binary rela
tional expression, orders the operands so that (a) if either operand is a constant,
it becomes the first operand, and (b) failing that, if either operand is an induction
variable, it becomes the first operand; it adjusts the operator if it has reordered the
operands; and it sets 11 and t l to con, ind, or var, according to whether, after
canonicalization, the first operand or second operand, respectively, is a constant, an
induction variable, or a variable that is not an induction variable, respectively.

6. Eval_R elExpr(opdl ,opr ,opd2) evaluates the relational expression opd 1 opr o p d l
and returns the expression’s value (true or f a l s e) .

7. BIV(i/,/Vs) returns tru e if v occurs as a basic induction variable in the set IVs of
induction-variable records, and f a l s e otherwise.

8. Live_on_Ex±t (v , b set, Block) returns tru e if variable v is live at some exit from
the loop whose body is the set of blocks given by bset, and f a l s e otherwise (this

452 Loop Optimizations

for each i e bset do
j := ninsts[i]
inst := Block[i] [j]
if inst.kind * binif then

goto LI
fi
I| perform linear-function test replacement
Canonicalize(inst,oplt,op2t)
if oplt * con then

if op2t - con & Eval.RelExpr(inst.opdl,inst.opr,inst.opd2) then
I| if both operands are constants and the relation is true,
I| replace by goto
Block[i][j] := <kind:goto,lbl:inst.lbl>

elif op2t = ind then
I I if one operand is a constant and the other is an induction
I| variable, replace by a conditional branch based on a
I I different induction variable, if possible
if 3ivl e IVs (inst.opd2.val = ivl.tiv & ivl.tiv = ivl.biv) then

if 3iv2 e IVs (iv2.biv = ivl.biv
k iv2.tiv * ivl.tiv) then
tj := new_tmp()
insert.before(i,j,ninsts,Block,<kind:binasgn,left:tj,

opr:mul,opdl:<kind:const,val:iv2.f ctr>,opd2:inst.opdl>)
insert_before(i,j,ninsts,Block,

<kind:binasgn,left:tj,opr:add,
opdl:<kind:const,val:iv2.diff>,opd2:<kind:var,val:tj>>)

oper := inst.opr
I | if new induction variable runs in the opposite direction
I I from the original one, invert the test
if iv2.fctr < 0 then

oper := Invert(oper)
fi
Block[i][j] := <kind:binif,opr:oper,

opdl:(kind:var,val:tj >,
opd2:(kind:var,val:iv2.tiv>,lbl:inst.lbl>

fi
fi

fi
F IG . 1 4 .2 2 (continued)

p ro p e r ty is c o m p u te d by p e r fo rm in g the live v a r ia b le s d a ta - flo w an a ly s is d escrib ed
in the p re c e d in g sec tio n).

9 . F in a l_ V a lu e (i / , f e s ^ ^ ,B lo c k) re tu rn s the final v a lu e o f v a r ia b le v on ex it from the
lo o p w h o se b o d y is the se t o f b lo c k s g iven by bset.

1 0 . I n s e r t . E x i t s (b se t,B l o c k , inst) in serts the m i r in stru c tio n inst ju st a fte r each ex it
fro m the lo o p .

Section 14.1 Induction-Variable Optim izations 453

elif oplt = ind then
if op2t = ind then

if 3ivl,iv2 e IVs (ivl * iv2 & ivl.biv = inst.opdl.val
& iv2.biv = inst.opd2.val & ivl.fctr = iv2.fctr
& ivl.diff = iv2.diff) then
I| if both operands are induction variables,...
oper := inst.opr
if iv2.fctr < 0 then

oper := Invert(oper)
fi
Block[i][j] := <kind:binif,opr:oper,

opl:<kind:var,val:ivl.tiv>,
op2:<kind:var,val:iv2.tiv>,lbl:inst.lbl>

fi
elif op2t = var & BIV(inst.opdl.val,IVs)

& 3ivl e IVs (ivl.biv = inst.opdl.val
& ivl.tiv * ivl.biv) then
tj := new_tmp()
insert_before(i,j,ninsts,Block,

<kind:binasgn,left:tj,opr:mul,
opdl:<kind:const,val:ivl.fctr>,opd2:inst.opd2>)

insert_before(i,j,ninsts,Block,
<kind:binasgn,left:tj,opr:add,
opdl:<kind:const,val:ivl.diff >,opd2:<kind:var,val:tj > >)

oper := inst.opr
if ivl.fctr < 0 then

oper := Invert(oper)
f i
Block[i][j] := <kind:binif,opr roper,

opdl:<kind:var,val:ivl.tiv>,
opd2:<kind:var,val:tj >,lbl:inst.lbl>

fi
fi

LI: od
end I I Remove_IVs_LFTR

FIG* 14.22 (continued)

11. In v e r t (o p r) returns the inverse o f the m i r relational operator opr, e .g., for "> " it
returns

12. new_tmp() returns a new tem porary nam e.

N ote that a m ore efficient im plem entation o f the nested for loop over the instructions
at the end o f Remove_IVs_LFTR() w ould keep a table describing the instructions to
be rem oved and w ould use only a single for loop.

454 Loop Optimizations

14.2 Unnecessary Bounds-Checking Elimination
Bounds checking or range checking refers to determining whether the value of a
variable is within specified bounds in all of its uses in a program. A typical situation
is checking that in the reference b [i , j] to an element of a Pascal array declared

var b: array[1..100,1..10] of integer
i is indeed between 1 and 100 and j is between 1 and 10, inclusive. Another example
is checking that a use of a variable declared to be of an Ada subrange type, for
example,

subtype TEMPERATURE is INTEGER range 32..212;
i: TEMPERATURE;

is within the declared range.
We mention Pascal and Ada in the two examples above because their language

definitions specifically require that such checking be done (or, equivalently, that the
language implementation ensure in some fashion that the specified constraints are
satisfied). Such checking, however, is desirable for any program, regardless of the
language it is written in, since bounds violations are among the most common pro
gramming errors. “ Off-by-one” errors, in which a loop index or other counter runs
off one end or the other of a range by one—usually resulting in accessing or storing
into a datum that is not part of the data structure being processed—are one example.

On the other hand, bounds checking can be very expensive if, for example,
every array access must be accompanied by two conditional traps2 per dimension to
determine the validity of the access, as illustrated in Figure 14.23, where we assume
that trap number 6 is for bounds violation. Here the array access takes eight lines
of m i r code and the checking takes an additional four lines. The overhead of such
checking becomes even greater when the array accesses are optimized—then fetching
the next element of a two-dimensional array may require one or two increments
and a load, while the bounds checking still requires four conditional traps. Many
implementations “ solve” this problem, particularly for Pascal, by providing the user
with a compile-time option to enable or disable the checking. The philosophical
purpose of this option is to allow the user to enable the checking for development
and debugging runs of the program, and then, once all the defects have been found
and fixed, to turn it off for the production version. Thus the overhead is incurred
while the program is still buggy, and not once it is (believed to be) free of defects.

However, virtually all software-engineering studies of defects in programs indi
cate that versions of systems delivered to customers are likely to have bugs in them
and many of the bugs are likely to be ones that were not even observed during pre
delivery testing. This approach to bounds checking, therefore, is seriously mistaken.
Rather, bounds checking is just as important for delivered versions of programs as

2. The i f . . . trap construct might be implemented by a conditional branch or a conditional trap,
depending on the architecture, source language, and language implementation.

Section 14.2 Unnecessary Bounds-Checking Elimination 4 5 5

if 1 > i trap 6
if i > 100 trap 6
if 1 > j trap 6
if j > 10 trap 6

t2 <- addr b
t3 <- j - 1
t3 <- t3 * 100
t3 <- t3 + i
t3 <- t3 - 1
t3 <- t3 * 4
t3 <- t2 + t3
t4 <- *t3

FIG. 14.23 Example of mir bounds-checking code for accessing the array element b [i , j] in Pascal.

var b: array[1..100,1..10] of integer;
i, j, s: integer;

s := 0;
for i = 1 to 50 do

for j = 1 to 10 do
s : — s + b[i,j]

FIG. 14.24 Pascal example in which no bounds-checking code is needed for accessing b [i , j] .

for development versions. Instead of providing a way to turn bounds checking off,
what is needed is to optimize it so that it rarely costs anything and has minimal over
all cost. For example, if our fetching of b [i , j] in Figure 14.23 is embedded in a loop
nest that prescribes the ranges of the subscripts and restricts them to legal values, as
in Figure 14.24, then the checking code is totally unnecessary. As a second example,
if the upper bound on the outer loop were changed to a variable n, rather than the
constant 50, we would only need to check once before entering the outer loop that
n <= 100 is satisfied and take the trap then if it isn’t.3

Such optimization is relatively easy, and for many programs in some languages,
it is nearly trivial. In fact, we have most of the required methods for it available
already, namely, invariant code motion, common-subexpression elimination, and
induction-variable transformations. The one remaining tool we need is a way to
represent the bounds-checking constraints that must be satisfied. To do this, we

3. Note that we assume that the trap terminates execution of the program or, at least, that it cannot
result in resumption of execution at the point where the trap occurs. This is essential because
bounds-checking code that we cannot eliminate entirely we (wherever possible) move out of loops
containing it. Thus, the trap would not occur at the same point in execution of the program as it
would have originally, although we ensure that it occurs if and only if it would have occurred in
the unmodified program.

456 Loop Optim izations

introduce range expressions. A range expression is an inequality that applies to the
value of a variable. Its form is

lo ? var ? hi

where var is a variable name, lo and hi are constants representing the minimal and
maximal values (respectively) of the range, and ? is a relational operator. If the
variable’s value is constrained at only one end, we use ® or to represent the other
bound.

For example, for the code in Figure 14.24, the two range expressions we
must satisfy for the statement s : = s + b [i , j] to require no run-time checks are
1 ^ i ^ 100 and 1 ^ j ^ 10, as required by the declaration of array b. To determine
that these range expressions are satisfied for this statement, we only need to be able
to deduce from the first fo r statement that 1 < i £ 100 holds within it and from the
second that 1 < j < 10 holds within it. This is trivial in Pascal, since the two fo r
statements respectively establish the inequalities as valid, and the semantics of the
language require that the iteration variable not be modified in a fo r loop, except by
the fo r statement itself. For other languages, it may not be so easy—C, for example,
places no restrictions on the expressions that may occur in its fo r loop construct,
nor does it even have a concept of an iteration variable.

The simplest and by far the most common case of optimizable range-checking
code is a range check embedded in a loop, such as the example in Figure 14.24 above.
For concreteness, we assume the following: 1

1. that the loop has an iteration variable i with an initial value of init and a final value
of fin,

2. that i increases by 1 on each iteration, and

3. that only the loop-control code modifies i.

We further assume that the range expression to be satisfied is lo ^ v ^ hi.
The easiest case to handle is that v is loop-invariant. In this case, we need

only move the code that checks that lo ^ v ^ hi from inside the loop to the loop’s
preheader. O f course, if it can be evaluated at compile time, we do that.

The next case is that the range expression to be satisfied is lo ^ i ^ hi, where i
is the loop-control variable. In this case, the range expression is satisfied as long as
lo z init and fin ^ hi. We insert code to check the first of these inequalities into the
loop’s preheader. We also insert code there to compute 11 = min {fin ,hi) and replace
the loop-closing test that compares i to fin by one that compares it to t \ . Following
the normal exit from the loop, we insert code to check that the final value of i has
reached the value it would have reached before the transformation, i.e., we insert a
check that i > fin. If any of the checks fail, a trap is taken. Again, of course, if the
checks can be evaluated at compile time, they are. An example of the code before
and after the transformation is shown in Figure 14.25.

The last case we consider is that an induction variable j (see Section 14.1) in the
class of the basic induction variable i with linear equation j = b * i + c must satisfy

Section 14.3 Wrap-Up 457

i < - i n i t
L I : . . .

i f i < l o t r a p 6
i f i > h i t r a p 6
use o f i that m ust

satisfy l o ^ i ^ h i

i < - i + 1
i f i <= f i n g o to L I

i f l o > i n i t t r a p 6
t l f i n m in h i
i < - i n i t

L I : . . .

use o f i that m ust
sa tis fy l o < i < h i

i < - i + 1
i f i <= t l g o to L I
i f i <= f i n t r a p 6

(b)
FIG* 14.25 Bounds-checking transformation: (a) the original loop, and (b) the transformed code.

the range expression lo £ j £ hi. In this case, we have / = b * / + c, and so i must
satisfy

(/o - c)//? < / < (hi - c)/b

for / to satisfy its range expression. The appropriate transformation is an easy
generalization of the preceding case.

The second and third assumptions above, namely, that i increases by 1 on each
iteration and that only the loop-control code modifies /, can both be relaxed to allow
decreasing loop indexes, increments and decrements by values other than 1, and
simple modifications of i within the loop. We leave these for the reader to consider.

It is also possible to do data-flow analysis that propagates range expressions
through a procedure to determine where they are satisfied and where checking is
needed. However, this can be very expensive, since the lattice used includes all range
expressions lo < v ^ hi for lo, hi e XU {—oo, oo} with the ordering

(/ol < i; < h il) c (/o2 < v < hi2)

if and only if /ol ^ lo2 and hi 1 £ h il—a lattice that is both infinitely wide and
infinitely high. At least, if we begin with a range expression lo ^ v £ hi with finite lo
and hi values, it has only finite (but unbounded) chains ascending from there.

14.3 Wrap-Up
The optimizations we have discussed in this chapter either operate exclusively on
loops or are most effective when applied to loops. They can be done on either
medium-level or low-level intermediate code. They apply directly to the disciplined
source-language loop constructs in Fortran, Ada, and Pascal, but they require that
we define a subclass of similarly behaved loops in a language like C (or those that
are constructed from ifs and gotos in any language) for them to be safely employed.

458 Loop O ptim izations

FIG. 14.26 Place of loop optimizations (in bold type) in an aggressive optimizing compiler.

We have covered two classes of optimizations, namely, induction-variable op
timizations and unnecessary bounds-checking elimination. Figure 14.26 shows in
bold type where we place the optimizations discussed in this chapter in the overall
structure of the optimization process.

Induction-variable optimization requires that we first identify induction vari
ables in a loop, then perform strength reduction on them, and finally perform linear-
function test replacement and remove redundant induction variables. We perform
this series of optimizations on nested loops starting with the most deeply nested ones
and then moving outward.

Elimination of unnecessary bounds checking is an optimization that applies both
inside and outside loops but that has its biggest impact inside loops, because bounds

Section 14.4 Further Reading 459

FIG. 14.26 (continued)

checks inside loops are performed with each iteration unless they are optimized away
or at least reduced.

14.4 Further Reading
The foundation of the application of finite differences to computer programs is due
to Babbage, as described in [Gold72]. Allen and Cocke’s application of strength re
duction to operations other than additions and multiplications appears in [A11C81].
The generalization of finite differences, called formal differentiation, and its appli
cation to the very high level language setl are discussed by Paige and Schwartz
[PaiS77]. Chow [Chow83] and Knoop, Riithing, and Steffen [KnoR93] extend
partial-redundancy elimination to include a weak form of strength reduction.

Cooper and Simpson’s approach to SSA-based strength reduction is described
in [CooS95a] and [Simp96].

More modern approaches to bounds-checking optimization are found in, e.g.,
Gupta [Gupt93] and Kolte and Wolfe [KolW95], the latter of which uses partial-
redundancy elimination to determine the most efficient places to move bounds
checks to.

460 Loop Optimizations

14.5 Exercises
14.1 As indicated at the end of Section 14.1, instructions that perform a storage access

in which one of the operands is scaled or modified or that perform an arithmetic
operation, a test, and a conditional branch based on the test may be useful in guiding
strength reduction, induction-variable removal, and linear-function test replacement.
(See Figure 14.27 for an example.) (a) How would you decide which of these
instructions to use? (b) At what point in the optimization and code-generation
process would you make the decision?

ADV 14.2 Formulate identification of induction variables as a data-flow analysis and apply it
to the example in Figure 14.9.

14.3 As written, the ican code in Figure 14.10 always introduces the new temporary that
is the value of db and initializes it in the loop’s preheader, (a) Modify the code so that
it doesn’t do this when it’s not needed. What about the instructions that assign the
initial value of the variable that is t j ’s value? (b) Note that there are also situations,
such as the induction variable t l4 in Figure 14.9, for which either the factor (f ctr)
or the difference (d if f) is not simply a constant or variable that can be used as is in
performing strength reduction. Modify the code to recognize such situations and to
handle them properly.

14.4 Write an ican routine to do elimination of unnecessary bounds checking.

14.5 Generalize the transformation of bounds checking discussed in Section 14.2 to en
compass (a) checking induction variables and (b) more general modifications of the
loop index, as discussed near the end of the section. Add the appropriate code to the
routine written for Exercise 14.4.

14.6 Extend the linear-function test replacement part of the algorithm in Figure 14.22 to
deal with loop constants that are not compile-time constants.

14.7 Continue the example in Figure 14.9 by replacing blocks B3, B4, and B5 by the ones
in Figure 14.17 and then doing (a) induction-variable removal and linear-function
test replacement on the inner loop and (b) doing the full sequence of induction-
variable optimizations on the outer loop.

RSCH 14.8 Read one of [Gupt93] or [KolW95] and write ican code to implement its approach
to bounds checking.

i <- 1
LI: rl <- 4 * i

r2 <- (addr a) + rl
r3 <- [r2] (4)
r3 <- r3 + 2
[r2] (4) <- r3
i <- i + 1
if i < 20 goto LI

FIG. 14.27 Example of a lir loop for which address scaling, address modification, and operation-
test-and-branch instructions might all be useful.

CHAPTER 15

Procedure Optimizations

In this chapter, we discuss three pairs of optimizations that apply to whole
procedures and that, in all cases but one, do not require data-flow analysis to
be effective. The pairs of optimizations are tail-recursion elimination and the
more general tail-call optimization, procedure integration and in-line expansion,

and leaf-routine optimization and shrink wrapping. The first pair turns calls into
branches. The second pair is two versions of the same optimization, the first applied
to mid- or high-level intermediate code and the second to low-level code. The final
pair optimizes the calling conventions used in a language implementation.

15.1 Tail-Call Optimization and Tail-Recursion
Elimination
Tail-call optimization and its special case, tail-recursion elimination, are transfor
mations that apply to calls. They often reduce or eliminate a significant amount of
procedure-call overhead and, in the case of tail-recursion elimination, enable loop
optimizations that would otherwise not apply.

A call from procedure f () to procedure g() is a tail call if the only thing
f () does, after g() returns to it, is itself return. The call is tail-recursive if f ()
and g() are the same procedure. For example, the call to in se r t .n o d e () in the C
code in Figure 15.1 is tail-recursive, and the call to make_node() is a (nonrecursive)
tail call.

Tail-recursion elimination has the effect of compiling in se r t .node () as if it
were written as shown in Figure 15.2, turning the recursion into a loop.

We cannot demonstrate the effect of tail-call optimization at the source-language
level, since it would violate C’s semantics (as well as the semantics of virtually any
other higher-level language) to branch from the body of one procedure into the body
of another, but it can be thought of in a similar way: the arguments to make .node ()

461

462 Procedure O ptim izations

void make_node(p,n)
struct node *p;
int n;

{ struct node *q;
q = malloc(sizeof(struct node));
q->next = nil;
q->value = n;
p->next = q;

>

void insert_node(n,l)
int n;
struct node *1;

{ if (n > l->value)
if (l->next == nil) make.node(1,n);
else insert_node(n,l->next);

}

FIG. 15.1 Example of a tail call and tail recursion in C.

void insert_node(n,l)
int n;
struct node *1;

{loop:
if (n > l->value)

if (l->next == nil) make.node(1,n);
else
{ 1 := l->next;

goto loop;
>

}

FIG. 15.2 Effect of tail-recursion elimination on in se r t .node () shown in the source code.

are put on the stack (or in the appropriate registers) in place of in s e r t .node () ’s
arguments and the call instruction is replaced by a branch to the beginning of
make.node () ’s body.

This would also violate the semantics of mir, since parameter names are local
to procedures. However, we can demonstrate it in lir. lir code corresponding to
Figure 15.1 is shown in Figure 15.3(a); we arbitrarily choose for this example to
pass the parameters in registers r l and r2 . The result o f optimizing the tail call to
m ake.node() is shown in Figure 15.3(b). Even this version hides one subtle issue,
since we have not made memory stacks explicit in it. Namely, it is possible that the
stack frame of the caller and callee have different sizes. If the caller’s stack frame
is larger than the callee’s, we merely need to arrange that the callee’s procedure
epilogue (see Section 5.6) deallocates the caller’s whole stack frame. This can most
easily be arranged by having a frame pointer that is the caller’s stack pointer (or,
in this case, the caller’s caller’s stack pointer) and then recovering the stack pointer
by assigning the frame pointer to it on exit, as, for example, Sun’s sparc compilers

Section 15.1 Tail-Call Optimization and Tail-Recursion Elimination 463

make_node:
r4 <- rl
rl 8
r3 <- call malloc
r3 *. next <- nil
r3 *. value <- r2
r4 *. next <- r3
return

insert_node:
r4 <r- r2 *. value
r5 <r- rl > r4
if !r5 goto LI
r6 <- r2 *. next
r7 <- r6 = nil
if !r7 goto L2
r2 <- rl
rl <- r4
call make_node
return

L2: r2 <- r2 *. next
call insert_node
return

LI: return
(a)

FIG. 15.3 (a) lir code corresponding to
optimization on both calls in i

make_node:
r4 <- rl
rl <- 8
r3 <- call malloc
r3 *. next < - nil
r3 *. value <- r2
r4 *. next <- r3
return

insert_node:
r4 <- r2 *. value
r5 < - rl > r4
if !r5 goto LI
r6 <- r2 *. next
r7 <- r6 = nil
if !r7 goto L2
r2 <- rl
rl <- <- r4
goto make_node

L2: r2 <- r2 *. next
goto insert.node

LI: return
(b)

e 15.1, and (b) the result of performing tail-call
;_node().

do (Section 21.1). If the caller’s stack frame is smaller than the callee’s, we need to
arrange to allocate the remainder of the callee’s stack frame either before entering
or on entry to the callee, or we need to deallocate the caller’s stack frame before
jumping to the callee and then do the standard procedure prologue on entering the
callee.

Determining that a call is a tail call is trivial. It only requires checking that the
routine performing the call does nothing after the call returns except itself return,
possibly returning a value returned by the callee in the process. Performing tail-
recursion elimination is straightforward. As shown in our example above, it can
usually even be done in the source code. All it requires is replacing the recursive
call by assigning the proper values to the parameters, followed by a branch to the
beginning of the body of the procedure and deleting the return that previously
followed the recursive call. Figure 15.4 gives ican code to perform tail-recursion
elimination on a mir procedure.

Performing general tail-call optimization requires more work. First we must
ensure that both procedure bodies are visible to the compiler at once, or, at least, that
enough information about the callee is available during compilation of the caller to
make the transformation possible. We may have both procedure bodies visible either
because they are in the same compilation unit or because the compiling system has
the option of saving intermediate-code representations of procedures, as the mips

464 Procedure O p tim ization s

procedure Tail_Recur_Elim(ProcName,nblocks,ninsts,Block,en,Succ)
ProcName: in Procedure
nblocks, en: in integer
ninsts: inout array [1**nblocks] of integer
Block: inout array [1**nblocks] of array [••] of MIRInst
Succ: in integer — > set of integer

begin
i, j, b := ♦Succ(en): integer
lj: Label
inst: MIRInst
I | make sure there’s a label at the beginning of the procedure’s body
if Block[b][1].kind = label then

lj := Block[b][1].lbl
else

lj := new_label()
insert.before(b,1,ninsts,Block,<kind:label,lbl:1j >)

fi
for i := 1 to nblocks do

inst := Block[i][ninsts[i]-1]
if (inst.kind = callasgn & inst.proc = ProcName

& Block[i] [ninsts[i]] .kind * retval)
V (inst.kind = call & inst.proc * ProcName
& Block[i][ninsts[i]].kind = return) then
I| turn tail call into parameter assignments
I| and branch to label of first block
for j := 1 to linst.argsl do

Block[i][ninsts[i]+j-2] := <kind:valasgn,
left:Block[b][j].left,
opd:Block[i][ninsts[i]-1].argslj@l>

od
ninsts[i] += Iinst.argsI + 1
Block[i][ninsts[i]] := <kind:goto,lbl:lj>

fi
od

end |I Tail_Recur_Elim
FIG, 15.4 ican code to perform tail-recursion elimination.

com pilers do. However, all we really need to know about the callee is three things,
as follows:

1. where it expects to find its param eters,

2. where to branch to in order to begin executing its body, and

3. how large its stack frame is.

This inform ation could be saved in a form that stores only representations o f proce
dure interfaces, rather than their bodies. If only interfaces are available, we may not
be able to perform the transform ation if the caller’s stack frame is larger than the

Section 15.2 Procedure Integration 465

callee’s—this depends on the convention used for allocating and deallocating stack
frames (see Section 5.4).

To perform the optimization, we replace the call by three things, as follows:

1. evaluation of the arguments of the tail call and putting them where the callee expects
to find them;

2. if the callee’s stack frame is larger than the caller’s, an instruction that extends the
stack frame by the difference between the two; and

3. a branch to the beginning of the body of the callee.

One issue in performing tail-call optimization is the addressing modes and spans
of call and branch instructions in each architecture. In Alpha, for example, there is
no problem since the jmp and j s r routines both use the contents of a register as the
target and differ only in whether the return address is saved or discarded. Similarly in
the mips architectures, j a l and j both take a 26-bit absolute word target address. In
sparc, on the other hand, c a l l takes a 30-bit PC-relative word displacement, while
ba takes a 22-bit PC-relative word displacement and jmpl takes a 32-bit absolute
byte address computed as the sum of two registers. While the first and second present
no difficulties in turning the call into a branch, the last requires that we materialize
the target address in a register.

15.2 Procedure Integration
Procedure integration, also called automatic inlining,> replaces calls to procedures
with copies of their bodies. It can be a very useful optimization, because it changes
calls from opaque objects that may have unknown effects on aliased variables and
parameters to local code that not only exposes its effects (see also Chapter 19) but
that can be optimized as part of the calling procedure.

Some languages provide the programmer with a degree of control over inlining.
C++, for example, provides an explicit in lin e attribute that may be specified for a
procedure. Ada provides a similar facility. Both are characteristics of the procedure,
not of the call site. While this is a desirable option to provide, it is significantly
less powerful and discriminating than automatic procedure integration can be. An
automatic procedure integrator can differentiate among call sites and can select
the procedures to integrate according to machine-specific and performance-related
criteria, rather than by depending on the user’s intuition.

The opportunity to optimize inlined procedure bodies can be especially valuable
if it enables loop transformations that were originally inhibited by having procedure
calls embedded in loops or if it turns a loop that calls a procedure, whose body
is itself a loop, into a nested loop. The classic example of this situation is the
saxpy() procedure in Linpack, shown with its calling context in Figure 15.5. After
substituting the body of saxpy () in place of the call to it in sg e f a () and renaming
the labels and the variable n so they don’t conflict, the result easily simplifies to the
nested loop shown in Figure 15.6. The result is a doubly nested loop to which a
series of valuable optimizations can be applied.

466 P rocedure O p tim iza tio n s

subroutine sgefa(a,lda,n,ipvt,info)
integer Ida,n,ipvt(1),info
real a(lda,l)
real t
integer isamax,j,k,kpl,l,nml

do 30 j = kpl, n
t = a(l,j)
if (1 .eq. k) go to 20

a(l,j) = a(k,j)
a(k,j) = t

continue
call saxpy(n-k,t,a(k+l,k),l,a(k+l,j),1)

continue

subroutine saxpy(n,da,dx,incx,dy,incy)
real dx(l),dy(l),da
integer i,incx,incy,ix,iy,m ,mp1,n
if (n .le. 0) return
if (da .eq. ZERO) return
if (incx .eq. 1 .and. incy .eq. 1) go to 20
ix = 1
iy = 1
if (incx .It. 0) ix = (-n+l)*incx + 1
if (incy .It. 0) iy = (-n+l)*incy + 1
do 10 i = l,n

dy(iy) = dy(iy) + da*dx(ix)
ix = ix + incx
iy = iy + incy

10 continue
return

20 continue
do 30 i = l,n

dy(i) = dy(i) + da*dx(i)
30 continue

return
end

FIG. 15.5 The Unpack routine saxpy () and its calling context in sge fa ().

20

30

There are several issues to consider in deciding how broadly procedure integra
tion is to be provided in a compiling system and, based on deciding these issues,
how to implement it. First, is it to be provided across multiple compilation units, or
only within single ones? If the former, then a way needs to be provided to save the
intermediate-code representations of procedures, or more likely, whole compilation
units in files, since one does not generally depend on the compiler user to decide
what procedures to inline. If the latter, then one does not need this facility—one
needs only to be able to preserve the intermediate code as long as it is needed within

Section 15.2 Procedure Integration 467

subroutine sgefa(a,Ida,n,ipvt,info)
integer lda,n,ipvt(1),info
real a(lda,l)
real t
integer isamax,j,k,kpl,l,nml

do 30 j = kpl, n
t = a(l,j)
if (1 .eq. k) go to 20

a(l,j) = a(k,j)
a(k,j) = t

20 continue
if (n-k .le. 0) goto 30
if (t .eq. 0) goto 30
do 40 i = l,n-k

a(k+i,j) = a(k+i,j) + t*a(k+i,k)
40 continue
30 continue

FIG. 15.6 A fragment of the Unpack routine sgef a () after integrating saxpyC) into it.

a single compilation to do the appropriate inlinings. In fact, one might even choose
to do it in source-code form in the latter case.

Second, if one is providing procedure integration across compilation units, then
one needs to decide whether to require that the caller and the callee be written in the
same language or whether to allow them to be in different languages. The primary
consideration here is that different languages have different conventions for passing
parameters and accessing nonlocal variables, and the conventions, of course, need
to be respected by inlined procedures. One technique for handling the differences
in parameter-passing conventions is to provide “ ex tern al language_name proce
dure_name” declarations as parts of the interfaces to separately compiled procedures
in the source languages, so as to specify the source languages in which the external
procedures are written. These would result in calls to an external routine that fol
low the parameter-passing conventions of the language the routine is declared to be
written in.

Third, in a cross-compilation-unit procedure integrator, there is the question of
whether there is any need to keep intermediate-code copies of routines that have
been inlined. In particular, several languages restrict the visibility of procedures to
the scopes they are nested in. This is the case, for example, for nested procedures
in Pascal, for non-interface procedures in the Modula language family and Mesa,
for statement procedures in Fortran 77, and for procedures that are not declared
external in Fortran 90. If the only goal of saving intermediate code is to perform
procedure integration, copies of such procedures clearly do not need to be kept in
the saved intermediate code for a compilation unit, since they cannot be referenced
from outside their scopes. On the other hand, if the goal of saving intermediate code
is to reduce recompilation time in a programming environment after a change has
been made to the source code, it is clearly desirable to keep them.

468 Procedure Optimizations

Fourth, given that one has inlined a procedure at all visible call sites, is there
a need to compile a copy of the whole procedure? There may be if the procedure’s
address has been taken in C or if it may be called from other compilation units that
are not currently visible.

Finally, should one perform any inlining on recursive procedures? Obviously,
one should not inline them until one runs out of calls to them, because that could
be an infinite process, but it can be valuable to inline a recursive procedure once or
twice to reduce the overhead of calling it.

Several policy questions need to be answered to decide what procedures are
worth inlining, keeping in mind that our goal is to speed up execution. On the face
of it, it may seem that inlining every procedure at every call site would result in the
greatest speedup. However, this is generally not the case, because it may result in
an arbitrary increase in the size of the object code and may cause compilation to
be terminated only by exhaustion of resources. This is not to suggest that inlining
recursive procedures is necessarily bad; rather, one must simply know when it is
desirable and when to stop.

Increasing the size of the object code has several potential drawbacks, the most
important of which is its impact on cache misses. As the speeds of processors and
memories diverge ever further, cache misses become more and more important as
determiners of overall performance. Thus, decisions as to what procedures to inline
need to be based either on heuristics or profiling feedback. Some typical heuristics
take into account the following:

1. the size of the procedure body (the smaller the better),

2. how many calls there are to the procedure (if there is only one call, inlining it should
almost always result in reducing execution time),

3. whether the procedure is called inside a loop (if so, it is more likely to provide
significant opportunities for other optimizations), and

4. whether a particular call includes one or more constant-valued parameters (if so, the
inlined procedure body is more likely to be optimizable than if not).

Once one has selected criteria for deciding what procedures are worth inlining at
what call sites, there remains the issue of how to perform the inlining. The obvious
part of the process is replacing a call with a copy of the corresponding procedure
body. We assume, for the sake of generality, that we are doing so at the intermediate-
code level, so we can do cross-language inlining. The three major issues that arise
are (1) satisfying the parameter-passing conventions of the (possibly two) languages
involved, (2) handling name conflicts between the caller and the callee, and (3)
dealing with static variables.

First, if “ ex tern al language_name procedure _name” declarations are not
provided, the procedure integrator must include sufficient knowledge about the
parameter-passing mechanisms of the languages involved to determine what com
binations work and how to make them work. It must not, for example, match a
call-by-reference Fortran argument with a call-by-value C parameter, unless the C
parameter is of a pointer type. Similarly, it must not blithely substitute a caller’s

Section 15.2 Procedure Integration 469

g(b,c)
int b, c;
{ int a, d;

a = b + c;
d = b * c;
return d; f()

> int a, e, d;
f() a = 2;
{ int a, e; a = 3 + 4;

a = 2; d = 3 * 4;5CO'faOii<D e = d;
printf ("’/,d\n", a) ; printf ("#/«d\n", a);

> >
(a) (b)

FIG* 15.7 Capture of a caller’s variable in C by a call-by-value parameter that results from simply
substituting the callee’s text for a call.

variable name for a call-by-value parameter, as illustrated in Figure 15.7, resulting
in a spurious assignment to the caller’s variable. The variable a occurs in both f ()
and g(); substituting the text of g () directly for the call to it results in erroneously
assigning to the caller’s a.

The second problem is usually not an issue if one is working in an intermediate
code that does not include source symbol names—symbol references are usually
pointers to symbol-table entries and labels are usually pointers to intermediate-code
locations. If one is working on a character representation, one must detect name
conflicts and resolve them by renaming, usually in the body of the called procedure.

Static variables present a different sort of problem. In C in particular, a variable
with static storage class has an extent that lasts through execution of the whole
program. If it is declared with file-level scope, i.e., not within any function definition,
it is initialized before execution of the program and is visible within all functions in
the file that do not redeclare the variable. If, on the other hand, it is declared within
a function, it is visible only within that function. If several functions declare static
local variables with the same name, they are distinct objects.

Thus, for a file-level static variable, there needs to be only one copy of it in the
resulting object program and, if it is initialized, it needs to be initialized exactly once.
This can be handled by making the variable have global scope and by providing a
global initialization for it.

Cooper, Hall, and Torczon [CooH92] report a cautionary tale on the effects
of procedure integration. They did an experiment in which they integrated 44%
of the call sites measured statically in the double-precision version of the Unpack
benchmark, thus reducing the dynamic number of calls by 98%. Whereas they
expected the program’s performance to improve, it actually worsened by over 8%
when run on a m ips R2000-based system. Analysis of the code showed that the
performance decrease was not due to cache effects or register pressure in a critical
loop. Rather, the number of nops and floating-point interlocks had increased by
75%. The problem lies in the m ips compiler’s following the Fortran 77 standard

470 Procedure Optimizations

and not doing interprocedural data-flow analysis: the standard allows a compiler
to assume on entry to a procedure that there is no aliasing among the parameters
and to put that information to use in generating code, and the mips compiler
did so for the original version of the program. On the other hand, with most of
the critical procedures inlined and without interprocedural analysis, there is no
knowledge available as to whether what were their parameters are aliased or not,
so the compiler does the safe thing—it assumes that there may be aliases among
them and generates worse code.

15.3 In-Line Expansion
In-line expansion is a mechanism that enables substitution of low-level code in
place of a call to a procedure. It is similar in effect to procedure integration (see
Section 15.2), except that it is done at the assembly-language or machine-code
level and so can be used to substitute hand-tailored sequences of code for high-
level operations, including the use of instructions a compiler would never generate.
Thus, it is both an optimization and a way to provide high-level mnemonics for
fundamental machine operations, such as setting bits in a program status word.

As an optimization, in-line expansion can be used to provide the best available
instruction sequences for operations that might otherwise be difficult or impossible
for an optimizer to achieve. Examples include computing the minimum of a series of
up to four integers without any branches on an architecture that allows conditional
nullification of the next instruction (such as pa-r isc) or conditional moves by pro
viding three templates, one each for two, three, and four operands;1 and exchanging
the values of two integer registers in three operations without using a scratch register
by doing three exclusive or’s, as exemplified by the following lir code:

ra <r- ra xor rb
rb <r- ra xor rb
ra <r- ra xor rb

It can also be used as a poor man’s version of procedure integration: the user or the
provider of a compiler or library can provide templates for procedures that are likely
to benefit from inlining.

As a mechanism for incorporating instructions that do not correspond to higher-
level language operations at all, in-line expansion provides a way to give them
mnemonic significance and to make them accessible without the overhead of a
procedure call. This can make writing an operating system or I/O device driver in
a higher-level language much easier than it would otherwise be. If, for example,
setting bit 15 in the program status word were the way to disable interrupts for a

1. The choice of four operands maximum is, of course, arbitrary. One could provide for as many
operands as one wanted by providing additional templates or, given a sufficiently powerful language
in which to express the templates, one could provide a process for handling any number of
operands.

Section 15.3 In-Line Expansion 471

particular architecture, one could provide a template called D isab leln terru ptsC)
that consists of three instructions such as

getpsw ra I I copy PSW into ra
ori ra,0x8000,ra I I set bit 15
setpsw ra || copy ra to PSW

Two mechanisms are essential to providing an in-line expansion capacity. One
is a way to make an assembly-language sequence into a template and the other is the
compiler phase, which we call the inliner, that performs the inlining. A third may be
needed for instances like the example just above, namely, a way to specify that a real
register needs to be substituted for ra. A template generally consists of a header that
gives the name of the procedure and may include information about the number and
types of expected arguments and register needs, a sequence of assembly-language
instructions, and a trailer to terminate the template. For example, if the necessary
information for a particular inliner consisted of the name of the routine, the number
of bytes of arguments expected, a list of the register identifiers that need to have
real registers substituted for them, and a sequence of instructions, it might take
the form

. template ProcName, ArgBytes,regs= (rl, . . . , rn)

instructions

. end

For example, the following template might serve for computing the maximum of
three integer values on a sparc system:

.template max3,12,regs=(@rl)
mov argregl,@rl
cmp argreg2,@rl
movg argreg2,@r1
cmp argreg3,@rl
movg argreg3,@r1
mov @rl,resreg
. end
The mechanism for providing in-line expansion is generally to provide one or

more files that contain assembly-language templates for calls to be in-line expanded
and a compilation phase that searches specified template files for procedure names
that occur in the module being compiled and replaces calls to them with instantiated
copies of the appropriate templates. If compilation includes an assembly-language
step, this is all that is essential; if it doesn’t, the templates can be preprocessed to
produce whatever form is required.

In most cases, the templates need to satisfy the parameter-passing conventions
of the language implementation, and code quality will benefit from optimizations

performed after or as part of inlining to remove as much as possible of the parameter
passing overhead. Frequently register coalescing (see Section 16.3.6) is all that is
needed to accomplish this.

Leaf-Routine Optimization and Shrink Wrapping
A leaf routine is a procedure that is a leaf in the call graph of a program, i.e.,
one that calls no (other) procedures. Leaf-routine optimization takes advantage of
a procedure’s being a leaf routine to simplify the way parameters are passed to it
and to remove as much as possible of the procedure prologue and epilogue overhead
associated with being able to call other procedures. The exact changes that it makes
vary according to the amount of temporary storage required by the procedure and
both the architecture and calling conventions in use.

Shrink wrapping generalizes leaf-routine optimization to apply to routines that
are not leaves in the call graph. The idea behind it is to move the procedure prologue
and epilogue code along the control-flow paths within a procedure until they either
“ run into” each other and, hence, can be removed or until they surround a region
containing one or more calls and so enclose the minimal part of the procedure that
still allows it to function correctly and efficiently.

15.4.1 Leaf-Routine Optimization
At first glance, it may seem surprising that a high percentage of the procedures in
many programs are leaf routines. On the other hand, reasoning from some simple
cases suggests that this should be so. In particular, consider a program whose call
graph is a binary tree, i.e., a tree in which each node has either zero or two succes
sors. It is not hard to show by induction that the number of leaves in such a tree is
one more than the number of non-leaves, hence over half the procedures in such a
call graph are leaf routines. Of course, this ratio does not hold universally: trees with
more than two successors per node increase the ratio, while call graphs that are not
trees or that include recursive routines may reduce the ratio to zero.

Thus, optimizations that lower the overhead of calling leaf routines are often
highly desirable and, as we shall see, require relatively little effort. Determining the
applicability of leaf-routine optimization has two main components. The first is the
obvious one—that the routine calls no others. The second is architecture-dependent
and requires somewhat more effort. We must determine how much storage, both
registers and stack space, the procedure requires. If it requires no more registers
than are available as caller-saved and short-term scratch registers, then its register
usage can be adjusted to use those registers. For an architecture without register
windows, this number is set by software convention or by an interprocedural register
allocator (see Section 19.6) and can be done in such a way as to favor leaf-routine
optimization. For sparc, with register-window saving and restoring done by separate
instructions than procedure calls and returns, it merely requires that the called
procedure not contain save and re sto re instructions and that it be restricted to
using registers in the caller’s out register set and scratch globals.

Procedure Optimizations472

15.4

Section 15.4 Leaf-Routine Optimization and Shrink Wrapping 473

If the leaf routine also requires no stack space, because, for example, it does not
manipulate any local arrays that need to have their elements be addressable, and if
it has sufficient storage for its scalars in the available registers, then the code that
creates and reclaims a stack frame for the leaf routine is also not needed.

If a leaf routine is small or is called from only a few places, it may be an excellent
candidate for procedure integration.

15.4.2 Shrink Wrapping
The definition of shrink wrapping given above is not quite accurate. If we were to
move the prologue and epilogue code to enclose the minimal possible code segments
that include calls or that otherwise need to use callee-saved registers, we might end
up placing that code inside a loop or making many copies of it for distinct control-
flow paths. Both would be wasteful—the former of time and the latter of space and
usually time as well. The latter might also be incorrect. Consider the flowgraph in
Figure 15.8. If blocks B3 and B4 need to use a callee-saved register for variable a, we
might be led to place a register save before each of those blocks and a restore after
block B4. If we did that and the execution path included both B3 and B4, we would
save the wrong value on entry to B4.

Instead, our goal is to move the prologue and epilogue code to enclose the
minimal code segments that need them, subject to their not being contained in a loop
and not creating the problem just described. To do so, we use a data-flow analysis
developed by Chow [Chow88] that uses properties similar to some of those used in
the analysis carried out for partial-redundancy elimination. For a basic block /, we
define RUSE(i) to be the set of registers used or defined in block /. Next, we define
two data-flow properties called register anticipatability and register availability. A
register is anticipatable at a point in a flowgraph if all execution paths from that
point contain definitions or uses of the register; it is available if all execution paths
to that point include definitions or uses of it (see Section 13.3 for use of similar
properties in the context of partial-redundancy elimination). We use RANTin(i),
RANTout(i), RAVin(i), and RAVout(i) to denote the data-flow attributes on entry
to and exit from each block i. Thus, we have the data-flow equations

FIG. 15.8 Incorrect placement of save and restore code for the register allocated for variable c.

474 Procedure Optimizations

RANTout(i) = RANTin(j)
jeSucc(i)

RANTin(i) = RUSE(i) U RANTout(i)

and

RAVin(i) = |^| RAVout(j)
jePred(i)

RAVout(i) = RUSE(i) U RAVin(i)

with the initialization RANTout(exi t) = RAVm(entry) = 0. Note that these sets
can be represented by bit vectors that are a single word each for a machine with at
most 32 registers.

The idea is to insert register-saving code where a use is anticipatable and to insert
restore code where a use is available. Note that the two issues are symmetric, since
the data-flow equations are mirror images of each other, as are the conditions for
save and restore insertion. Thus, determining the appropriate data-flow equations
for saving automatically gives us the corresponding equations for restoring. We
choose to insert save code for a register r at basic-block entries and at the earliest
point leading to one or more contiguous blocks that use r. For block i to satisfy this,
we must have r e RANTin(i) and r $ RANTin(j) for / e Pred(i). Also, there must be
no previous save of r, because introducing another one saves the wrong value, so
r & RAVin(i). Thus, the analysis suggests that the set of registers to be saved on entry
to block i is

SAVE(i) = (RANTin(i) - RAVin(i)) n p | (REGS - RANTin(j))
jePred(i)

where REGS is the set all of registers and, by symmetry, the set of registers to be
restored on exit from block i is

RSTR(i) = (RAVout(i) — RANTout(i)) D P | (REGS — RAVout(j))
jeSucc(i)

However, these choices of save and restore points suffer from two problems.
One is the issue covered by the example in Figure 15.8 and the mirror image for
restoring. We handle this by splitting the edge from block B2 to B4 and placing the
register save currently at the entry to B4 in the new (empty) block; we deal with
restores in the corresponding fashion. The second problem is that this choice of save
and restore points does not deal efficiently with the issue of saving and restoring
being needed around a subgraph nested inside a loop. We handle this by recognizing
from the control-flow structure of the routine being compiled that such a subgraph is
nested inside a loop and we migrate the save and restore code outward to surround
the loop.

As an example of this approach, consider the flowgraph in Figure 15.9. Assume
that r l through r7 are used to hold parameters and r8 through r l5 are callee-saved
registers. Then the values of R U SE () are as follows:

RUSE(e ntry) = 0
RUSE(Bl) = {r2}

Section 15.4 Leaf-Routine Optimization and Shrink Wrapping 475

exit

FIG. 15.9 A lir flowgraph example for shrink wrapping.

RUSE(B2) = {rl}
RUSE(B3) = {rl,r2,r8}
RUSE(B4) = {rl,r2}
RUSE(ex it) = 0

The values of RANTin(), RANTout(), RAVin(), and RAVout() are as follows:

RANTin(e ntry) = {rl,r2} RANTout(entry) —{rl,r2}
RANTin(Bl) = (rl,r2) RANTout(Bl) {rl,r2}
RANTin(B2) = (rl,r2) RANTout(B2) {rl,r2}
RANTin(B3) = {rl,r2,r8} RANTout(B3) = {rl,r2}
RANTin(B4) = (rl,r2) RANTout(B4) 0RANTin(exit) = 0 RANTout(ex it) = 0
RAVin(e ntry) = 0 RAVout(e ntry) = 0
RAVin(Bl) = 0 RAVout{B\) = |r2)
RAVin(B2) = {r2} RAVout(B2) = (rl,r2)
RAVin{ B3) = {r2} RAVout(B3) = {rl,r2,r8}
RAVin(BA) = {rl,r2} RAVo«?(B4) = {rl,r2}
RAVin(ex it) = {rl.r2} RAVout(ex it) ={rl,r2}

Finally, the values of SAVE() and RSTR() are as follows:

SAVE(entry) = 0 RSTR (entry) = 0
S-AVE(Bl) = (rl,r2) RSTR(B1) = 0
SAVE(B2) = 0 RSTR(B2) = 0
SAVE(B3) = {r8} RSTR(B3) = {r8}
SAVE(BA) = 0 RSTR (B4) = {rl,r2}
SAVE(ex it) = 0 RSTR(exit) = 0

Since rl and r2 are used for parameter passing, the only register of interest here
is r8, and the values of SAVE() and RSTR() indicate that we should save r8 at
the entry to block B3 and restore it at B3’s exit, as we would expect. The resulting
flowgraph appears in Figure 15.10.

476 Procedure Optim izations

FIG. 15.10 The example in Figure 15.9 after shrink wrapping.

15.5 Wrap-Up
In this chapter, we have discussed three pairs of optimizations that apply to whole
procedures and that, except in one case, do not require data-flow analysis to be
effective. The pairs of optimizations are as follows:

1. Tail-recursion elimination and the more general tail-call optimization turn calls into
branches. More specifically, tail-recursion elimination recognizes calls in a proce
dure that recursively call the same procedure and that do nothing but return after
returning from the call. Such a call can always be turned into code that copies the
arguments to the parameter locations followed by a branch to the beginning of the
body of the routine.

Tail-call optimization deals with the same situation, except that the called rou
tine need not be the caller. This optimization does the same thing as tail-recursion
elimination, except that it needs to be done more carefully, since the called routine
may not even be in the same compilation unit. To do it, we need to know where the
called routine expects to find its parameters, how big its stack frame is, and where
to branch to in order to begin executing it.

2. Procedure integration and in-line expansion are generally used as two names for
the same optimization, namely, replacing a call by the body of the called routine.
In this book, however, we use them to denote distinct versions of this operation:
procedure integration is done early in the compilation process to take advantage
of the many optimizations that have single procedures as their scopes (for example,
integrating a procedure whose body is a loop and that is called in the body of a loop),
while in-line expansion is done late in the compilation process to take advantage of
low-level operations that have particularly effective implementations in a particular
architecture.

Section 15.5 Wrap-Up 477

FIG. 15.11 Place of procedure optimizations (in bold type) in an aggressive optimizing compiler.
(continued)

3. Leaf-routine optim ization takes advantage of the fact that a large fraction of proce
dure calls are to routines that are leaves, i.e., that m ake no calls themselves and hence
do not generally need the full baggage (stack fram e, register saving and restoring,
etc.) o f an arbitrary routine. Shrink w rapping generalizes this by, in effect, m igrat
ing entry-point code forw ard and exit-point code backw ard along the control-flow
paths in a procedure so that they annihilate each other if they collide. As a result,
some control-flow paths through a shrink-wrapped routine may include full entry
and exit code and others may not.

Figure 15.11 shows in bold type where these optim izations are generally placed
in the order o f optim izations.

478 Procedure Optim izations

(to constant folding, algebraic
simplifications, and reassociation)

F IG . 15.11 (c o n t in u e d)

15.6 Further Reading
The Linpack benchmark is described by Dongarra et al. in [DonB79]. The Cooper,
Hall, and Torczon experiment with procedure integration described in Section 15.2
is found in [CooH92].

Chow’s approach to shrink wrapping is described in [Chow88].

15.7 Exercises
15.1 In doing tail-call optimization, how can we guarantee that there is enough stack

space for the callee? (a) Under what conditions can this be done during compilation?
(b) Would splitting the work between compiling and linking simplify it or make it
more widely applicable? If so, explain how. If not, explain why not.

ADV 15.2 (a) Generalize tail-call optimization to discover groups of routines that form a
recursive loop, i.e., for routines r i through r * , r \ calls only r 2 , r i calls only r 3, . . . ,
and r£ calls only r i . (b) Under what conditions can the routines’ bodies be combined
into a single one and how would you determine whether the conditions hold?

Section 15.7 Exercises 479

15.3 In doing leaf-routine optimization, how can we be sure that there is enough stack
space for all the leaf procedures? (a) Under what conditions can this be done during
compilation? (b) Would splitting the work between compiling and linking simplify
it or make it more widely applicable? If so, explain how. If not, explain why not.

15.4 Design a compact format for saving the m i r and symbol table generated for a
compilation unit to enable cross-compilation-unit procedure integration. Assume
that all the compilation units result from compiling modules in the same source
language.

15.5 Write an i c a n routine that performs inlining on l i r code, following the conventions
given in Section 15.3. As part of this exercise, design an i c a n data structure to
represent template files and read one into the appropriate structure by the call
read .tem plates (file, struc), where file is the file name of the template file and struc
is the structure to read it into.

15.6 Write an i c a n procedure to do leaf-routine optimization on l i r code, assuming that
parameters are passed in registers r l through r 6 and that r7 through r 13 are saved
by the caller. Make sure to check whether stack space is required and to allocate it
only if it is.

15.7 Write an i c a n routine

Tail_Call_Opt(e n l ,n l,ninstl,LBlockl,^«2,«2,ninst2,LBlock2)
that takes two l i r procedures such that the first one performs a tail call to the second
one and modifies their code to replace the tail call by a branch. Assume that the first
routine passes nargs arguments to the second one in a sequence of registers beginning
with r l , that the frame and stack pointers are register r20 and r21, respectively, and
that enl and enl are the numbers of the entry blocks of the two procedures.

CHAPTER 16

Register Allocation

In this chapter, we cover register allocation and assignment, which are, for almost
all architectures, among the most important of optimizations. The problem
addressed is how to minimize traffic between the CPU registers, which are
usually few and fast to access, and whatever lies beyond them in the memory

hierarchy, including one or more levels of cache and main memory, all of which
are slower to access and larger, generally increasing in size and decreasing in speed
the further we move away from the registers.

Register allocation is best carried out on low-level intermediate code or on
assembly language, because it is essential that all loads from and stores to memory,
including their address computations, be represented explicitly.

We begin with a discussion of a quick and reasonably effective local method that
depends on usage counts and loop nesting. Next comes a detailed presentation of a
much more effective approach that uses graph coloring to do global allocation and
a short overview of another approach that also uses graph coloring but that is not
generally as effective. We also mention briefly an approach that views allocation as
a bin-packing problem and three approaches that use a procedure’s control tree to
guide allocation.

The central focus of the chapter, global register allocation by graph coloring,
usually results in very effective allocations without a major cost in compilation
speed. It views the fact that two quantities must be in registers at the same time as
excluding them from being in the same register. It represents the quantities by nodes
in a graph and the exclusions (called interferences) by arcs between the correspond
ing nodes; the nodes may represent real registers also, and the arcs may represent
exclusions such as that the base address in a memory access may not be register rO.
Given the graph corresponding to an entire procedure, this method then attempts
to color the nodes, with the number of colors equal to the number of available real
registers, so that every node is assigned a color that is distinct from those of all the
nodes adjacent to it. If this cannot be achieved, additional code is introduced to store

481

482 Register Allocation

quantities to memory and to reload them as needed, and the process is repeated un
til a satisfactory coloring is achieved. As we will see, even very simple formulations
of graph-coloring problems are NP-complete, so one of the most important facets
of making global register allocation as effective as possible is using highly effective
heuristics.

Further coverage of register allocation appears in Section 19.6, where interpro
cedural methods are discussed. Some of these methods work on code below the
assembly-language level, namely, on relocatable object modules annotated with in
formation about data usage patterns.

16.1 Register Allocation and Assignment
Register allocation determines which of the values (variables, temporaries, and large
constants) that might profitably be in a machine’s registers should be in registers at
each point in the execution of a program. Register allocation is important because
registers are almost always a scarce resource—there are rarely enough of them to
hold all the objects one would like to keep in them—and because, in R i s e systems, al
most all operations other than data movement operate entirely on register contents,
not storage, and in modern cisc implementations, the register-to-register operations
are significantly faster than those that take one or two memory operands. Graph col
oring is a highly effective approach to global (intraprocedural) register allocation.
We also describe briefly a related method called priority-based graph coloring. In
Section 19.6, we discuss interprocedural approaches that work on whole programs
at compile time or link time.

Register assignment determines which register each allocated value should be in.
Register assignment is mostly trivial for a R i s e architecture, since the registers are ei
ther uniform or divided into two nearly uniform sets—the general or integer registers
and the floating-point registers—and the operations that can be performed in them
are mutually exclusive or very nearly so. One sometimes significant exception is that
generally either set of registers can be used to hold word- or doubleword-size values
that are being copied from one area of memory to another, and the choice of which
set to use may depend on what else is occupying registers at the same time. A second
exception is that doubleword quantities are usually restricted to even-odd pairs of
registers on 32-bit systems, so some care is needed to ensure that they are assigned
correctly. For ciscs, register assignment must typically take into account special uses
for some of the registers, such as serving as the stack pointer or being used implicitly
by string-manipulation instructions, as occurs in the Intel 386 architecture family.

In a compiler that does global optimization on medium-level intermediate code,
register allocation is almost invariably done after generating low-level or machine
code. It is preceded by instruction scheduling (see Section 17.1) and possibly by
software pipelining (see Section 17.4), and possibly followed by another pass of
instruction scheduling. In a compiler that does global optimization on low-level
intermediate code, register allocation is frequently among the last few optimizations
done. In either approach, it is essential to expose all addressing calculations, such as

Section 16.2 Local Methods 483

for accessing array elements, before register allocation, so that their use of registers
can be taken into account in the allocation process.

If allocation is done on medium-level intermediate code, it is usually necessary
for a few registers to be reserved for the code generator to use as temporaries for
quantities that are not allocated to registers and for some of the more complex
constructs such as switches. This is a distinct drawback of the priority-based graph
coloring approach (Section 16.4), since it restricts the reserved registers to being used
for the designated purposes, generally without knowing in advance how many are
actually required; thus the maximum number of registers that may be needed must
be reserved, which reduces the number of registers available to the allocator.

Before proceeding to the discussion of global register allocation, we consider
what kinds of objects should be taken as candidates for allocation to registers and
briefly describe two older, local approaches, the first developed by Freiburghouse
[Frei74] and the second used in the PDP-11 bliss compiler and its descendants, in
cluding the DEC GEM compilers discussed in Section 21.3.2. In many architectures,
including all Rises, all operations are performed between registers, and even storage-
to-storage moves of objects are done by loading them into registers and then storing
them, so it would appear at first glance that every object should be considered as a
candidate. This is not quite true—input/output is universally done to and from mem
ory, not registers, and communication between the processors in a shared-memory
multiprocessor is almost entirely through memory as well. Also, small constants that
can fit into the immediate fields of instructions generally should not be taken as can
didates, since they can be used more efficiently that way than by occupying registers.
Virtually all other classes of objects should be considered candidates for register allo
cation: local variables, nonlocal variables, constants too large to fit into immediate
fields, temporaries, etc. Even individual array elements should be considered (see
Section 20.3).

16.2 Local Methods
The first local allocation approach is hierarchical in that it weights inner loops more
heavily than outer ones and more heavily than code not contained in loops, on the
principle that most programs spend most of their time executing loops. The idea is to
determine, either heuristically or from profiling information, the allocation benefits
of the various allocatable quantities. If profiling information is not available, it is
generally estimated by multiplying the savings that result from allocating a variable
to a register by a factor based on its loop nesting depth, usually \QdePth for depth
loops.1 In addition, liveness of a variable on entry to or exit from a basic block
should be taken into account, since a live quantity needs to be stored on exit from
a block, unless there are enough registers available to assign one to it. We define the
following quantities:

1. Some compilers use Sdepth simply because a multiplication by 8 can be done in a single cycle by
a left shift.

484 Register Allocation

1. Idcost is the execution-time cost of a load instruction in the target machine.

2. stcost is the cost of a store instruction.

3. mvcost is the cost of a register-to-register move instruction.

4. usesave is the savings for each use of a variable that resides in a register rather than
a memory location.

5. defsave is the savings for each assignment to a variable that resides in a register rather
than a memory location.

Then the net savings in execution time for a particular variable v each time basic
block Bz is executed is netsave(v, z), defined as follows:

netsave(v,i) = u • usesave + d • defsave — l • Idcost — s • stcost

where u and d are the numbers of uses and definitions of variable v, respectively, in
block z; and / and s = 0 or 1, counting whether a load of t/ at the beginning of the
block or a store at the end, respectively, is needed.

Thus, if L is a loop and z ranges over the basic blocks in it, then

1 0 depth m ^ netsavefvj)
ieblocks(L)

is a reasonable estimate of the benefit of allocating v to a register in loop L.2 Given
that one has R registers to allocate—which is almost always fewer than the total
number of registers, since some must be reserved for procedure linkage, short-term
temporaries, etc.—after computing such estimates, one simply allocates the R objects
with the greatest estimated benefit to registers in each loop or loop nest. Following
register allocation for the loop nests, allocation is done for code outside loops using
the same benefit measure.

We can sometimes improve the allocation by taking into account the P prede
cessors and S successors of a block z. If those blocks all assign variable v to the same
location, the values of / and s for the variable for this block are both 0. In consid
ering the predecessors and successors along with block z, we may put variable v in
a different register from the one it is allocated to in some or all of the surrounding
blocks. If so, we incur an additional cost for this variable of at most (P + S) • mvcost,
the cost of one move for each predecessor and successor block.

This approach is simple to implement, often works remarkably well, and was
the prevalent approach in optimizing compilers, such as IBM’s Fortran H for the
IBM 360 and 370 series machines, until the global methods described below became
feasible for production use.

The bliss optimizing compiler for the PDP-11 views register allocation as a bin
packing problem. It determines the lifetimes of temporaries and then divides them
into four groups according to whether they

2. This measure can be refined to weight conditionally executed code in proportion to its expected
or measured execution frequency.

Section 16.3 Graph Coloring 485

1. must be allocated to a specific register,

2. must be allocated to some register,

3. may be allocated to a register or memory, or

4. must be allocated to a memory location.

Next, it ranks the allocatable temporaries by a cost measure for allocation to specific
registers or any register, and finally it tries a series of permutations of the packing
of temporaries into the registers and memory locations, preferring to allocate to
registers when possible. An approach derived from this one is still used in Digital
Equipment’s GEM compilers for Alpha (Section 21.3).

16.3 Graph Coloring
16.3.1 Overview of Register Allocation by Graph Coloring

That global register allocation could be viewed as a graph-coloring problem was rec
ognized by John Cocke as long ago as 1971, but no such allocator was designed and
implemented until Chaitin’s in 1981. That allocator was for an experimental IBM
370 PL/I compiler, and it was soon adapted by Chaitin and a group of colleagues for
the PL.8 compiler for the IBM 801 experimental R i s e system. Versions of it and al
locators derived from it have been used since in many compilers. The generally most
successful design for one was developed by Briggs, and it is his design on which much
of the rest of this chapter is based. (See Sectionl6.7 for further reading.)

The basic idea of global register allocation by graph coloring can be expressed
in five steps, as follows (although each of steps 2 through 4 is an oversimplification):

1. During code generation or optimization (whichever phase precedes register alloca
tion) or as the first stage of register allocation, allocate objects that can be assigned to
registers to distinct symbolic registers, say, s i , s2, . . . , using as many as are needed
to hold all the objects (source variables, temporaries, large constants, etc.).

2. Determine what objects should be candidates for allocation to registers. (This could
simply be the s /, but there is a better choice described in Section 16.3.3.)

3. Construct a so-called interference graph whose nodes represent allocatable objects
and the target machine’s real registers and whose arcs (i.e., undirected edges) repre
sent interferences, where two allocatable objects interfere if they are simultaneously
live and an object and a register interfere if the object cannot be or should not be
allocated to that register (e.g., an integer operand and a floating-point register).

4. Color the interference graph’s nodes with R colors, where R is the number of
available registers, so that any two adjacent nodes have different colors (this is called
an R-coloring).

5. Allocate each object to the register that has the same color it does.

Before we proceed with the details, we give an example of the basic approach.
Suppose we have the simple code shown in Figure 16.1(a) with y and w dead at the

486 Register Allocation

1
2
3
4
5
6

w <- x + y
z <- x + 1
u <- x * y
x <- z * 2

y <- 4
x <- 2

s3 si + s2
s4 si + 1
s5 si * s2
s6 s4 * 2

s2 <- 4
si <- 2 rl <- 2

r2 <- 4
r3 <- rl + r2
r3 <- rl + 1
rl <- rl * r2
r2 <- r3 * 2

(a) (b) (c)

FIG. 16.1 (a) A simple example for register allocation by graph coloring; (b) a symbolic register
assignment for it; and (c) an allocation for it with three registers, assuming that y and w
are dead on exit from this code.

end of the code sequence, three registers (rl, r2, and r3) available, and suppose
further that z must not occupy rl. We first assign symbolic registers si, ... , s6
to the variables, as shown in Figure 16.1(b). Note that the two definitions of x in
lines 1 and 6 have been assigned different symbolic registers, as described in the
next section. Then, for example, si interferes with s2 because s2 is defined in line 2,
between the definition of si in line 1 and its uses in lines 3 ,4 , and 5; and s4 interferes
with rl because z is restricted to not being in rl. The resulting interference graph is
shown in Figure 16.2. It can be colored with three colors (the number of registers)
by making s3, s4, and r3 red; si, s5, and rl blue; and s2, s6, and r2 green. Thus,
putting both si and s5 in rl, s2 and s6 in r2, and s3 and s4 in r3 is a valid register
assignment (shown in Figure 16.1(c)), as the reader can easily check.

Next, we consider the details of the method and how they differ from the outline
sketched above.

The list of global type definitions and data structures used in register allocation by
graph coloring is given in Figure 16.3. Each is described where it is first used.

The overall structure of the register allocator is shown in Figure 16.4. The
allocation process proceeds as follows:

1. First Make_Webs() combines du-chains that intersect (i.e., that contain a use in
common) to form webs, which are the objects for which registers are allocated. A
web is a maximal union of du-chains such that, for each definition d and use u, either
u is in the du-chain of d or there exist d = do, . . . , uq, dn, un = w, such that, for each
i, Uj is in the du-chains of both di and dj+i. Each web is assigned a distinct symbolic
register number. Make_Webs() also calls MIR_to_SymLIR() to translate the input
mir code in Block to lir with symbolic registers that is stored in LBlock; note that
this is not essential—the code input to the register allocator could just as easily be in

FIG. 16.2 Interference graph for code in Figure 16.1(b).

16.3.2 Top-Level Structure

Section 16.3 Graph Coloring 487

Symbol * Var u Register u Const
UdDu = integer x integer
UdDuChain = (Symbol x UdDu) —> set of UdDu
webrecord = record {symb: Symbol,

defs: set of UdDu,
uses: set of UdDu,
spill: boolean,
sreg: Register,
disp: integer}

listrecd = record {nints, color, disp: integer,
spcost: real,
adjnds, rmvadj: sequence of integer}

opdrecd = record {kind: enum {var,regno,const},
val: Symbol}

DefWt, UseWt, CopyWt: real
nregs, nwebs, BaseReg, Disp := InitDisp, ArgReg: integer
RetReg: Register
Symreg: array [••] of webrecord
AdjMtx: array [•*,*•] of boolean
AdjLsts: array [••] of listrecd
Stack: sequence of integer
Real_Reg: integer — > integer

FIG. 16.3 Global type definitions and data structures used in register allocation by graph coloring.

lir and, if we do other low-level optimizations before register allocation, it definitely
will be in lir or some other low-level code form.

2. Next, Build_AdjM tx() builds the adjacency-matrix representation of the inter
ference graph, which is a two-dimensional, lower-triangular matrix such that
AdjMtx [/,/] is tru e if and only if there is an arc between (real or symbolic) registers
i and / (for i > /), and f a l s e otherwise.

3. Next, the routine C oalesce_R egs() uses the adjacency matrix to coalesce registers,
i.e., it searches for copy instructions si sj such that si and sj do not interfere with
each other and it replaces uses of sj with uses of s/, eliminating sj from the code.
If any coalescences are performed, we continue with step 1 above; otherwise, we
continue to the next step.

4. Next, B u ild _ A d jL sts() constructs the adjacency-list representation of the inter
ference graph, which is an array A d jL sts [1 “ nwebs] of l i s t r e c d records, one for
each symbolic register. The records consist of six components: co lo r, d isp , sp co st ,
n in ts , ad jnds, and rmvadj; these components indicate whether a node has been
colored yet and with what color, the displacement to be used in spilling it (if neces
sary), the spill cost associated with it, the number of adjacent nodes left in the graph,
the list of adjacent nodes left in the graph, and the list of adjacent nodes that have
been removed from the graph, respectively.

5. Next, C om pute_Spill_C osts() computes, for each symbolic register, the cost of
spilling it to memory and restoring it to a register. As we shall see below, there

4 8 8 Register Allocation

procedure Allocate_Registers(DuChains,nblocks,ninsts,Block,
LBlock,Succ,Pred)
DuChains: in set of UdDuChain
nblocks: in integer
ninsts: inout array [1**nblocks] of integer
Block: in array [1**nblocks] of array of MIRInst
LBlock: out array [1**nblocks] of array [••] of LIRInst
Succ, Pred: inout integer — > set of integer

begin
success, coalesce: boolean
repeat

repeat
Make_Webs(DuChains,nblocks,ninsts,Block,LBlock)
Build_AdjMtx()
coalesce := Coalesce_Regs(nblocks,ninsts,LBlock,Succ,Pred)

until !coalesce
Build_AdjLsts()
Compute_Spill_Costs(nblocks,ninsts,LBlock)
Prune_Graph()
success := Assign_Regs()
if success then

Modify_Code(nblocks,ninsts,LBlock)
else

Gen_Spill_Code(nblocks,ninsts,LBlock)
fi

until success
end || Allocate_Registers

FIG. 16.4 Top level of graph-coloring register-allocation algorithm.

are some types of register contents (such as large constants) that may be handled
differently, in ways that are less expensive and that still achieve the effect of spilling
and restoring.

6. Then Prune_Graph() uses two approaches, called the degree < R rule and the
optim istic heuristic, to remove nodes (and their associated arcs) from the adjacency-
list representation of the interference graph.

7. Then Assign_Regs() uses the adjacency lists to try to assign colors to the nodes so
that no two adjacent nodes have the same color. If it succeeds, Modif y_Code() is
called to replace each use of a symbolic register with the real register that has been
assigned the same color and the allocation process terminates. If register assignment
fails, it proceeds to the next step.

8. The routine Gen_Spill_Code() assigns stack locations for symbolic registers to be
spilled to memory and then inserts spills and restores for them (or handles them
alternatively, such as for the large-constant case mentioned above, for which it is
generally less expensive to reconstruct or rematerialize a value, rather than storing
and loading it). Then control returns to step 1 above.

Section 16.3 Graph Coloring 489

FIG. 16.5 An example of webs. The most complex web is shaded.

The following sections elaborate each of the routines discussed above and the
reasons for taking this approach.

16.3.3 Webs, the Allocatable Objects
The first issue is determining what objects should be candidates for register alloca
tion. Rather than simply using the variables that fit into a register, the candidates
are objects that were originally called names but that now are generally called webs.
A web is as defined in item 1 in Section 16.3.2. For example, in the code in Fig
ure 16.1(a), the definition of x in line 1 and its uses in lines 3, 4, and 5 belong to the
same web, since the definition reaches all the uses listed, but the definition of x in
line 6 belongs to a different web.

For another example, consider the abstracted flowgraph fragment in Figure 16.5
in which we show just definitions and uses of two variables, x and y, and we assume
that there are no loops enclosing the fragment. There are four webs present. One
consists of the union of the du-chain for the definition of x in block B2, which is
shaded in the figure and includes the uses of x in blocks B4 and B5, and the du-chain
for the definition of x in block B3, which is also shaded and includes the use of x in
block B5; since they intersect in the use of x in block B5, they are combined to form
one web. The definition of x in block B5 and its use in block B6 form a separate web.
In summary, the four webs are as follows:

Web Components

wl def x in B2, def x in B3, use x in B4, use x in B5
w2 def x in B5, use x in B6
w3 def y in B2, use y in B4
w4 def y in Bl, use y in B3

4 9 0 Register Allocation

FIG. 16.6 Interferences among the webs in Figure 16.5.

and the interferences among them are as indicated in Figure 16.6. In general, to
determine the webs for a procedure, we first construct its du-chains by computing
reaching definitions and then we compute the maximal unions of intersecting du-
chains (two du-chains intersect if they have a use in common).

The advantage of using webs instead of variables as the candidates for allocation
to registers results from the fact that the same variable name may be used repeatedly
in a routine for unrelated purposes. The classic example of this is the use of i as
a loop index. For many programmers, it is the first choice of a variable to use
as a loop index, and it is often used for many loops in the same routine. If they
were all required to use the same register for i, the allocation would be unduly
constrained. In addition, of course, there may be multiple uses of a variable name
for purposes the programmer thinks of as identical but that are in fact separable
for register allocation because their webs are distinct. Using webs also obviates the
need to map the variables to symbolic registers: each web is equivalent to a symbolic
register. Notice that for a Rise system, this can be made to encompass large constants
in addition to variables—to be used, a large constant needs to be loaded into or
constructed in a register and the register then becomes an element of a web.

The ican routine Make_Webs() shown in Figure 16.7 constructs the webs for a
procedure, given its du-chains. It uses three global data types. One is UdDu, whose
members consist of pairs </, />, where i is a basic block number and / is an instruction
number within the block.

The second type, UdDuChain = (Symbol x UdDu) —> s e t of UdDu, represents
du-chains. As noted in Section 2.7.9, an ican function with two arguments is equiv
alent to a set of triples whose type is the product of the types of the first argument,
the second argument, and the range. We use that equivalence here—we write a mem
ber sdu of the type UdDuChain as a set of triples of the form < s,p , Q> (where s is a
symbol, p is a block-position pair, and Q is a set of block-position pairs), rather than
in the form sd u (s ,p) = Q.

The third type webrecord describes a web, which consists of a symbol name, a
set of definitions of the symbol, a set of uses of the same symbol, a Boolean indicating

procedure Make_Webs(DuChains,nblocks,ninsts,Block,LBlock)
DuChains: in set of UdDuChain
nblocks: in integer
ninsts: in array [1••nblocks] of integer
Block: in array [1 • •nblocks] of array [••] of MIRInst
LBlock: out array [1••nblocks] of array [••] of LIRInst

FIG. 16.7 The routine Make_Webs() to determine webs for register allocation by graph coloring.

Section 16.3 Graph Coloring 491

begin
Webs := 0, Tmpl, Tmp2: set of webrecord
webl, web2: webrecord
sdu: Symbol x UdDu — > set of UdDu
i, oldnwebs: integer
nwebs := nregs
for each sdu e DuChains do

nwebs += 1
Webs u= {<symb:sdu@l,defs:{sdu@2},uses:sdu@3,

spill:false,sreg:nil,disp:nil)}
od
repeat

I| combine du-chains for the same symbol and that
I| have a use in common to make webs
oldnwebs := nwebs
Tmpl := Webs
while Tmpl * 0 do

webl := ♦Tmpl; Tmpl -= {webl}
Tmp2 := Tmpl
while Tmp2 * 0 do

web2 := ♦Tmp2; Tmp2 -= {web2}
if webl.symb = web2.symb &

(webl.uses n web2.uses) * 0 then
webl.defs u= web2.defs
webl.uses u= web2.uses
Webs -= {web2}
nwebs -= 1

fi
od

od
until oldnwebs = nwebs
for i := 1 to nregs do

Symreg[i] := {<symb:Int_to_Reg(i),defs:nil,
uses:nil,spill:false,sreg:nil,disp:nil)}

od
I| assign symbolic register numbers to webs
i := nregs
for each webl e Webs do

i += 1
SymregCi] := webl
webl.sreg := i

od
MIR_to_SymLIR(nblocks,ninsts,Block,LBlock)

end I I Make_Webs

FIG. 16.7 (continued)

492 Register Allocation

FIG. 16.8 Each SSA-form variable is the head of a du-chain.

whether it is a candidate for spilling, a symbolic register or n i l , and a displacement
or n i l .

We assume that a du-chain is represented as a triple consisting of a symbol,
a definition of the symbol, and a set of uses of the same symbol, and we assume
that each definition and use is a pair consisting of a basic-block number and an
instruction number (within the block), i.e., the compiler-specific type UdDu defined
in Figure 16.3.

The values of the global variables n regs and nwebs are the number of real
registers available for allocation, which are assumed to be numbered 1 through
n regs, and the number of webs, counting the real registers, respectively.

Make.Webs () first initializes the webs from the du-chains and then iterates over
pairs of webs, checking whether they are for the same symbol and intersect and, if
so, unioning them. In the process, it counts the webs and, finally, it assigns symbolic
register names to the webs and calls MIR_to_SymLIR() to convert the mir code to
lir code and to substitute symbolic registers for variables in the code.3

Make_Webs() uses the routine In t_ to_R eg(/), which returns the real or sym
bolic register name corresponding to integer /. If i < n regs, it returns the name of
the /th real register. If i > n regs, it returns the value of Symregt/] .symb; this case is
not used here, but is used in the code for MIR_to_SymLIR() in Figure 16.9.

Note that if the code input to register allocation is in SSA form, then determining
the webs is easy: each SSA-form variable is a du-chain, since each SSA variable has
only one definition point. For example, in Figure 16.8, the definition of xi in Bl, the
definition and use of X2 in B2, the definition of X3 , and the uses of xi and X2 in block
B4 and of X2 and X3 in B5 constitute a web.

The ican routine MIR_to_SymLIR() in Figure 16.9 converts the mir form of
a procedure to lir code with symbolic registers in place of variables. The routine
uses the global type opdrecd, which describes instruction operands, consisting of a
kind that is var, regno, or const and a value that is an identifier, a register, or a
constant. It uses the global integer constant ArgReg and the global register-valued
constant RetReg, which contain the number of the first argument register and the
name of the register for the call to store the return address in, respectively. The code
also uses three routines, as follows:

3. This is not essential. The code passed to the register allocator could already be in lir.

Section 16.3 Graph Coloring 493

procedure MIR_to_SymLIR(nblocks,ninsts,Block,LBlock)
nblocks: in integer
ninsts: inout array [1••nblocks] of integer
Block: in array [1**nblocks] of array [••] of MIRInst
LBlock: out array [1 “ nblocks] of array [••] of LIRInst

begin
i, j, k, reg: integer
inst: MIRInst
opndl, opnd2, opnd: opdrecd
for i := 1 to nblocks do

j ; = 1
while j ̂ninsts[i] do

inst := Block[i] [j]
case inst of

binasgn: opndl := Convert_Opnd(inst.opdl)

unasgn:

opnd2 := Convert_Opnd(inst.opd2)
LBlock[i][j] := <kind:regbin,left:Find_Symreg(inst.left,i,j),

opr:inst.opr,opdl:opndl,opd2:opnd2>
opnd := Convert_Opnd(inst.opd)
LBlock[i][j] := <kind:regun,left:Find.Symreg(inst.left,i,j),

opr:inst.opr,opd:opnd)
valasgn: opnd := Convert_Opnd(inst.opd)

LBlock[i] [j] := <kind:regval,
left:Find_Symreg(inst.left,i,j),opd:opnd)

goto:
binif:

LBlock[i][j] := inst
opndl :* Convert_0pnd(inst.opdl)
opnd2 := Convert_0pnd(inst.opd2)
LBlock[i][j] := <kind:regbinif,opr:inst.opr,

opdl:opndl,opd2:opnd2,lbl:inst.lbl)

call: reg := ArgReg
for k :* 1 to linst.argsl do

LBlock[i][j+k-1] := <kind:regval,
left:Int_to_Reg(reg),
opd:Convert_0pnd(inst.argslk)>

reg +« 1
od
LBlock[i][j+k] := <kind:callreg,proc:inst.proc,

rreg:RetReg>
j +- k

esac
j += 1

od
od

end I| MIR_to_SymLIR
FIG. 16.9 ican code to convert the mir form of a procedure to lir code with symbolic registers in

place of variables.

494 Register Allocation

1. Find_Sym reg(s,/,/) returns the index of the web (or, equivalently, the symbolic
register) that symbol s in instruction / in basic block i is part of.

2. Convert_0pnd(opnd) takes a mir operand opnd and returns the corresponding
lir operand (either a constant or a symbolic register, where a symbolic register
name consists of the letter s concatenated with an integer greater than or equal to
nregs + 1).

3. Int_to_Reg(/) converts its integer argument i to the corresponding real or symbolic
register name, as described above.

16.3.4 The Interference Graph
Once the webs have been computed, the next step is to build the interference graph.
There is one node in the graph for each machine register and one for each web
(= symbolic register).

It might appear that if the registers are homogeneous, i.e., if any quantity may
reside in any register, then there is no need to include nodes for the registers in the
interference graph. We would then simply find an R-coloring of the graph and assign
webs with different colors to distinct registers. However, this is generally not the
case, since, at the least, the calling conventions and stack structure require registers
to be reserved for them.

Similarly, it might appear that if the target machine has two or more sets of
registers dedicated to different functions (e.g., integer registers and floating-point
registers), then the allocation problems for the two sets of registers could be handled
separately, resulting in smaller, less-constrained interference graphs. However, this
is generally not the case either, since moving a block of data from one location in
memory to another (assuming that the architecture lacks memory-to-memory move
instructions) typically can be done by using either set of registers—so we would
needlessly restrict the allocation process by using separate graphs.

Our simplified description above indicated that two nodes have an arc between
them if they are ever simultaneously live. However, this can result in many more arcs
in the graph than are needed. It is sufficient to include an arc between two nodes if
one of them is live at a definition point of the other. The additional arcs resulting
from the original definition can significantly increase the number of colors required
or, equivalently, the amount of code introduced (in a way we have not discussed yet)
to make the graph R-colorable. The number of arcs connecting a node to others is
called the node’s degree.

Chaitin et al. [ChaA81] give an example of a procedure with an interference
graph that requires 21 colors with the “ simultaneously live” definition and only 11
with the “ live at a definition point” definition. An adaptation of that example is
shown in Figure 16.10. On entry to block B4, all of a l , . . . , aw, b l , . . . , bw, and l e f t
are live. The interference graph has 2n + 1 nodes. If we use the former definition of
interference, it has n(2n + 1) arcs, connecting each node to all the others and needs
2n + 1 colors. With the latter definition, the ai do not interfere with the hi at all, so
there are only n{n + 1) arcs and only n + 1 colors are required.

The interference graph is general enough to represent several sorts of interfer
ences other than the ones arising from simultaneously live variables. For example,

Section 16.3 Graph Coloring 495

FIG. 16.10 Example flowgraph for which the two definitions of interference produce different
interference graphs.

the fact that in the p o w e r architecture, general register rO can be used to hold a
constant but produces a zero value when used as a base register in an address com
putation can be handled by making all webs that represent base registers interfere
with rO. Similarly, registers that are changed by the language implementation’s call
ing conventions can be made to interfere with all webs that are live across a call.

16.3.5 Representing the Interference Graph
Before describing how to build the interference graph, we consider how best to
represent it. The graph can be quite large, so space efficiency is a concern; but
practical experience shows that access time is also a major issue, so careful attention
to how it is represented can have a large payoff. As we shall see, we need to be able to
construct the graph, determine whether two nodes are adjacent, find out how many
nodes are adjacent to a given one, and find all the nodes adjacent to a given node
quickly. We recommend using the traditional representation, namely, a combination
of an adjacency matrix and adjacency lists.4

The adjacency matrix AdjMtx[2 • *nwebs, 1 • -nwebs-1] is a lower-triangular
matrix such that AdjMtx[max(/,/’),min(/ ,/)] = true if the /th register (real

4. A representation based on the sparse data structure described by Briggs and Torczon [BriT93]
and discussed in Section B.l is also a candidate. However, experiments comparing it with the
traditional approach show that it can be quite wasteful of memory and comparatively slow to
access as a result.

Register A llocation

r l r2 r3 s i s2 s3 s4 s5

r2 " t -
r3 t t
s i f f f
s2 f f f t
s3 f f f t t
s4 t f f t t f
s5 f f f f f f t
s6 - f f f f f f f f _

FIG. 16.11 Adjacency matrix for the interference graph in Figure 16.2, where t and f stand for
true and fa lse , respectively.

or symbolic) and the /th register are adjacent and is f a l s e otherwise.5 The ma
trix representation allows the interference graph to be built quickly and allows one
to determine quickly whether two nodes are adjacent. For example, the adjacency
matrix for the interference graph in Figure 16.2 is shown in Figure 16.11, where t
is used to represent tru e and f to represent fa l s e .

The ican routine Build_AdjMtx() to build the adjacency-matrix representa
tion of the interference graph is given in Figure 16.12. The code uses the function
Live_At (web, symb, def) to determine whether there are any definitions in web that
are live at the definition def of symbol symb and the function In te r fe re (s ,r) to de
termine whether the web represented by symbolic register s interferes with the real
register r.

The adjacency-lists representation is an array of records of type l i s t r e c d with
six components each. For array entry A djLsts [/], the components are as follows:

1 . co lo r is an integer whose value is the color chosen for the node; it is initially -®.

2 . d isp is the displacement that forms part of the address at which the symbolic register
assigned to position i will be spilled, if needed; it is initially

3 . sp cost is the spill cost for the node; it is initially 0 . 0 for symbolic registers and 00
for real registers.

4 . n in ts is the number of interferences in the adjnds field.

5 . adjnds is the list of the real and symbolic registers that currently interfere with real
or symbolic register /.

6 . rmvadj is the list of the real and symbolic registers that interfered with real or
symbolic register i and that have been removed from the graph during pruning.

5. Recall that, in the numbering, the real registers account for positions 1 through nregs and the
symbolic registers for positions nregs+1 through nwebs.

Section 16.3 Graph Coloring 497

procedure Build_AdjMtx()
begin

i, j: integer
def: UdDu
for i := 2 to nwebs do

for j :s 1 to i-1 do
AdjMtx[i,j] := false

od
od
for i := 2 to nregs do

for j 1 to i-1 do
AdjMtx[i,j] := true

od
od
for i := nregs+1 to nwebs do

for j := 1 to nregs do
if Interfere(Symreg[i]#j) then

AdjMtx[i,j] := true
fi

od
for j := nregs+1 to i-1 do

for each def e Symreg[i].defs
(Live_At(Symreg[j],Symreg[i].symb.def)) do
AdjMtx[i,j] := true

od
od

od
end I I Build.AdjMtx

FIG. 16.12 ican code to build the adjacency-matrix representation of the interference graph for
register allocation by graph coloring.

This representation is most useful for determining how many nodes are adjacent to
a particular node and which ones they are. The adjacency lists for the interference
graph in Figure 16.2 are shown in Figure 16.13.

ican code to build the adjacency-lists representation of the interference graph is
given in Figure 16.14. The adjacency-matrix representation is most useful during the
preparation for graph coloring, namely, during register coalescing (see next section);
the adjacency lists are most useful during the actual coloring process. Thus, we build
the adjacency matrix first, modify it during register coalescing, and then build the
adjacency lists from the result, as discussed in Section 16.3.2.

16.3.6 Register Coalescing
After building the adjacency matrix, we apply a transformation known as register
coalescing to it. Register coalescing or subsumption is a variety of copy propagation
that eliminates copies from one register to another. It searches the intermediate code
for register copy instructions, say, sj <- si, such that either si and sj do not interfere

498 Register Allocation

adjnds
color disp spcost nints 1 2 3

rl

r2

r3

si

s2

s3

-00 -CO r3 s4
—00 3 0 l rl r3

— 33 CD lrl r2

— 0.0 | | 3 | | s2 s3 s4
—00 0.0 | | 3 | | si s3 s4

- - 0.0 | | 2 | 1 si s2

s4 11 II 1 1 0-0 1 1 4 I 1 rl | si s2 s5

s5 Q Q S Q CD
s6 | -0° | | -0° | | 0.0 [| 0 |

FIG. 16.13 Initial adjacency lists for the interference graph in Figure 16.2.

with each other6 or neither si nor sj is stored into between the copy assignment
and the end of the routine. Upon finding such an instruction, register coalescing
searches for the instructions that wrote to si and modifies them to put their results
in sj instead, removes the copy instruction, and modifies the interference graph
by combining si and sj into a single node that interferes with all the nodes they
individually interfered with. Modifying the graph can be done incrementally. Note
that at the point of a copy operation sj <- si, if another symbolic register sk was live
at that point, we made it interfere with si, which now turns out to be unnecessary,
so these interferences should be removed.

The ican routine C oalesce_R egs() shown in Figure 16.15 performs register
coalescing. It uses the following three routines:

1. Reg_to_Int (r) converts its symbolic or real register argument r to the integer i such
that Symreg [/] represents r.

2. d e le t e . in s t (/ , / ,n in s t s ,B lo c k ,S u c c ,P r e d) deletes instruction/ from basic block
i (see Figure 4.15).

3. N on_Store(LB lock ,& ,/ , / , /) returns tru e if neither symbolic register sk nor si is
stored into between the assignment sk si in LBlockf/] [/] and the end of the
routine containing that copy assignment.

After coalescing registers, we construct the adjacency-lists representation of the
interference graph, as shown in Figure 16.14.

6. Notice that the interference graph encodes the data-flow information necessary to do this, so we
can avoid doing live variables analysis. Also, note that each of s i and s j may be either a real or a
symbolic register.

Section 16.3 Graph Coloring 499

procedure BuilcL AdjLsts()
begin

i, j: integer
for i := 1 to nregs do

AdjLsts[i].nints := 0
AdjLsts[i].color := -»
AdjLsts[i].disp := -»
AdjLsts [i] . spcost 00
AdjLsts [i] . adjnds := []
AdjLsts [i] .rmvadj := []

od
for i := nregs+1 to nwebs do

AdjLsts[i].nints 0
AdjLsts[i].color -»
AdjLsts [i] .disp -<»
AdjLsts [i].spcost := 0.0
AdjLsts [i] . ad jnds := []
AdjLsts [i] .rmvadj := []

od
for i := 2 to nwebs do

for j := 1 to nwebs - 1 do
if AdjMtx[i,j] then

AdjLsts [i] .adjnds [j]
AdjLsts [j] .adjnds ®= [i]
AdjLsts[i].nints += 1
AdjLsts [j] .nints += 1

fi
od

od
end || Build_AdjLsts

FIG. 16.14 ican code to build the adjacency-lists representation of the interference graph.

It has been noted by Chaitin and others that coalescing is a powerful transfor
mation. Among the things it can do are the following:

1. Coalescing simplifies several steps in the compilation process, such as removing
unnecessary copies that were introduced by translating from SSA form back to a
linear intermediate code.

2. It can be used to ensure that argument values are moved to (or computed in) the
proper registers before a procedure call. In the callee, it can migrate parameters
passed in registers to the proper registers for them to be worked on.

3. It enables machine instructions with required source and target registers to have their
operands and results in the proper places.

4. It enables two-address instructions, as found in ciscs, to have their target register
and the operand that must be in that register handled as required.

5 0 0 R egister A llocation

procedure Coalesce_Regs(nblocks,ninsts,LBlock,Succ,Pred)
nblocks: inout integer
ninsts: inout array [1**nblocks] of integer
LBlock: inout array [1**nblocks] of array [••] of LIRInst
Succ, Pred: inout integer —> set of integer

begin
i, j, k, 1, p, q: integer
for i := 1 to nblocks do

for j := 1 to ninsts[i] do
I| if this instruction is a coalescable copy, adjust
I I assignments to its source to assign to its target instead
if LBlock[i][j].kind = regval then

k := Reg_to_Int(LBlock[i][j].left)
1 := Reg_to_Int(LBlock[i][j].opd.val)
if !AdjMtx[max(k,l),min(k,l)] V Non.Store(LBlock,k,l,i,j) then

for p := 1 to nblocks do
for q := 1 to ninsts[p] do

if LIR_Has_Left(LBlock[p][q])
& LBlock[p][q].left = LBlock[i][j].opd.val then
LBlock[p][q].left :- LBlock[i][j].left

fi
od

od
I| remove the copy instruction and combine Symregs
delete.inst(i,j,ninsts,LBlock,Succ,Pred)
Symreg[k].defs u= Symreg[l].defs
SymregCk].uses u= Symreg[l].uses
I I adjust adjacency matrix to reflect removal of the copy
Symreg[l] := Symreg[nwebs]
for p := 1 to nwebs do

if Adj Mtx[max(p,1),min(p,1)] then
Adj Mtx[max(p,k),min(p,k)] := true

f i
Adj Mtx[max(p,1),min(p,1)] := Adj Mtx[nwebs,p]

od
nwebs -= 1

fi
fi

od
od

end I I Coalesce_Regs
FIG. 16.15 Code to coalesce registers.

5. It enables us to ensure that instructions that require a register pair for some operand
or result are assigned such a pair.

We do not take any o f these issues into account in the algorithm in Figure 16.15, but
there are related exercises at the end o f the chapter.

Section 16.3 Graph Coloring 501

16.3.7 Computing Spill Costs
The next phase of the allocation process is to compute costs for spilling and restoring
(or rematerializing) register contents, in case it turns out not to be possible to allocate
all the symbolic registers directly to real registers. Spilling has the effect of potentially
splitting a web into two or more webs and thus reducing the interferences in the
graph. For example, in Figure 16.5, we can split the web that includes the definition
of y in block B2 and its use in block B4 into two webs by introducing a store of the
register containing y at the end of B2 and a load from the location it was stored to
at the beginning of B4.

If spill decisions are made carefully, they both make the graph R-colorable and
insert the minimum number of stores and reloads, as measured dynamically.

Spilling register contents to memory after they are set and reloading them (or
rematerializing them) when they are about to be needed is a graph-coloring reg
ister allocator’s primary tool for making an interference graph R-colorable. It has
the effect of potentially splitting a web into two or more webs and so reducing
the interferences in the graph, thus increasing the chance that the result will be
R-colorable.

Each adjacency-list element has a component sp co st that estimates the cost of
spilling the corresponding symbolic register, in a way that resembles the usage counts
described in Section 16.1.

More specifically, the cost of spilling a web w is taken to be

defwt- \0 depth{def) + usewt • £ 10depth(use) - copywt ■ £ 10depth(copy)
defew useew copyew

where def, use, and copy are individual definitions, uses, and register copies in the
web w\ defwt, usewt, and copywt are relative weights assigned to the instruction
types.

Computing spill costs should take the following into account:

1. If a web’s value can be more efficiently recomputed than reloaded, the cost of
recomputing it is used instead.

2. If the source or target of a copy instruction is spilled, the instruction is no longer
needed.

3. If a spilled value is used several times in the same basic block and the restored value
remains live until the last use of the spilled value in that block, then only a single
load of the value is needed in the block.

The ican routine Compute_Spill_Costs() in Figure 16.16 computes and saves
the spill cost for each register in the adjacency lists. The weights of loads, stores, and
copies are the values of UseWt, DefWt, and CopyWt, respectively, in Figure 16.3. This
can be further refined to take immediate loads and adds into account, by checking
for their occurrence and assigning them weights of 1 also. We incorporate the first

502 R eg iste r A llo ca tio n

procedure Compute_Spill_Costs(nblocks,ninsts,LBlock)
nblocks: in integer
ninsts: in integer — > integer
LBlock: in integer — > array [1**nblocks] of array [••] of LIRInst

begin
i, j: integer
r: real
inst: LIRInst
I I sum the costs of all definitions and uses for each
I I symbolic register
for i := 1 to nblocks do

for j := 1 to ninsts[i] do
inst LBlock[i][j]
case LIR_Exp_Kind(inst.kind) of

binexp: if inst.opdl.kind = regno then
Adj Lsts[inst.opdl.val].spcost

+= UseWt * lO.Otdepth(i)
fi
if inst.opd2.kind = regno then

Adj Lsts[inst.opd2.val].spcost
+= UseWt * lO.Otdepth(i)

fi
unexp: if inst.opd.kind = regno then

if inst.kind = regval then
Adj Lsts [inst.opd.val].spcost

-= CopyWt * lO.Otdepth(i)
else

AdjLsts[inst.opd.val].spcost
+= UseWt * 10.Otdepth(i)

fi
fi

noexp: esac
if LIR_Has_Left(inst.kind) & inst.kind * regval then

AdjLsts[inst.left].spcost
+= DefWt * 10.Otdepth(i)

fi
od

od
for i := nregs+1 to nwebs do

I I replace by rematerialization cost if less than
I I spill cost
r := Rematerialize(i,nblocks,ninsts,LBlock)
if r < AdjLsts[i].spcost then

AdjLsts[i].spcost := r
fi

od
end I I Compute_Spill_Costs

FIG . 16.16 ican code to compute spill costs for symbolic registers.

Section 16.3 Graph Coloring 503

two of the above conditions in the algorithm; the third is left as an exercise for the
reader. The algorithm uses the following functions:

1. depth O') returns the depth of loop nesting of basic block i in the flowgraph.

2. R em ateria lize (/,n b lock s,n in sts,L B lock) returns the cost to recompute the
symbolic register with number i rather than spilling and reloading it.

3. Real O’) returns the real number with the same value as the integer i.

16.3.8 Pruning the Interference Graph

Next we attempt to R-color the graph, where R is the number of registers available.
We do not attempt to find an R-coloring exhaustively—that has long been known
to be an NP-complete problem for R > 3, and besides, the graph may simply not
be R-colorable. Instead, we use two approaches to simplifying the graph, one that
is guaranteed to make a section of the graph R-colorable as long as the remainder
of the graph is R-colorable, and one that optimistically carries on from there. The
latter approach may not result in an R-coloring immediately, but it very frequently
makes more of the graph colorable than using just the first approach and so is very
useful for its heuristic value.

The first approach is a simple but remarkably effective observation we call the
degree < R rule: given a graph that contains a node with degree less than R, the
graph is R-colorable if and only if the graph without that node is R-colorable. That
R-colorability of the whole graph implies R-colorability of the graph without the
selected node is obvious. For the other direction, suppose we have an R-coloring of
the graph without the distinguished node. Since that node has degree less than R,
there must be at least one color that is not in use for a node adjacent to it, and the
node can be assigned that color. Of course, this rule does not make an arbitrary
graph R-colorable. In fact, Figure 16.17(a) is an example of a graph that is 2-
colorable but not by this rule and the graph in Figure 16.17(b) is 3-colorable, but not
by this rule. Flowever, the rule is quite effective in practice for coloring interference

FIG. 16.17 Example graphs that are (a) 2-colorable and (b) 3-colorable, but not by the degree < R
rule.

504 Register Allocation

graphs. For a machine with 32 registers (or twice that, counting floating point), it is
sufficient to enable coloring of many of the graphs encountered.

The second approach, the optimistic heuristic, generalizes the degree < R rule
by removing nodes that have degree > R. The reasoning behind this approach is the
observation that just because a node has R or more neighbors, they need not all have
different colors; and, further, they may not use as many as R colors. Thus, if the first
approach does not exhaust the graph, we continue processing it by optimistically
selecting candidates for coloring, in the hope that colors will be available for them
when they are needed.

Thus, we begin the coloring process by repeatedly searching the graph for nodes
that have fewer than R neighbors. Each one that we find we remove from the graph
and place onto the stack, so that we can retrieve them for coloring in the reverse of
the order we found them. As part of this process, we remember the nodes adjacent
to each removed node (as the value of the rmvadj field) so they can be used during
register assignment (see the next section). If we exhaust the graph in the process,
we have determined that an R-coloring is possible as is. We pop the nodes from the
stack and assign each of them a color from among those not already assigned to
adjacent nodes. For example, given the interference graph in Figure 16.2, we can
remove nodes from the graph and place them on the stack in the following order
(the bottom of the stack of pruned nodes is at the right):

r3 r2 rl s4 s2 si s3 s5 s6
We can then pop the nodes and assign them colors (represented by integers) as
described above and as shown below.

Node Color

r3 1
r2 2
rl 3
s4 1
s2 2
si 3
s3 1
s5 3
s6 2
As indicated above, the degree < R rule is sometimes not applicable. In that case,

we apply the optimistic heuristic; that is, we choose a node with degree > R and
minimal spill cost divided by its current degree in the graph and optimistically push
it onto the stack. We do so in the hope that not all the colors will be used for its
neighbors, thus postponing spilling decisions from being made during pruning the
interference graph to the step that actually attempts to assign colors to the nodes,
namely, the routine Assign_Regs() in Figure 16.20.

Before we move on to the code for pruning the graph, we note the difficulty of
keeping the code and the interference graph synchronous with each other as pruning

Section 16.3 Graph Coloring 505

procedure Prune_Graph()
begin

success: boolean
i, nodes := nwebs, spillnode: integer
spillcost: real
Stack := []
repeat

I I apply degree < R rule and push nodes onto stack
repeat

success := true
for i := 1 to nwebs do

if AdjLsts[i].nints > 0
& AdjLsts[i].nints < nregs then
success := false
Stack ®= [i]
Adjust_Neighbors(i)
nodes -= 1

fi
od

until success
if nodes * 0 then

I I find node with minimal spill cost divided by its degree and
I| push it onto the stack (the optimistic heuristic)
spillcost := 00
for i := 1 to nwebs do

if AdjLsts[i].nints > 0
& AdjLsts[i].spcost/AdjLsts[i].nints < spillcost then
spillnode i
spillcost := AdjLsts[i].spcost/AdjLsts[i].nints

fi
od
Stack ®= [spillnode]
Adjust.Neighbors(spillnode)
nodes -= 1

fi
until nodes = 0

end || Prune.Graph
FIG. 16.18 Code to attempt to R-color the interference graph.

decisions are made. This can be expensive, since what a spill does is to divide a web
into several webs (or, in terms of the graph, it divides one node into several nodes).
The way we deal with this problem is to avoid updating the code while pruning. If
register assignment fails, then, in the next iteration, building the adjacency matrix
and lists will be a lot quicker because of the spills that have been inserted.

Figure 16.18 shows the ican routine Prune_Graph() that applies the degree < R
rule and the optimistic heuristic to attempt to color the interference graph. It uses
the routine Adjust_Neighbors() in Figure 16.19 to effect the removal of a node

506 Register Allocation

procedure Adjust.Neighbors(i)
i: in integer

begin
j, k: integer
I| move neighbors of node i from adjnds to rmvadj and
I| disconnect node i from its neighbors
for k := 1 to IAdjLsts[i].adjndsI do

AdjLsts[k].nints -= 1
j := 1
while j ̂ IAdjLsts [k].adjnds| do

if AdjLsts[k].adjndsIj = i then
AdjLsts[k].adjnds ©= j
AdjLsts [k] . rmvadj ®= [i]

fi
j +- 1

od
od
AdjLsts[i].nints := 0
AdjLsts[i].rmvadj ®= AdjLsts[i].adjnds
AdjLsts [i] . adjnds := []

end |I Adjust_Neighbors
FIG. 16.19 The routine Adjust_Neighbors() used in pruning the interference graph.

from the graph. The global variable Stack is used to convey to Assign_Regs(),
described in the next subsection, the order in which the nodes were pruned.

16.3.9 Assigning Registers

The ican routine Assign_Regs() that R-colors the interference graph is given in
Figure 16.20. It uses the routine Min.Color (r), which returns the minimum color
number of those colors that are not assigned to nodes adjacent to r, or returns 0 if all
colors are in use for adjacent nodes; and assigns values to the function Real_Reg(s),
which returns the real register that symbolic register s has been assigned to.

If Assign_Regs() succeeds, Modify_Code(), shown in Figure 16.21, is in
voked next to replace the symbolic registers by the corresponding real registers. Mod-
ify_Code() uses Color_to_Reg() to convert the color assigned to a symbolic reg
ister to the corresponding real register’s name. Color_to_Reg() uses Real_Reg()
to determine which real register has been assigned each color.

16.3.10 Spilling Symbolic Registers

The number of colors needed to color an interference graph is often called its register
pressure, and so modifications to the code intended to make the graph colorable are
described as “ reducing the register pressure.”

In general, the effect of spilling is to split a web into two or more webs and to
distribute the interferences of the original web among the new ones. If, for example,

Section 16.3 Graph Coloring 507

procedure Assign_Regs() returns boolean
begin

c, i, r: integer
success := true: boolean
repeat

I I pop nodes from the stack and assign each one
I I a color, if possible
r := Stackl-1
Stack ©= -1
c := Min_Color(r)
if c > 0 then

if r ^ nregs then
Real_Reg(c) := r

fi
AdjLsts[r].color := c

else
II if no color is available for node r,
I| mark it for spilling
AdjLsts[r].spill := true
success := false

fi
until Stack = []
return success

end || Assign_Regs
FIG. 16.20 Routine to assign colors to real and symbolic registers.

we split web wl in Figure 16.5 by introducing loads and stores as shown by the
assignments to and from tmp in Figure 16.22, it is replaced by four new webs
w5, . . . , w8, as shown in the following table:

Web Components

w2 def x in B5, use x in B6
w3 def y in B2, use y in B4
w4 def y in Bl, use y in B3
w5 def x in B2, tmp x in B2
w6 def x in B3, tmp x in B3
w7 x <- tmp in B4, use x in B4
w8 x tmp in B5, use x in B5

and the interference graph is as shown in Figure 16.23.
Given that we have failed to make the interference graph R-colorable, we next

spill the nodes marked to be spilled, i.e., the nodes i for which AdjLsts [/] . s p i l l =
true.

The code of Gen_Spill_Code() is shown in Figure 16.24. It uses the subrou
tine Comp_Disp(r), also in Figure 16.24, to determine whether symbolic register r
has been assigned a spill displacement. If not, it increments Disp and stores the dis
placement in AdjLsts [/] .disp, where i is the index of r in the adjacency lists. The

508 Register A llocation

procedure Modify_Code(nblocks,ninsts,LBlock)
nblocks: in integer
ninsts: inout array [1••nblocks] of integer
LBlock: inout array [1 • •nblocks] of array [••] of LIRInst

begin
i, j, k, m: integer
inst: LIRInst
I I replace each use of a symbolic register by the real
I I register with the same color
for i := 1 to nblocks do

for j := 1 to ninsts[i] do

binexp:

inst := LBlock[i] [j]
case LIR_Exp_Kind(inst.kind) of

if inst.opdl.kind = regno
& Reg_to_Int(inst.opdl.val) > nregs then
LBlock[i][j].opdl.val :=

Color_to_Reg(AdjLsts[inst.opdl.val].color)
fi
if inst.opd2.kind = regno

& Reg_to_Int(inst.opd2.val) > nregs then
LBlock[i][j].opd2.val :-

Color_to_Reg(Adj Lsts[inst.opd2.val].color)
fi

unexp: if inst.opd.kind = regno
& Reg_to_Int(inst.opd.val) > nregs then
LBlock[i][j].opd.val :=

Color_to_Reg(Adj Lsts[inst.opd.val].color)
fi

listexp: for k := 1 to linst.argsl do
if Reg_to_Int(inst.argslk@l.regno) > nregs then

noexp:

m := AdjLsts[inst.argslk@l.val] .color
LBlock[i][j].argsli@l.val :=

Color_to_Reg(m)
fi

od
esac
if LIR_Has_Left(inst.kind) then

if Reg_to_Int(inst.left) > nregs then
LBlock[i][j].left :=

Color_to_Reg(AdjLsts[inst.left].color)
fi

fi
od

od
end I I Modify_Code

FIG . 16.21 ic a n r o u t i n e t o m o d i f y th e i n s t r u c t i o n s in th e p r o c e d u r e t o h a v e r e a l r e g is t e r s in p la c e

o f s y m b o l ic o n e s .

mailto:inst.argslk@l.val
mailto:argsli@l.val

Section 16.3 Graph Coloring 509

FIG. 16.22 The example in Figure 16.5 after splitting web wl.

© -— ® © ©

® -— @ ©
FIG. 16.23 Interferences among the webs in Figure 16.22.

variable BaseReg holds the name of the register to be used as the base register in
spilling and restoring. G en_Spill_Code() uses two other functions, as follows:

1. in se r t_ b e fo re (/ ,/ ,n in sts ,L B lo c k ,m s£) inserts the instruction inst immediately
before instruction LBlockf/] [/] (see Figure 4.14).

2. in se r t_ a f te r (/ ,/ ,n in s t s ,L B lo c k ,m s £) inserts the instruction inst immediately
after instruction LBlockf/] [/] (see Figure 4.14).

Note that G en_Spill_Code() does not take into account load or add immedi-
ates or other ways of rematerialization and that it only deals with word-size oper
ands as written. Exercises at the end of the chapter deal with some of these issues.

Note also that if we must insert spill code for symbolic registers that are defined
and/or used in a loop, then, if possible, we should restore them before entering the
loop and spill them after exiting it. This may require edge splitting, as described in
Section 13.3. In particular, in the example in Figure 16.26, if we had to spill s2, we
would introduce new basic blocks B la between B1 and B2 and B2a between B2 and
B4, with a restore for s2 in B la and a spill for it in B2a.

510 Register A llocation

procedure Gen_Spill_Code(nblocks,ninsts,LBlock)
nblocks: in integer
ninsts: inout array [1•-nblocks] of integer
LBlock: inout array [1•-nblocks] of array [••] of LIRInst

begin
i, j, regct := 0: integer
inst: LIRInst
I I check each definition and use of a symbolic register
I I to determine whether it is marked to be spilled, and,
II if so, compute the displacement for it and insert
I| instructions to load it before each use and store
I I it after each definition
for i := 1 to nblocks do

j 1
while j ^ ninsts[i] do

inst := LBlock[i][j]
case LIR_Exp_Kind(inst.kind) of

binexp: if AdjLsts[inst.opdl.val].spill then
Comp_Disp(inst.opdl.val)
insert_before(i,j,ninsts,LBlock,<kind:loadmem,

left:inst.opdl.val,addr:<kind:addrrc,
reg:BaseReg,disp:Disp>>)

j += 1
fi
if inst.opd2 * inst.opdl

& AdjLsts[inst.opd2.val].spill then
Comp_Disp(inst.opd2.val)
insert_before(i,j,ninsts,LBlock,<kind:loadmem,

left:inst.opd2.val,addr:<kind:addrrc,
reg:BaseReg,disp:Disp>>)

j += 1
fi

unexp: if AdjLsts [inst.opd.val].spill then
Comp_Disp(inst.opd.val)
insert_before(i,j,ninsts,LBlock,<kind:loadmem,

left:inst.opd.val,addr:<kind:addrrc,
reg:BaseReg,disp:Disp>>)

j += 1
fi

FIG. 16.24 ic a n code to generate spill code using the costs computed by Compute_Spill_Costs()
in Figure 16.16.

16.3.11 Two Examples of Register Allocation by Graph Coloring
As our first example of register allocation by graph coloring, consider the flowgraph
in Figure 16.25, where c is a nonlocal variable, and assume that we have five
registers, r l , r2, r3, r4, and r5, available (so R = 5) for allocation, except that

Section 16.3 Graph Coloring 511

listexp: for k := 1 to linst.argsl do
if AdjLsts[inst.argslk@l.val].spill then

Comp_Disp(inst.argslk@l.val)
insert_before(i,j,ninsts,LBlock,

<kind:loadmem,left:inst.opd.val,
addr:<kind:addrrc,
reg:BaseReg,disp:Disp>>)

regct += 1
fi

od
j +« regct - 1

noexp: esac
if LIR_Has_Left(inst.kind)

& AdjLsts[inst.left].spill then
Comp_Disp(inst.left)
insert.after(i,j,ninsts,LBlock,<kind:stormem,

addr:<kind:addrrc,
reg:BaseReg,disp:Disp>>,
opd:<kind:regno,val:inst.left > >)

j +- 1
fi

od
od

end I I Gen_Spill_Code

procedure Comp_Disp(r)
r: in Register

begin
I| if symbolic register r has no displacement yet,
I| assign one and increment Disp
I| Note: this assumes each operand is no larger
I I than a word
if AdjLsts [Reg_to_Int (r)] . color = then

AdjLsts[Reg.to.Int(r)].disp := Disp
Disp += 4

fi
end I I Comp.Disp

FIG. 16.24 (continued)

only g can be in r5. Further, assume that the execution frequencies of blocks B l,
B3, and B4 are 1 and that of B2 is 7. There is one web per symbolic register,
so we use the names of the symbolic registers for the webs, as shown in Figure
16.26.

Then we build the adjacency matrix for the code in Figure 16.26, as shown
in Figure 16.27(b), along with a graphic presentation of the interference graph in
Figure 16.27(a).

mailto:inst.argslk@l.val

512 R e g i s te r A l lo c a t io n

FIG. 16.25 A small example of register allocation by graph coloring.

FIG. 16.26 The example in Figure 16.25 with symbolic registers substituted for the local variables.

Section 16.3 Graph Coloring 513

s i

rl r2 r3 r4 r5 si s2 s3 s4 s5
r2 ~ t -
r3 t t
r4 t t t
r5 t t t t
si f f f f t
s2 f f f f t t
s3 f f f f t t t
s4 f f f f t t t t
s5 f f f f f t t t t
s6 f f f f t t t t t t _

(a)

FIG. 16.27

(b)
The interference graph (a) and adjacency matrix (b) for the example in Figure 16.26,
where t and f stand for true and fa lse , respectively.

FIG. 16.28 The example in Figure 16.26 after coalescing registers s4 and s i .

Applying coalescing to the copy assignment s4 s i in block B1 in Figure 16.26
results in the flowgraph in Figure 16.28 and the new interference graph and adja
cency matrix in Figure 16.29. Now there are no further opportunities for coalescing,
so we build the adjacency lists for the routine, as shown in Figure 16.30.

514 Register Allocation

FIG* 16*29 The interference graph (a) and adjacency matrix (b) for the example in Figure 16.28
after coalescing symbolic registers s i and s4, where t and f stand for true and fa lse ,
respectively.

adjnds
color disp spcost nints 1 2 3 4 5 6 7 8

rl

r2

r3

r4

3 0 r 2 r3 r4 r5

- - 3] G H l rl r3 r4 r5

-« -C O 3] H 3 r2 r4 r5

-» -0 0 0 0 c n r2 r3 r5

r5

si

s2

s3

s5

s6

— 00 -C O 3 0 lrl r2 r3 r4 si s2 s3 s6

0.0 | | 5 | | r5 s2 s3 s5 s6

- 0.0 | | 5 | | r5 si s3 s5 s6

- — CO 0.0 | | 5 | | r5 si s2 s5 s6

- 0.0 | | 4 | | si s2 s3 s6
- » 0.0 | | 5 | 1 r5 si s2 s3 s5

FIG. 16.30 The adjacency lists for the code in Figure 16.28.

Section 16.3 Graph Coloring 515

Next we compute spill costs, using DefWt = UseWt = 2 and CopyWt = 1, as follows:

Symbolic
Register Spill Cost

s i 2 .0
s2 1.0 + 21.0 + 2 .0 + 2 .0 = 26.0
s3 6 .0 + 14.0 + 4 .0 + 2 .0 = 26.0
s5 2 .0 + 4 .0 + 2 .0 = 8 .0
s6 00

Note that the spill cost for s i is 2 .0 because the assignment to it is a load immediate
and it can be rematerialized in block B3 by a load immediate placed just before its
use in the second instruction. Also, we make the spill cost of s6 infinite because the
symbolic register is dead.

From there we proceed to pruning the graph. Since each of r l through r4 has
fewer than five neighbors, we remove them and push them onto the stack, resulting
in the stack appearing as follows:

r4 r3 r2 rl

The resulting interference graph is shown in Figure 16.31 and the corresponding ad
jacency lists are shown in Figure 16.32. Now node r5 has fewer than five neighbors,
so we remove it and push it onto the stack, resulting in the stack

r5 r4 r3 r2 rl

r5

FIG. 16.31 The interference graph that results from pushing r l through r4 onto the stack.

516 Register Allocation

a d jn d s

color disp spcost nints 1 2 3 4 5

s5 | | | -« | | 8.0 |

56 ED ED CD

ed
m
mmEDElEDmEDED

si s2 s3 s6
r5 s2 s3 s5 s6

r5 sl s3 s5 s6

1 sl s2 s5 s6

1 sl s2 s3 s5
r5 sl s2 s3 s5

FIG, 16,32 The adjacency lists corresponding to the interference graph in Figure 16.31.

s i

FIG. 16.33 The interference graph that results from pushing r5 onto the stack.

and the resulting interference graph is shown in Figure 16.33 and the corresponding
adjacency lists are shown in Figure 16.34.

Now no node has five or more adjacent nodes, so we push the remaining
symbolic registers onto the stack in an arbitrary order, as follows:

si s2 s3 s5 s6 r5 r4 r3 r2 rl

Section 16.3 Graph Coloring 517

a d jn d s

color disp spcost nints 1 2 3 4
r l — 00 - 1[3
r2 — —00 | m
r3 —00 - C3
r4 — —00 » |
r5 1-1 1 1[3
s i 1 - 1
s2 — 00

l - l | 26.0[

s3 — 00 1 —co 1| 2 6 .0 |

s5 - 11 - 131
s6 -•» 11 - 1

m
H
mm
m
m
[3
13m

| s2 s3 s5 s6

1 sl s3 s5 s6

1 Sl s2 s5 s6

s i s2 s3 s5

1 sl s2 s3 s5

FIG. 16.34 The adjacency lists corresponding to the interference graph in Figure 16.33.

and we color them (i.e., assign real registers to symbolic ones) as we pop them off,
as follows:

Register Color

s i 1
s2 2
s3 3
s5 4
s6 5
r5 4
r4 1
r3 2
r2 3
rl 5

and we have achieved a register allocation without spilling any registers to memory.
Figure 16.35 shows the flowgraph with real registers substituted for the symbolic
ones.

Our second example will require spilling a register. We begin with the code in
Figure 16.36, with symbolic registers already in use in the code and with the assump
tion that real registers r2, r3, and r4 are available for allocation. The interference
graph and adjacency matrix for this example are shown in Figure 16.37.

518 Register Allocation

e n t r y |

FIG. 16.35 The flowgraph in Figure 16.28 with real registers substituted for symbolic registers.

FIG. 16.36 Another example flowgraph for register allocation by graph coloring.

There are no opportunities for coalescing, so we construct the adjacency lists,
as shown in Figure 16.38. Next, we compute the spill costs and fill them in in the
adjacency lists. Note that the spill costs of s i and s9 are both infinite, since s i is
dead on exit from B1 and s9 is dead at its definition point.

Next we prune the graph. Node s i (with no adjacent nodes) is removed and
pushed onto the stack. The real registers, s4, and s9 (with two adjacent nodes each)
are removed next and pushed onto the stack, as follows:

Section 16.3 Graph Coloring 519

s9

r2 r3 r4 si s2 s3 s4 s5 s6 s7 s8
r3 " t -
r4 t t
si f f f
s2 f f f f
s3 f f f f t
s4 f f f f t f
s5 f f f f t t t
s6 f f f f t t f t
s7 f f f f f t f t t
s8 f f f f f f f t f t
s9 _f f f f f f f f f t t
(b)

FIG. 16.37 The interference graph (a) and adjacency matrix (b) for the example in Figure 16.36.

s9 s4 r4 r3 r2 si

and the resulting interference graph is shown in Figure 16.39(a). Removing node s8
and pushing it onto the stack results in the stack

s8 s9 s4 r4 r3 r2 si

and the interference graph shown in Figure 16.39(b).
We are left with a graph in which every node has degree greater than or equal to

three, so we select a node with minimal spill cost divided by current degree, namely,
s7, to be pushed onto the stack. This reduces the interference graph to the form
shown graphically in Figure 16.39(c). So we again select a node with minimal spill
cost divided by current degree, namely, s5, and push it onto the stack. The resulting
interference graph is shown in Figure 16.40(a). Now all nodes have degree less than
three, so we push them all onto the stack, resulting in the stack

520 Register Allocation

color disp spcost

FIG, 16.38 The adjacency lists for

nints 1 2 3 4 5
a d jn d s

nn r4

cm ir2 r4

nn Lr2 r3

mDu Is3 s4 s6

m Is2 s5 s6 s7

DU Is2 s5

DU Is3 s4 s6 s7 s8

PH Is2 s3 s5 s7

DU Is3 s5 s6 s8 s9

PI Is5 s7 s9

DEI LfLs8

code in Figure 16.36.

s3 s7 s3 s7 s3

FIG. 16.39 (a) The interference graph after removing nodes s i , r2, r3, r4, s4, and s9, and pushing
them onto the stack, (b) then removing node s8 and pushing it onto the stack, and
(c) after removing node s7 and pushing it onto the stack.

s2 s3 s6 s5 s7 s8 s9 s4 r4 r3 r2 si

Now we begin popping nodes off the stack, assigning them colors, and
reconstructing the adjacency-lists form of the interference graph from the
A d jL sts [] .rmvadj fields. After popping the top four nodes, we have the interfer
ence graph shown in Figure 16.40(b) (with the colors shown in bold type in circles),
and there is no color available for node s5.

So we proceed to generate spill code for s7 and s5 in block B4 with BaseReg
= rlO and D isp = 0 and D isp = 4, respectively, as shown in Figure 16.41. Next we

Section 16.3 Graph Coloring 521

s2 s6 @ s2"

0 0
(a) (b)

FIG. 16.40 The interference graph (a) after popping the top three nodes from the stack and (b) after
popping the fourth node.

FIG. 16.41 The flowgraph in Figure 16.36 with spill code included for s5 and s7.

build the interference graph for the new flowgraph, as shown in Figure 16.42, and
it becomes clear that we may simply proceed to prune the graph and assign real
registers to the symbolic registers with the same colors, as shown in Figure 16.43.

16.3.12 Other Issues
Bernstein et al. [BerG89] discuss three heuristics that can be used to select values to
spill and an allocator that tries all three and uses the best of them. Their first heuris
tic is

cost(w)

522 Register Allocation

®

FIG. 16.42 The interference graph for the code in Figure 16.41.

FIG. 16.43 The flowgraph in Figure 16.41 with real registers substituted for the symbolic ones.

and is based on the observation that spilling a web with high degree reduces the
degree of many other nodes and so is more likely to maximize the number of webs
that have degree < R after spilling. The second and third heuristics use a measure
called area{), defined as follows:

Section 16.3 Graph Coloring 523

T

instl inst2 inst3

x
FIG. 16.44 Rematerialization lattice.

area(w) — ^ (width(I) • sdepth(<1))
Ieinst(w)

where inst(w) is the set of instructions in web w, width(I) is the number of webs live
at instruction J, and depth(I) is the loop nesting level of J. The two heuristics are
intended to take into account the global effect of each web on the register pressure
and are as follows:

h2(w) ~ costjw)
area(w) • degree(w)

cost(w)
h^(w) = ------------ :----------=■

area(w) ♦ degree(w)z

Of 15 programs that the authors report trying the three heuristics and other modifi
cations on, the first heuristic does best on four, the second does best on six, and the
third on eight (the second and third are tied on one program), and in every case, the
best of them is better than previous approaches. This allocator is now part of the
IBM compilers for power and PowerPC (see Section 21.2).

Briggs [Brig92] suggests a series of additional extensions to the allocation algo
rithm, including the following:

1. a more satisfactory method for handling register pairs than Nickerson’s approach for
the Intel 386 architecture [Nick90] that results from postponing spilling decisions to
after registers have been assigned (see also Exercise 16.4);

2. an improved method of rematerialization, the process of regenerating in registers val
ues such as constants that are more efficiently recomputed than spilled and reloaded;
and

3. an approach to aggressively splitting webs before coloring that takes into account
the structure of a procedure’s flowgraph, unlike the interference graph.

Briggs’s approach to rematerialization involves splitting a web into the values
that make it up, performing a data-flow computation that associates with each po
tentially rematerializable value the instruction(s) that would be used to rematerialize
it, and constructing new webs, each consisting of values that have the same instruc
tion associated with them. The lattice is a flat one, as shown in Figure 16.44. Note
that in the case of large constants on a Rise architecture, the code to rematerialize a

524 Register Allocation

value might be two instructions, a load upper immediate and an add to the loaded
register. Occasionally, a web is split further by this process than is ideal, and a fix-up
phase is used to find such webs and reconnect them.

16.4 Priority-Based Graph Coloring
Register allocation by priority-based graph coloring is similar in its overall structure
to the approach described in the preceding section, but differs from it in several
important details, some essential and some incidental. The approach originated
with Chow and Hennessy ([ChoH84] and [ChoH90]) and is intended to be more
sensitive to the costs and benefits of individual allocation decisions than the previous
approach.

One significant difference is that the priority-based approach allocates all objects
to “ home” memory locations before register allocation and then attempts to migrate
them to registers, rather than allocating them to symbolic registers, trying to pack the
symbolic registers into the real registers, and generating spill code as necessary. While
the two approaches may appear to be equivalent in this regard, with symbolic reg
isters corresponding to home memory locations that have simply not been assigned
to specific addresses, they are not. The graph-coloring approach is optimistic—it be
gins with the assumption that all the symbolic registers might be allocatable to real
registers, and it may succeed in doing so. On the other hand, priority-based coloring
is pessimistic: it may not be able to allocate all the home memory locations to reg
isters, so, for an architecture without storage-to-storage operations (i.e., a Rise), it
needs to reserve four registers of each variety for use in evaluating expressions that
involve variables that it does not succeed in allocating to registers. Thus, it begins
with a handicap, namely, fewer registers are available for allocation.

Another difference is that the priority-based approach was designed a priori to
be machine-independent, so it is parameterized with several machine-specific quanti
ties that specialize it to a given implementation. This is not a major difference—there
is not much about the other approach that is machine-specific either. The quantities
are some of the ones defined in Section 16.2, namely, Idcost, stcost, usesave, and
defsave.

A third, more significant difference is in the concepts of web and interference
used. Chow and Hennessy represent the web of a variable as the set of basic blocks
it is live in and call it a live range. As the example in Figure 16.45 shows, this is
conservative, but it may be much less precise than the graph-coloring method, in
which none of the variables x, y, z, and w are live at a definition point of another,

x <- a + b B1
y <- x + c
if y = 0 goto LI
z <- y + d B2
w <- z

LI: . . . B3
FIG. 16.45 Example of code for which Chow and Hennessy’s live ranges are less precise than our

webs.

Section 16.5 Other Approaches to Register Allocation 525

• • x y

(b)
FIG. 16.46 (a) Priority-based graph-coloring interference graph and (b) graph-coloring interference

graphs for the code in Figure 16.45.

so there are no interferences among them. Using Chow and Hennessy’s method, x
interferes with y, y with both z and w, and z and w with each other. The resulting
interference graphs are shown in Figure 16.46.7

Larus and Hilfinger’s register allocator for the spur lisp compiler [LarH86] uses
a version of priority-based coloring. It differs from Chow and Hennessy’s approach
in two ways, as follows:

1. It assigns temporaries to registers ab initio and generates spill code for them as
needed.

2. It operates on spur assembly language, rather than on medium-level intermediate
code, and so must add load and store instructions for spilled temporaries.

Briggs [Brig92] investigated the running times of two register allocators, one his
own and the other a priority-based allocator. He found that his allocator seemed
to run in 0 (n log n) time on his test programs, while the priority-based allocator
seemed to require 0 (n 2) time, where n is the number of instructions in the program.

16.5 Other Approaches to Register Allocation
Several other approaches to global register allocation by graph coloring have been
presented and evaluated, including two that use a procedure’s control tree (see
Section 7.6) to guide spilling or graph-pruning decisions, one by Callahan and
Koblenz [CalK91] and one by Knobe and Zadeck [KnoZ92].

Another approach, developed by Gupta, Soffa, and Steele [GupS89], uses maxi
mal clique separators to perform graph coloring. A clique is a graph with each node
connected to every other node by an arc. A clique separator is a subgraph that is a
clique such that removing the subgraph splits the containing graph into two or more
unconnected subgraphs. A clique separator is maximal if there is no node (and its
incident arcs) in the graph that can be added to the clique separator to produce a
larger clique. Maximal clique separators with at most R nodes have two attractive
properties: they divide a program into segments for which register allocation can be

7. The original presentation of register allocation by priority-based graph coloring included a fur
ther significant departure from the basic graph-coloring approach. Namely, the allocation process
was divided into local and global phases, with the local phase used to do allocation within basic
blocks and across small clusters of basic blocks.

526 Register Allocation

performed separately and they can be constructed by examining the code, without
actually constructing the full interference graph.

In Section 20.3, we discuss an approach to register allocation for array ele
ments that can have significant performance impact, especially for repetitive nu
merical computations; and in Section 19.6, we discuss link-time and compile-time
approaches to interprocedural register allocation.

Register allocation can needlessly decrease the available instruction-level paral
lelism by reusing registers sooner than they need be; this can be alleviated by doing
hardware or software register renaming (Section 17.4.5) and, in part, by tuning the
register allocator to cycle through the registers rather than reusing them as soon as
they become free. Alternatively, register allocation and scheduling can be integrated
into a single pass. Several researchers have investigated ways to combine the two
into one phase that achieves the best of both. The efforts of Bradlee, Eggers, and
Henry [BraE91] and of Pinter [Pint93] are steps in this direction.

16.6 Wrap-Up
In this chapter we have covered register allocation and assignment, which are among
the most important optimizations for almost all programs. We have seen that reg
ister allocation should be done on low-level code, either an intermediate form or
assembly language, because it is essential that all loads and stores and their address
computations be explicit.

We began with a discussion of a venerable, quick, and tolerably effective local
approach that depends on usage counts and loop nesting to decide what objects
should be in registers. Then we presented in detail a much more effective approach,
namely, global register allocation by graph coloring, and briefly another approach
that also uses graph coloring but that is generally less effective. We also alluded to an
approach that uses bin packing; two relatively new approaches that use a procedure’s
control tree to guide allocation and spilling decisions; and another new approach
that uses maximal clique separators.

We have seen that register allocation by graph coloring usually results in very
effective allocations without a major cost in compilation speed. It represents allocat-
able quantities (symbolic registers) and the real registers by nodes in a graph and the
interferences among them by arcs. It then attempts to color the nodes with a number
of colors equal to the number of available registers, so that every node is assigned
a color distinct from those of its neighbor nodes. If this cannot be done, code is in
troduced to spill symbolic registers to memory and to reload them where they are
needed, and the process is repeated until the coloring goal has been achieved.

The major lessons to be garnered from this chapter are the following: 1 2

1. There are reasonably effective local methods of register allocation that cost very little
in compilation time and are suitable for unoptimized compilation.

2. There is a global method of register allocation, graph coloring, that is very effective,
costs somewhat more than the local approach, and is appropriate for optimized
compilation.

Section 16.6 Wrap-Up 527

FIG. 16.47 Place of register allocation (in bold type) in an aggressive optimizing compiler.
(continued)

3. Research continues into other approaches that may well produce even more ef
fective allocators—probably without requiring significantly more time than graph
coloring—and that may combine register allocation and instruction scheduling with
out adversely impacting either.

The appropriate placement of global register allocation by graph coloring in an
aggressive optimizing compiler is marked by bold type in Figure 16.47.

Further coverage of register allocation appears in Chapter 19, where interpro
cedural methods are discussed. Some of these methods work on code below the
assembly-language level, namely, on relocatable object modules that are annotated

528 Register Allocation

FIG* 16.47 (continued)

with information about data usage patterns. Also, scalar replacement of array ref
erences (Section 20.3) and scalar replacement of aggregates (Section 12.2), among
other optimizations, are designed to improve register allocation.

16.7 Further Reading
Freiburghouse’s approach to local register allocation is described in [Frei74]. The
IBM Fortran FI compilers for the IBM 360 and 370 series systems are described
in [LowM69]. The b l i s s language is described in [WulR71] and the groundbreaking
PDP-11 compiler for it in [WulJ75].

Cocke noted that global register allocation can be viewed as a graph-coloring
problem, as reported by Kennedy in [Kenn71]. Chaitin’s original graph-coloring
allocator for an experimental IBM 370 PL/I compiler is described in [ChaA81]
and its adaptation to the PL.8 compiler, including several refinements, is described
in [Chai82]. A demonstration that general graph coloring is NP-complete can be
found in [GarJ79]. Briggs, Cooper, Kennedy, and Torczon’s original discussion of the
optimistic heuristic is found in [BriC89] and is also discussed in [Brig92], on which
the current account is based. The exploration of coloring heuristics by Bernstein et al.

Section 16.8 Exercises 529

is found in [BerG89]. Nickerson’s approach to handling register pairs and larger
groups is found in [Nick90].

Priority-based graph coloring was invented by Chow and Hennessy (see
[ChoH84] and [ChoH90]). The earlier of these presentations includes splitting
the allocation process into local and global phases, which was later found to be
unnecessary. Larus and Hilfinger’s [LarH86] register allocator uses a variation of
priority-based graph coloring.

Briggs’s comparison of his allocator with Chow’s priority-based allocator is
found in [Brig92].

Callahan and Koblenz’s and Knobe and Zadeck’s approaches to using a pro
cedure’s control tree to guide spilling decisions are described in [CalK91] and
[KnoZ92], respectively. Gupta, Soffa, and Steele’s use of maximal clique separators
to perform register allocation is described in [GupS89].

Bradlee, Eggers, and Henry [BraE91] and Pinter [Pint93] discuss approaches to
combining register allocation and instruction scheduling into a single compilation
phase.

16.8 Exercises
16.1 Explain how Build_AdjMtx() in Figure 16.12 and C oalesce_R eg isters() in

Figure 16.15 can be used to ensure that argument values are moved to (or computed
in) the proper registers before a procedure call and, in the callee, that parameters
passed in registers are moved to the proper ones for them to be worked on.

16.2 Explain how Build_AdjMtx() in Figure 16.12 and C oalesce_R eg isters() in
Figure 16.15 can be used to enable machine instructions that require specific source
and target registers to have their operands and results in those registers.

16.3 Explain how Build_AdjMtx() in Figure 16.12 and C oalesce_R eg isters() in
Figure 16.15 can be used to enable two-address instructions to have their target
register, and the operand that must be in that register, handled as required.

16.4 Modify the code in Figure 16.15 to enable one to ensure that instructions that require
a register pair for some operand or result are assigned a pair.

16.5 Modify the algorithm Com pute_Spill_Costs() in Figure 16.16 to produce spill
costs that take into account that if a spilled value is used several times in the same
basic block and is not killed before its last use in the block, then only a single load
of the value is needed in the block.

ADV 16.6 The graphs in Figure 16.17 can be generalized to produce, for each R, a minimal
graph (i.e., with the minimal number of nodes) that is R-colorable but not by the
degree < R rule. Explain how.

16.7 What are the space requirements for the (a) adjacency matrix and (b) adjacency lists
for a procedure with w webs?

530 Register Allocation

16.8 Modify the procedure Gen_Spill_Code() in Figure 16.24 to deal with the issues
mentioned at the end of Section 16.3.7, namely, (a) rematerialization, (b) deletion of
copy instructions, and (c) multiple uses of a spilled value within a basic block. Note
that, in Figure 16.41, we would have produced better code if, instead of spilling s7,
we had rematerialized it before the p rin t () call.

ADV 16.9 Develop the data-flow analysis alluded to in Section 16.3.12 that determines where
rematerialization is useful.

RSCH 16.10 Read one of the articles by Callahan and Koblenz [CalK91], Knobe and Zadeck
[KnoZ92], or Gupta, Soffa, and Steele [GupS89] and compare and contrast their
methods with the graph-coloring approach discussed here.

CHAPTER 17

Code Scheduling

In this chapter, we are concerned with methods for scheduling or reordering
instructions to improve performance, an optimization that is among the most
important for most programs on most machines. The approaches include basic-
block scheduling, branch scheduling, cross-block scheduling, software pipelining,

trace scheduling, and percolation scheduling. We also cover optimization for super
scalar implementations.

Before the advent of Rise machines, there were pipelined computers, but their
pipelining was generally hidden in a microengine that interpreted user-level instruc
tions. To maximize the speed of such machines, it was essential that the microcode
be written so as to overlap the execution of instructions whenever possible. Also,
user code could be written so that it took better or worse advantage of the pipelin
ing in the microengine. A classic paper by Rymarczyk [Ryma82] provides guidelines
for assembly-language programmers writing code for a pipelined processor, such as
an IBM System/370 implementation. Nowadays, more and more CISC implementa
tions, such as the Intel Pentium and Pentium Pro, make heavy use of pipelining also.
Optimization for Rises and for recent and future cisc implementations has a crucial
need for scheduling to maximize performance.

The development of algorithms for instruction scheduling grew out of research
in microcode compaction and job-shop scheduling, but there are enough differences
among the three areas that many of the techniques used in instruction scheduling are
comparatively new.

The combination of basic-block and branch scheduling is the simplest approach
discussed here. It operates on each basic block and on each branch separately, is the
simplest method to implement, and can produce significant improvements in code
speed, frequently 10% or more. Cross-block scheduling improves on basic-block
scheduling by considering a tree of blocks at once and may move instructions from
one block to another.

531

532 Code Scheduling

Software pipelining operates specifically on loop bodies and, since loops are
where most programs spend most of their execution time, can result in large im
provements in performance, often a factor of two or more.

Three transformations can significantly improve the effectiveness of basic-block
scheduling and, especially, software pipelining: loop unrolling, variable expansion,
and register renaming. Loop unrolling creates longer basic blocks and opportunities
for cross-block scheduling in loop bodies. Variable expansion expands variables in
an unrolled loop body to one per copy of the body; the values of these variables
can then be combined after execution of the loop is completed. Register renaming
is a transformation that may improve the effectiveness of either scheduling method
by changing the register usage in a block (or larger unit) of code, so as to remove
constraints that are caused by unnecessary immediate reuse of registers.

In a compiler that does software pipelining, it is crucial to making it as effec
tive as possible to have loop unrolling, variable expansion, and register renaming
available to be performed on the loop bodies that are being pipelined. If the com
piler does not do software pipelining, then loop unrolling and variable expansion
should be done earlier in the compilation process; we recommend doing loop un
rolling between dead-code elimination and code hoisting in box C4 of the diagram
in Figure 17.40.

Trace and percolation scheduling are two global (i.e., procedure-wide) ap
proaches to code scheduling that can have very large benefits for some types of
programs and architectures, typically high-degree superscalar and VLIW machines.

All the transformations discussed in this chapter, except trace and percolation
scheduling, are among the last components of an optimizer to be executed in com
piling a program. The latter two, however, are better structured as drivers of the
optimization process, since they may make quite broad alterations in the structure
of a procedure and they generally benefit from being able to invoke other optimiza
tions to modify the code as necessary to permit more effective scheduling.

17.1 Instruction Scheduling
Because many machines, including all Rise implementations and Intel architecture
implementations from the 80486 on, are pipelined and expose at least some aspects
of the pipelining to the user, it is essential that code for such machines be orga
nized in such a way as to take best advantage of the pipeline or pipelines that are
present in an architecture or implementation. For example, consider the lir code in
Figure 17.1(a). Suppose that each instruction takes one cycle, except that (1) for a
value that is being loaded from memory into a register an additional cycle must have
elapsed before the value is available and (2) a branch requires two cycles to reach its
destination, but the second cycle can be used by placing an instruction in the delay
slot after the branch. Then the sequence in Figure 17.1(a) executes correctly if the
hardware has interlocks, and it requires seven cycles to execute. There is a stall be
tween the instructions in the second and third slots because the value loaded by the
second instruction into r3 is not available immediately. Also, the branch includes a
dead cycle, since its delay slot holds a nop. If, on the other hand, we reorder the in-

Section 17.1 Instruction Scheduling 533

1 r2 <- [rl] (4) r2 [rl] (4)
2 r3 <- [rl+4](4) r3 <- [rl+4](4)
3 r4 <- r2 + r3 r5 r2 - 1
4 r5 <- r2 - 1 goto LI
5 goto LI r4 <- r2 + r3
6 nop

(a) (b)
FIG. 17.1 (a) A basic block of lir code, and (b) a better schedule for it, assuming that a goto has

a delay slot after it and that there is a one-cycle delay between initiating a load and the
loaded value’s becoming available in the target register.

structions as shown in Figure 17.1(b), the code still executes correctly, but it requires
only five cycles. Now the instruction in the third slot does not use the value loaded
by the preceding instruction, and the fifth instruction is executed while the branch is
being completed.

Some architectures, such as the first commercial version of mips, do not have
interlocks, so the code in Figure 17.1(a) would execute incorrectly—the value loaded
by instruction 2 would not appear in r3 until after instruction 3 had completed
fetching the value in r3. We ignore this possibility in our discussion of scheduling,
since all current commercial architectures have interlocks.

There are several issues involved in instruction scheduling, of which the most
basic are filling branch delay slots (covered in Section 17.1.1) and scheduling the
instructions within a basic block so as to minimize its execution time. We cover
the latter in five sections, namely, 17.1.2 on list scheduling, 17.1.3 on automating
generation of instruction schedulers, 17.1.4 on superscalar implementations, 17.1.5
on the interaction between scheduling and register allocation, and 17.1.6 on cross
block scheduling.

We leave consideration of software pipelining and other more aggressive sched
uling methods to the following sections.

17.1.1 Branch Scheduling

Branch scheduling refers to two things: (1) filling the delay slot(s) after a branch with
useful instructions, and (2) covering the delay between performing a compare and
being able to branch based on its result.

Branch architectures vary significantly. Several Rise architectures—such as
pa-risc, sparc, and mips—have delayed branches with one (or in rare cases, such
as mips-x, two) explicit delay slots. The delay slots may be filled with useful instruc
tions or with nops, but the latter waste execution time. Some architectures—such
as power and PowerPC—require some number of cycles to have passed between a
condition-determining instruction and a taken branch that uses that condition; if the
required time has not passed by the time the branch is executed, the processor stalls
at the branch instruction for the remainder of the delay. The advanced members
of the Intel 386 family, such as the Pentium and Pentium Pro, also require time to
elapse between determining a condition and branching on it.

534 Code Scheduling

Delay Slots and Filling Them with Useful Instructions

Some branch architectures provide a nullifying (or annulling) delayed branch that,
according to whether the branch is taken or not and the details of the definition
of the particular branch instruction, execute the delay-slot instruction or skip it. In
either case, the delay instruction takes a cycle, but the delay slot may be easier to fill
if the instruction placed in it can be nullified on one path or the other.

In many Rises, calls are delayed also, while in others and in ciscs they are
delayed only if the address cannot be computed far enough ahead of the branch
to allow prefetching from the target location.

For the sake of concreteness, we take as our basic model of branch delays
the approach found in sparc, which includes virtually all the basic issues that
characterize other architectures, sparc has conditional branches with a one-cycle
delay that may be nullified by setting a bit in the instruction. Nullification causes the
delay instruction to be executed only if a conditional branch other than a “ branch
always” is taken and not to be executed for a “ branch always.” Jumps (which are
unconditional) and calls have a one-cycle delay that cannot be nullified. There must
be at least one instruction that is not a floating-point compare between a floating
point compare and the floating-point branch instruction that uses that condition.
sparc-V9 includes branch instructions that compute the condition to be branched on,
as found in the m ips and pa-risc architectures, and conditional move instructions
that, in some cases, eliminate the need for (forward) branches.

It is most desirable to fill the delay slot of a branch with an instruction from the
basic block that the branch terminates. To do this, we would modify the basic-block
scheduling algorithm given below to first check whether any of the leaves of the
dependence DAG for the block can be placed in the delay slot of its final branch. The
conditions such an instruction must satisfy are as follows: (1) it must be permutable
with the branch—that is, it must neither determine the condition being branched
on nor change the value of a register used in computing the branch address1 or any
other resource used by the branch, such as a condition-code field; and (2) it must not
be a branch itself. If there is a choice of instructions from the preceding block to fill
the delay slot, we choose one that requires only a single cycle, rather than a delayed
load or other instruction that may stall the pipeline (depending on the instruction
branched to or fallen through to). If there are instructions from the current block
available, but none that take only a single cycle, we choose one that minimizes the
likelihood of delay.

Next, we assume that we are dealing with a conditional branch, so that there
are both a target block and a fall-through block to be concerned with. If there is no
instruction from the current block that can be placed in the branch’s delay slot, the
next step is to build the DAGs for both the target block and the fall-through block
and to attempt to find an instruction that occurs as a root in both or that can be
register-renamed (see Section 17.4.5) in one occurrence so that it can be moved into
the delay slot of the branch. If this is not achievable, the next choice is to find an

1. For sparc, this is not an issue, since the target address of a conditional branch is the sum of the
PC value and an immediate constant, but it may be an issue for some architectures.

Section 17.1 Instruction Scheduling 535

instruction that is a root in the DAG for the target block that can be moved into the
delay slot with the nullification bit in the branch set so that the delay instruction has
no effect if the fall-through path is taken.

Filling the delay slot of an unconditional branch or a jump is similar to the
process for a conditional branch. For a s p a r c “ branch always,” the delay instruc
tion is nullified if the annul bit is set. For a jump, the delay instruction is always
executed, and the target address is computed as the sum of two registers. Figure 17.2
summarizes the above rules.

Filling the delay slot of a call instruction is similar to filling the delay slot of
a branch, but more constrained. On the other hand, there is usually at least one
instruction that loads or copies an argument’s value into an argument register, and
such instructions are almost always permutable with the call instruction. If there is
no instruction from before a call that can be placed in its delay slot, there may be
instructions following the call in the same basic block that can be placed in the delay
slot. However, this requires caution, since the called procedure may not return to the
point of call, so an instruction from after the call must be one that does not alter the
effect if execution continues at an alternate return point. If there is no instruction
at all in the basic block containing the call that can be placed in its delay slot, the
next place to look is the procedure that is being called. Of course, whether its code
is available or not depends on the structure of the compilation process and when
branch scheduling is carried out. Assuming that the code is available, the simplest
choice is the first instruction of the called procedure, since it can be copied into the
delay slot and the call modified to target the following instruction. Other choices
require much more coordination, since there may be multiple calls to the same
procedure with conflicting demands for their delay slots.

Failing all other possibilities, we fill a branch’s delay slot with a nop.

Stall Cycles and Filling Them with Useful Instructions
Some machines—such as p o w e r , PowerPC, and the Intel 386 architecture imple
mentations—require some number of cycles to have passed between a condition
determining instruction and a taken branch that uses that condition; if the required
time has not passed by the time the branch is executed, the processor stalls at the
branch instruction for the remainder of the delay, s p a r c ’s floating-point compare
instructions and branches that depend on them also require that we schedule an
unrelated instruction between them.

This situation is best handled by the basic-block scheduler. We note in construct
ing the DAG for the block that it terminates with a conditional branch and that the
condition branched on is computed in the block. Then, in the scheduling process, we
place the compare as early in the schedule as we can, subject to satisfying all relevant
dependences.

17.1.2 List Scheduling

The general goal of basic-block scheduling is to construct a topological sort of the
DAG that (1) produces the same results and (2) minimizes the execution time of the
basic block.

5 3 6 Code Scheduling

FIG. 17.2 Flowchart for the process of filling branch delay slots.

Section 17.1 Instruction Scheduling 537

At the outset, note that basic-block scheduling is an NP-hard problem, even with
a very simple formulation of the problem, so we must seek an effective heuristic,
rather than exact, approach. The algorithm we give has a worst-case running time
of 0(w2), where n is the number of instructions in the basic block, but it is usually
linear in practice. The overall performance of list scheduling is usually dominated by
the time to construct the dependence DAG (see Section 9.2), which is also 0 (n 2) in
the worst case but is usually linear or slightly slower in practice.

Now, suppose that we have a dependence DAG for a basic block, as described
in Section 9.2. Before proceeding to a method for scheduling it, we must consider
the handling of calls. If the call instruction has a delay slot in the architecture under
consideration, then we need to be able to choose an instruction to fill it, preferably
from before the call (as discussed in Section 17.1.1). Calls typically have an implicit
set of registers (determined by software convention) that are required to be saved
and restored by the caller around a call. Also, lacking interprocedural data-flow
information and alias analysis (see Sections 19.2 and 19.4), we have no way of
knowing which storage locations might be affected by a called procedure, except
what the semantics of the language being compiled guarantees; e.g., we may know
only that the caller’s local variables are invisible to the callee (as in Fortran), so the
set of memory-reference instructions before a call that can be permuted with it may
be small. We could consider a call to be a basic-block boundary and build separate
DAGs for the instructions that precede the call and for those that follow it, but this
might reduce our freedom to rearrange instructions, and so result in slower code.
Alternatively, we can take the implicit set of caller-saved registers into account in the
definition of the C on flic t () function (see Section 9.2), serialize all other storage
accesses (or at least those that might be affected) with respect to a call, specially
mark the instructions that can be put into the delay slot of the call, and combine the
generated nop following the call into the node for the call. The best choices for an
instruction to fill the delay slot are those that move argument values into the registers
that are used for parameter passing. For example, suppose we have the l i r code in
Figure 17.3 and that registers r l through r7 are used to pass parameters. We use
asterisks to mark the nodes corresponding to instructions that can be moved into
the delay slot of the call. Then we can schedule this block’s instructions in the order

1, 3, 4, 2, 6

and we have succeeded in replacing the nop by a useful instruction.
Several instruction-level transformations can improve the latitude available to

instruction scheduling. For example, the two sequences in Figure 17.4 have the same
effect, but one of them may produce a better schedule than the other in a particular
situation. This can be accounted for in scheduling by a subroutine that recognizes
such situations and makes both alternatives available to try, but this strategy needs
to be carefully controlled, as it can lead to an exponential increase in the number of
possible schedules.

The list approach to scheduling begins by traversing the DAG from the leaves
toward the roots, labeling each node with the maximum possible delay from that
node to the end of the block. Let ExecTime(w) be the number of cycles required to
execute the instruction associated with node n. We compute the function

538 Code Scheduling

0
1 r8 *- [rl2+8] (4)
2 rl *- r8 + 1
3 r2 •«- 2
4 call rl4,r31
5 nop
6 r9 rl + 1

0
(a) (b)

FIG. 17.3 (a) A basic block including a call, and (b) its dependence DAG. Asterisks mark nodes
corresponding to instructions that can be moved into the delay slot of the call.

Id [r2+4],r3 add 4,r2,r2
add 4,r2,r2 Id [r2],r3
(a) (b)

FIG. 17.4 Two equivalent pairs of instructions. Either might provide more latitude in scheduling
than the other in a particular situation.

Delay: Node —> in teger

defined by (where DagSuccO', DAG) is the set of successors of i in the DAG)

| ExecTime(w) if n is a leaf
y | max Late_D elay(«,ra) otherwise

meDagSucc(«, DAG)

where Late_D elay(«,m) = Latency(Llnst(w) ,2 ,L In st(ra) ,1) + Delay(ra). To
do so, we proceed as shown in Figure 17.5, where

PostOrd: array [1 • •w] of Node

is a postorder listing of the n nodes in the dependence DAG, and LInst (/) is the l i r

instruction represented by node i in the DAG.
Next, we traverse the DAG from the roots toward the leaves, selecting nodes

to schedule and keeping track of the current time (CurTime), which begins with the
value zero, and the earliest time each node (ETime [«]) should be scheduled to avoid
a stall. Sched is the sequence of nodes that have already been scheduled; Cands is
the set of candidates at each point, i.e., the nodes that have not yet been scheduled,
but all of whose predecessors have been. Two subsets of Cands are used: MCands, the
set of candidates with the maximum delay time to the end of the basic block; and
ECands, the set of nodes in MCands whose earliest start times are less than or equal
to the current time. The i c a n code is shown in Figure 17.6. The following functions
are used in the algorithm:

Section 17.1 Instruction Scheduling 539

Leaf: Node — > boolean
Delay, ExecTime: Node —> integer
LInst: Node —> LIRInst
DagSucc: (Node x Dag) — > set of Node
Heuristics: (set of Node) —> Node
procedure Compute_Delay(nodes,PostOrd)

nodes: in integer
PostOrd: in array [1**nodes] of Node

begin
i, d, Id: integer
n: Node
for i := 1 to nodes do

if Leaf(PostOrd[i]) then
Delay(PostOrd[i]) := ExecTime(PostOrd[i])

else
d := 0
for each n e DagSucc(PostOrd[i],Dag) do

Id := Latency(LInst(PostOrd[i]),2,LInst(n),1) + Delay(n)
d := max (ld,d) od

Delay(PostOrd[i]) := d fi od
end I I Compute.Delay

FIG. 17.5 Computing the Delay () function.

1. Post .Order (D) returns an array whose elements are a topological sort of the nodes
of the DAG D (the index of the first element of the array is 1 and the index of the
last is ID .Nodes I).

2. H e u r is t ic s () applies our chosen heuristics to the current set of candidates; note
that it may require information other than the current candidates to make choices.

3. In st O') returns the instruction represented by node i in the dependence DAG.

4. Latency U\ is the number of latency cycles incurred by beginning execu
tion of /25s cycle while executing cycle n\ of 0 , as defined in Section 9.2.

5. DagSucc 0 , D) , which is described above.
As an example of the scheduling algorithm, consider the dependence DAG in

Figure 17.7 and suppose that ExecTime (6) = 2 and ExecTime(«) = 1 for all other
nodes n and that Latency (I \ , 2 , 1 2 ,1) = 1 for all pairs of instructions 11 and I2 . The
Delay () function is

Node Delay
1 5
2 4
3 4
4 3
5 1
6 2

540 Code Scheduling

DAG = record {Nodes, Roots: set of Node,
Edges: set of (Node x Node),
Label: (Node x Node) —> integer}

procedure Schedule(nodes,Dag,Roots,DagSucc,DagPred,ExecTime)
nodes: in integer
Dag: in DAG
Roots: in set of Node
DagSucc, DagPred: in (Node x DAG) — > set of Node
ExecTime: in Node —> integer

begin
i, j, m, n, MaxDelay, CurTime := 0: integer
Cands := Roots, ECands, MCands: set of Node
ETime: array [1-*nodes] of integer
Delay: Node —> integer
Sched := []: sequence of Node
Delay := Compute_Delay(nodes,Post_Order(Dag))
for i := 1 to nodes do

ETime[i] :* 0
od

FIG. 17.6 Instruction scheduling algorithm.

and the steps in the scheduling process are as follows:

1. Initially, CurTime = 0, Cands = { 1 , 3 } , Sched = [] , and ETime M = 0 for all nodes
n. The value o f MaxDelay is 4, and MCands = ECands = {3> .

2. N ode 3 is selected; Sched = [3], Cands = { 1 } , CurTime = 1, and ETime [4] = 1.

3. Since I Cands I = 1, the single node in it, 1, is selected next. So, Sched = [3 ,1] ,
Cands = { 2 } , CurTime = 2, ETime [2] = 1, and ETime [4] = 4.

4. Since I Cands I = 1 again, node 2 is selected, so Sched = [3 ,1 ,2] , Cands = { 4 } ,
CurTime = 3, and ETime [4] = 4.

5. Again I Cands I = 1 , so node 4 is selected; as a result, Sched = [3 ,1 ,2 ,4] ,
Cands = { 5 , 6 } , CurTime = 4, ETime [5] = 6, and ETime [6] = 4.

6. Now, MaxDelay = 2 and MCands = { 6 } , so node 6 is selected; as a result,
Sched = [3 ,1 ,2 ,4 ,6] , Cands = { 5 } , CurTime = 5, and ETime [5] = 6 .

7. Since there is only one candidate left (node 5), it is selected, and the algorithm
terminates.

The final schedule is

Sched = [3 ,1 ,2 ,4 ,6 ,5]

and the schedule requires 6 cycles, which happens to be the minimum possible value.
A version of this algorithm has been shown to produce a schedule that is within

a factor of 2 of optimal for a machine with one or more identical pipelines and

Section 17.1 Instruction Scheduling 541

while Cands * 0 do
MaxDelay := -°°
for each m e Cands do

MaxDelay := max(MaxDelay,Delay(m))
od
MCands := {m e Cands where Delay(m) = MaxDelay}
ECands := {m e MCands where ETime[m] ̂CurTime}
if |MCandsI = 1 then

n := ♦MCands
elif |ECandsI = 1 then

n := ♦ECands
elif IECands| > 1 then

n := Heuristics(ECands)
else

n := Heuristics(MCands)
fi
Sched ®= [n]
Cands -= {n}
CurTime += ExecTime(n)
for each i e DagSucc(n,Dag) do

if !3j e integer (Schedlj=i) &
Vm e DagPred(i,Dag) (3j e integer (Schedlj=m)) then
Cands u= {i}

f i
ETime[i] := max(ETime[n],

CurTime+Latency(LInst(n),2,LInst(i),1))
od

od
return Sched

end || Schedule
FIG. 17.6 (continued)

FIG. 17.7 An example dependence DAG.

542 Code Scheduling

within a factor of p + 1 for a machine that has p pipelines with different functions.
In practice, it almost always does much better than this upper bound.

A variety of heuristics can be used to make practical choices when I MCands I > 1
or lECands I > 1. These include the following:

1. Select from MCands the node n with the least value of ETime M .
2. If the architecture has p > 1 pipelines and there are candidates for each pipeline, bias

selection toward candidates for pipelines that have not had instructions scheduled
recently.

3. Bias selection toward candidates that result in the maximal number of new candi
dates being added to Cands.

4. Bias selection toward instructions that free a register or that avoid using an addi
tional register, thus reducing register pressure.

5. Select the candidate that came first in the original ordering of the basic block.

Smotherman et al. survey the types of DAGs that are used in instruction schedul
ing and present a long list of heuristics, some subset of which is used in each of six
distinct implemented schedulers they describe (see Section 17.8 for further reading).
Gibbons and Muchnick construct the dependence DAG from the leaves upward to
ward the roots, i.e., beginning with the last instruction in a basic block and working
backward, so as to handle the carry-borrow bits in p a - r i s c most effectively. The
carry-borrow bits are defined frequently but are used relatively rarely, so building
the DAG from the bottom up allows uses of them to be noted first and attention to
be directed to definitions of them only when there is an upwards exposed use.

Note that some work on instruction scheduling uses a different notion of the
dependence DAG. In particular, Hennessy and Gross use a so-called machine-level
DAG that is an adaptation of the DAG intermediate-code form discussed in Sec
tion 4.9.3. The adaptation involves using machine registers and memory locations
as the leaf nodes and labels, and machine instructions as the interior nodes. This
DAG has fewer explicit constraints represented in it, as the example in Figure 17.8
shows. For the l i r code in (a), Hennessy and Gross would construct the machine-
level DAG in (b); our dependence DAG is shown in (c). Assuming that neither r l nor
r4 is live at the end of the basic block, the machine-level DAG admits two correct
schedules, namely,

1,2, 3 ,4

and

3 ,4 ,1 ,2

while the dependence DAG allows only the first of them. At the same time, the
machine-level DAG allows incorrect schedules, such as

1 ,3 , 2 ,4

Section 17.1 Instruction Scheduling 543

1
2
3
4

rl <- [rl2+0](4)
r4 <- rl + 1
r4 <- [rl2+4](4)
rl <- r4 - 1

(a)

©
1

©
1
©

1 T
© © ©

1

(b)
©
(c)

FIG. 17.8 (a) A lir basic block, (b) Hennessy and Gross’s machine-level DAG, and (c) our
dependence DAG for it.

unless rules are added to the scheduling process, as Hennessy and Gross do, to
restrict schedules to what they call “ safe positions.” We see no particular advantage
in this approach over the DAG definition used above, especially as it raises the
computational complexity of instruction scheduling to 0 (« 4).

17.1.3 Automating Instruction-Scheduler Generation

Another issue in instruction scheduling is that the production of schedulers from
machine descriptions can and has been automated. This is important because even
a compiler for a single architecture may (and almost always does) need to deal with
different implementations of the architecture. The implementations frequently differ
from each other enough that a very good schedule for one can be no better than
mediocre for another.

Thus, it is important to be able to generate instruction schedulers from imple
mentation descriptions, taking as much of an implementation’s scheduling-related
uniqueness into account as possible. Perhaps the best known and certainly the most
widely distributed of such scheduler generators is the one found in gcc, the GNU C
compiler. It provides the compiler writer with the facilities necessary to write ma
chine descriptions that may have their own writer-defined properties and a great
degree of flexibility in how those properties interact. Provided with a very detailed
description of an implementation’s pipeline structure, structural hazards, delays,
low-level parallelization rules, and so on, it produces a remarkably effective sched
uler.

17.1.4 Scheduling for Superscalar Implementations
Scheduling for a superscalar implementation needs to model the functional organi
zation of the CPU as accurately as possible, for example, by biasing the heuristics

5 4 4 Code Scheduling

that are used to take into account that a particular implementation has two integer
pipelines, two floating-point pipelines, and a branch unit (as in some implementa
tions of power), or that a pair of instructions can be initiated simultaneously only if
it is doubleword-aligned (as required by the Intel i860). The latter requirement can
be handled easily by inserting nops to make each basic block begin on a doubleword
boundary or, with more work, by tracking the boundary each instruction pair would
be aligned on and correcting it to doubleword alignment if necessary.

For superscalar systems, scheduling also needs to be biased to organize instruc
tions into groups that can be issued simultaneously. This can be done by a grouping
heuristic, e.g., a greedy algorithm that fills as many of the available slots as possi
ble with ready instructions, as follows. Suppose that the processor in question has
n execution units P i , . . . , Pn that may operate in parallel and that each unit P/ may
execute instructions in class P C lassO). We model the functional units by n copies
of the data structures in the list scheduling algorithm in Figure 17.6 and determine
the class of a particular instruction inst by IC la ss(m s£), i.e., instruction inst can be
executed by execution unit i if and only if PClassO ') = IC lass(m s£). Then the list
scheduling algorithm can be modified to produce a straightforward scheduler for a
superscalar system.

Flowever, remember that greedy scheduling may not be optimal, as the example
in Figure 17.9 shows. We assume that the processor has two pipelines, one of which
can execute both integer and floating-point operations and the other of which can do
integer and memory operations; each operation has a latency of one cycle. Suppose
that the only dependence between the instructions is that the FltOp must precede the
IntLd. Then the greedy schedule in Figure 17.9(a) has a latency of two cycles, while
the equally greedy one in Figure 17.9(b) requires three cycles.

Also, one must be careful not to use too much lookahead in such heuristics,
since all nontrivial instances of instruction scheduling are at least NP-hard. Such
scheduling may be improved by scheduling across control-flow constructs, i.e., by
using extended basic blocks and/or reverse extended basic blocks in scheduling, as
discussed in Section 17.1.6, or more powerful global techniques. In an extended
basic block, for example, this might involve moving an instruction from a basic
block to both of its successor blocks to improve instruction grouping.

IntFlt IntMem IntFlt IntMem

FltOp FltLd FltOp IntOp
IntOp IntLd IntLd

FltLd
(a) (b)

FIG. 17.9 Two greedy schedules for a superscalar processor, one of which (a) is optimal and the
other of which (b) is not.

Section 17.1 Instruction Scheduling 545

1 rl <- [rl2+0](4) rl <- [rl2+0] (4)
2 r2 <- [rl2+4] (4) r2 <- [rl2+4] (4)
3 rl rl + r2 r3 <- rl + r2
4 [rl2,0] (4) <- rl [rl2,0](4) *- r3
5 rl <- [rl2+8](4) r4 <- 00+CN

6 r2 <- [rl2+12](4) r5 <- [rl2+12](4)
7 r2 <- rl + r2 r6 <- r4 + r5

(a) (b)
FIG. 17.10 (a) A basic block of lir code with a register assignment that constrains scheduling

unnecessarily, and (b) a better register assignment for it.

17.1.5 Other Issues in Basic-Block Scheduling
The instruction scheduling approach discussed above is designed, among other
things, to cover the delay between the initiation of fetching from a data cache and
the receipt of the loaded value in a register. It does not take into account the possi
bility that the datum being loaded might not be in the cache and so might need to
be fetched from main memory or from a second-level cache, incurring a significantly
longer and unpredictable stall. Eggers and her colleagues ([KerE93] and [LoEg95])
present an approach called balanced scheduling that is designed to account for such
a possibility. Their algorithm spreads the latency of a series of loads occurring in a
basic block over the other instructions that are available to schedule between them.
This is becoming increasingly important as the acceleration of processor speed con
tinues to outrun the acceleration of memory speeds.

The interaction between register allocation and instruction scheduling can
present serious problems. Consider the example in Figure 17.10(a), with the de
pendence DAG shown in Figure 17.11(a). Because registers r l and r2 are reused
immediately, we cannot schedule any of instructions 5 through 7 before any of
1 through 4. If we change the register allocation to use different registers in in
structions 5 through 7, as shown in Figure 17.10(b), the dependence DAG becomes
the one shown in Figure 17.11(b), and the latitude available for scheduling is sig
nificantly increased. In particular, we can schedule the loads so that no stalls are
incurred, as shown in Figure 17.12, in comparison to the original register assign
ment, which allowed no reordering at all.

To achieve this, we allocate quantities to symbolic registers during code gen
eration and then perform register allocation late in the compilation process. We
do scheduling immediately before register allocation (i.e., with symbolic registers)
and repeat it immediately after, if any spill code has been generated. This is the ap
proach taken in the IBM XL compilers for power and PowerPC (see Section 21.2),
the Hewlett-Packard compilers for pa-r isc , and the Sun compilers for sparc (see
Section 21.1); it has been shown in practice to yield better schedules and better reg
ister allocations than a single scheduling pass that is performed either before or after
register allocation.

546 Code Scheduling

FIG. 17.11 Dependence DAGs for the basic blocks in Figure 17.10.

r l < - [r l 2 + 0] (4)
r 2 [r l 2 + 4] (4)
r 4 < - [r l 2 + 8] (4)
r 5 < - [r l 2 + 1 2] (4)
r 3 < - r l + r 2
[r l 2 + 0] (4) < - r 3
r 6 < - r 4 + r 5

FIG. 17.12 A scheduling of the basic block in Figure 17.10(b) that covers all the load delays.

17.1.6 Scheduling Across Basic-Block Boundaries
While some programs have very large basic blocks that present many opportunities
for scheduling to improve code quality, it is frequently the case that blocks are too
short for scheduling to make any, or very much, difference. Thus, it is often desirable
to make basic blocks longer, as loop unrolling does (Section 17.4.3), or to extend
instruction scheduling across basic-block boundaries. One method for doing this in
loops is software pipelining, which we discuss in Section 17.4.

Another approach is to schedule basic blocks, as much as possible, before their
successors and to take into account in the initial state of scheduling a successor block
any latency that is left over at the conclusion of scheduling its predecessors.

Another method is to transform the code so as to enable better coverage of
branch delays. In particular, Golumbic and Rainish [GolR90] discuss three simple
transformations that help to absorb the three-cycle delay between a compare (cmp)
and a taken conditional branch (be) and the four-cycle delay for an untaken con
ditional branch in a cmp-bc-b sequence in power. For example, the following deals

Section 17.2 Speculative Loads and Boosting 547

LI: in stl
inst2

cmp crO,cond
in st«-l
instw
be crO,Ll

LI: in stl
L3: inst2

cmp crO, ! cond
in st«-l
instw
be crO,L2
in stl
b L3

L2: . . .
(a) (b)

FIG. 17.13 (a) power loop with a one-cycle uncovered cmp-bc delay, and (b) transformed code that
covers it.

with loop-closing branches. Suppose that we have a loop with a one-cycle uncovered
delay, as shown in Figure 17.13(a). We can cover the delay by changing the cmp to
test the negation of the original condition (indicated by ! cond) and the be to exit
the loop, replicating the first instruction of the loop after the be, and then inserting
an unconditional branch to the second instruction of the loop after the replicated
instruction, resulting in the code in Figure 17.13(b).2 The obvious generalization
works for an uncovered delay of two or three cycles.

References to several approaches to scheduling across basic-block boundaries
are given in Section 17.8.

17.2 Speculative Loads and Boosting
Speculative loading is a mechanism that increases the freedom available to a sched
uler and that provides a way to hide some of the latency inherent in satisfying a
load from memory rather than from a cache. A speculative load is a load instruction
that does not incur any memory exceptions until one uses the quantity loaded. Such
a load may be issued before it is known whether the address it generates is valid
or not—if it is later found to be invalid, one simply avoids using the loaded value.
Such loads are found in the Multiflow architecture, sparc-V9, and PowerPC, among
others.

For example, loading the next element of a linked list can be initiated with a
speculative load before testing whether the end of the list has been reached—if the
end has been reached, the instruction that uses the data loaded is not executed, so
no problem occurs. A mir example of this is shown in Figure 17.14. Part (a) is a
typical sample of a function to search a linked list for a particular value. In part (b),
the assignment p i ^ s p p *.n ex t in the line labeled L2 moves p i one record ahead

2. This is an instance of the window-scheduling approach to software pipelining discussed below
in Section 17.4.1.

548 Code Scheduling

search:
receive ptr (val)
receive ptr (val)
p <- ptr

L2: if p*.val = v goto LI
p <- p*.next
if p != NIL goto L2

return 0
LI: return 1

(a)

search:
receive ptr (val)
receive v (val)
p <- ptr

L2: pi <-sp p*.next
if p*.val = v goto LI

if P = NIL goto L3
p * - pi
goto L2

LI: return 1
L3: return 0

(b)
FIG. 17.14 (a) A mir routine that searches a list, and (b) the same routine with the fetching of the

next element boosted to occur before testing whether the current element is the end of
the list.

of the one we are checking (pointed to by p). As long as the assignment to p i is a
speculative load (marked by the sp after the arrow), no error occurs.

Thus, a speculative load may be moved ahead of a test that determines its
validity, i.e., from one basic block to a previous one or from one iteration of a
loop to an earlier one. Such code motion is known as boosting, and techniques for
accomplishing it are described by Rogers and Li (see Section 17.8 for references).

17.3 Speculative Scheduling
Speculative scheduling is a technique that generalizes boosting of speculative loads
to moving other types of instructions toward the entry of a procedure, across one or
more branches and, particularly, out of loops. It takes two forms: safe speculative
scheduling, in which the moved instruction can do no harm when it is executed in
the location it is moved to (except, perhaps, slowing down the computation); and
unsafe speculative scheduling, in which the moved instructions must be protected by
a conditional that determines whether they are legal in their new position.

Techniques for speculative scheduling are too new and, as yet, unproven in their
impact on performance for us to do more than mention the subject and provide
references (see Section 17.8). In particular, the work of Ebcioglu et al. addresses
speculative scheduling and its mirror operation, unspeculation. Papers by Golumbic
and Rainish and by Bernstein and Rodeh discuss earlier work in this area.

17.4 Software Pipelining
Software pipelining is an optimization that can improve the loop-executing perfor
mance of any system that allows instruction-level parallelism, including VLIW and
superscalar systems, but also one-scalar implementations that allow, e.g., integer and
floating-point instructions to be executing at the same time but not to be initiated

Section 17.4 Software Pipelining 549

at the same time. It works by allowing parts of several iterations of a loop to be in
process at the same time, so as to take advantage of the parallelism available in the
loop body.

For example, suppose that the instructions in the loop in Figure 17.15 have the
latencies shown; then each iteration requires 12 cycles, as shown by the dashed line
in the pipeline diagram in Figure 17.16, on a hypothetical one-scalar implementation
that has one integer unit and one floating-point unit (with its execution cycles
indicated by the darker shading), with floating-point loads and stores carried out
by the integer unit. Note that the six-cycle issue latency between the f adds and the
s t f could be reduced if we could overlap the preceding iteration’s store with the add
for the current iteration. Copying the load and add from the first iteration and the
load from the second iteration out ahead of the loop allows us to begin the loop with
the store for one iteration, followed by the add for the next iteration, and then by
the load for the second following iteration. Doing so adds three instructions before

Issue Result
latency latency

ldf [rl] ,f0 1 1
fadds fO,f 1 ,f2 1 7
stf f2, [rl] 6 3
sub rl,4,rl 1 1
cmp rl ,0 1 1
bg L 1 2
nop 1 1

FIG. 17.15 A simple sparc loop with assumed issue and result latencies.

FIG. 17.16 Pipeline diagram for the loop body in Figure 17.15.

550 C ode Scheduling

Issue Result
latency latency

ldf [rl],fO
f adds fO,f1,f2
ldf [rl-4] ,f0

L: stf f2, [rl] 1 3
fadds fO,f1,f2 1 7
ldf [rl-8],f0 1 1
cmp rl,8 1 1
bg L 1 2
sub rl,4,rl 1 1
stf f2, [rl]
sub rl,4,rl
fadds fO,f1,f2
stf f2, [rl]

FIG. 17.17 The result of software pipelining the loop in Figure 17.15, with issue and result latencies.

FIG. 17.18 Pipeline diagram for the loop body in Figure 17.17.

the loop and requires us to add five instructions after the loop to complete the last
two iterations, resulting in the code shown in Figure 17.17. It reduces the cycle count
for the loop body to seven, reducing execution time per iteration by 5 /1 2 or about
4 2 % , as shown by the dashed line in Figure 17.18. As long as the loop is always
iterated at least three times, the two form s have the same effect.

A lso, seven cycles is the minimum execution time for the loop, unless we unroll
it, since the f add s requires seven cycles. If we were to unroll it, we could overlap
two or more f add ss and increase the performance further. Thus, softw are pipelining
and loop unrolling are usually complementary. On the other hand, we would need to

Section 17.4 Software Pipelining 551

use additional registers, because, e.g., two f addss executing at the same time would
have to use different source and target registers.

Since software pipelining moves a fixed number of iterations of a loop out of
the loop body, we must either know in advance that the loop is repeated at least
that many times, or we must generate code that tests this, if possible, at run time
and that chooses to execute either a software-pipelined version of the loop or one
that is not. Of course, for some loops it is not possible to determine the number
of iterations they take without executing them, and software pipelining cannot be
applied to such loops.

Another consideration is the extent to which we can disambiguate memory
references, so as to minimize the constraints on pipelining, as discussed in Chapter 9.
The better we can do so, the more freedom we have in pipelining and, hence,
generally the better the schedule we can produce.

In the next two subsections, we discuss two approaches to software pipelining,
window scheduling and unroll-and-compact pipelining. The first is simpler to imple
ment, while the second will generally result in better schedules.

17.4.1 Window Scheduling
An approach to software pipelining called window scheduling derives its name from
its conceptual model of the pipelining process—it makes two connected copies of the
dependence DAG for the body of a loop, which must be a single basic block, and it
runs a window down the copies. The window at each point contains one complete
copy of the loop body; the instructions above and below the window (after the initial
state) become the pipelined loop’s prologue and epilogue, respectively. For example,
the dependence DAG in Figure 17.19(a) becomes the double or window-scheduling
DAG in Figure 17.19(b) with a possible window indicated by the dashed lines. As the
window is moved down the copies, we try the various schedules that result, searching

(a) (b)
FIG. 17.19 (a) Dependence DAG for a sample loop body, and (b) double version of it used in

window scheduling, with dashed lines showing a possible window.

552 Code Scheduling

DAG = record {Nodes, Roots: set of integer,
Edges: set of (integer x integer),
Label: set of (integer x integer) — > integer}

procedure Window.Schedule(n,Inst,Limit,MinStall)
n, Limit, MinStall: in integer
Inst: inout array [l-*n] of LIRInst

begin
Dag, Window, Prol, Epi: DAG
Stall, N: integer
Sched, BestSched, ProS, EpiS: sequence of integer
Dag := Build_DAG(n,Inst)
if Schedulable(Dag) then

Dag := Double_DAG(Dag)
Window := Init_Window(Dag)
BestSched := SP_Schedule(I Window.Nodes I,Window,Window.Roots,

MinStall,ExecTime)
Stall := MinStall
repeat

if Move_Window(Dag,Window) then
Sched := SP_Schedule(I Window.Nodes I,Window,Window.

Roots,MinStall,ExecTime)
if Stall < MinStall then

BestSched :* Sched
MinStall := min(MinStall,Stall)

fi
fi

until Stall = 0 V Stall £ Limit * MinStall
Prol :* Get_Prologue(Dag,Window)
Epi:= Get.Epilogue(Dag,Window)
ProS :* SP.Schedule(IProl.Nodes I,Prol,Prol.Roots,MinStall,ExectTme)
EpiS :* SP.Schedule(IEpi.Nodes I,Epi,Epi.Roots,MinStall,ExectTme)
N := Loop_Ct_Inst(n,Inst)
Decr_Loop_Ct(Inst[N])

fi
end I I Window.Schedule

F IG . 1 7 .2 0 Algorithm for w indow scheduling.

for on es th at decrease the overall latency o f the lo o p body. We d o w indow scheduling
at the sam e tim e as other in struction schedu ling an d use the basic-b lock scheduler to
schedule the lo o p body.

Figure 1 7 .2 0 is an outline o f the i c a n algorith m for w in dow scheduling. Its input
con sists o f I n s t [1 • * n] , the sequence o f in structions th at m ake up the basic block
th at is the lo o p body to be p ipelined. It first con structs the dependence D A G for the
basic b lock (using Build_D A G () , w hich is given in Figure 9 .6) and stores it in Dag
an d uses S c h e d u la b le () to determ ine w hether it can be w indow scheduled, i.e.,
w hether it h as a lo o p in dex th at is increm ented exactly once in the loop body and the
loop is executed at least tw ice. If so , the algorith m uses the fo llow ing in form ation :

Section 17.4 Software Pipelining 553

1. Dag records the window-scheduling or double DAG (constructed by Double_DAG())
that is used in the window-scheduling process.

2. Window indicates the current placement of the window.

3. Sched records the (basic-block) schedule for the DAG currently in the window.

4. S t a l l is the number of stall cycles associated with Sched.

5. M inStall records the minimum number of stall cycles in any schedule tried so far.

6. BestSched is the last DAG generated that has the minimal number of stall cycles.

Limit is chosen by the compiler writer to guide the window scheduler in deciding
how far from the best schedule achieved so far it should wander before giving up
the process of attempting to find a better schedule. Routines used in the window
scheduling process are as follows:

1. SP_Schedule() is constructed from the basic-block scheduler given in Figure 17.6.
Specifically, SP.Schedule (N , D ag , R , stall, ET) computes the functions DagSucc ()
and DagPred(), calls Schedule(N ,D <zg,R,D agSucc,D agPred,ET), sets stall to
the number of stall cycles in the schedule Sched produced, and returns Sched as its
value.

2. Move_Window() selects an instruction in the double DAG and moves the window
down over it (assuming that there is space remaining to move it) and returns tru e if
it moved the window and f a l s e otherwise.

3. Get .Prologue () and G et.Epilogue () extract as DAGs the portions of the double
DAG above and below the window, respectively.

4. Loop .C t.In st () determines which instruction tests the loop counter.

5. Decr.Loop.Ct () modifies that instruction to do one less iteration. This is appro
priate because the algorithm, as described so far, moves only a single iteration out
of the loop, so the loop itself does parts of two successive iterations and, overall,
does one less iteration than the original loop body did. Thus we need code to do one
iteration outside the loop, as extracted by Get .Prologue () and Get .E p ilogue ().

6. ExecTime(w) is the number of cycles required to execute the instruction associated
with node n in the DAG.

The window-scheduling algorithm can easily be generalized to allow more
than two iterations to be in process inside the pipelined loop by repeatedly ap
plying it to the new loop body that results from it. For example, starting with
the loop in Figure 17.15, the window-scheduling DAG for the loop body is given
in Figure 17.21(a). Moving the window below the ld f results in the code in Fig
ure 17.22(a) and the window-scheduling DAG in Figure 17.21(b). Moving the
window down over the fadds results, in turn, in the code in Figure 17.22(b) and
the window-scheduling DAG in Figure 17.21(c). Finally, moving the window down
over the ld f a second time results in the code in Figure 17.17.

Note that window scheduling can easily be combined with loop unrolling, which
is useful because it almost always increases the freedom available to the scheduler:

5 5 4 C ode Scheduling

ldf

f adds

stf

sub

ldf

f adds

stf

sub

(a) (b) (c)

FIG. 17.21 Double DAGs for successive versions of the loop in Figures 17.15 and 17.22 during the
window-scheduling process.

ldf [rl],f0
ldf [rl],f0 f adds fO,f1,f2
f adds fO,f1,f2 L: stf f2, [rl]
stf f2, [rl] ldf [rl-4],f0
ldf [rl-4],f0 f adds fO,f1,f2
sub rl,4,rl sub rl,4,rl
cmp rl ,4 cmp rl ,4
*>g L *>g L
nop nop
f adds fO,f1,f2 stf f2,[rl-4]
stf f2, [rl-4] sub rl,4,rl
sub rl,4,rl

(a) (b)

FIG. 17.22 Intermediate versions of the loop in Figure 17.15.

Section 17.4 Software Pipelining 555

A L: Id [i3],f0
B fmuls f31,f0,f1
C Id [iO],f2
D fadds f2,f1,f2
E add i3,i5,i3
F deccc il
G St f2, [iO]
H add i0,i5,i0
I bpos L
J nop

FIG. 17.23 Another example loop for software pipelining.

A

H F

I

FIG. 17.24 Dependence DAG for the body of the loop in Figure 17.23.

instead of using Double_DAG() to make one copy of the loop body, we replace it
with a routine that, for an unrolling factor of « , makes n — 1 additional copies.
We then simply do window scheduling over the resulting n copies. This, combined
with variable expansion and register renaming, can frequently produce higher per
formance because it makes more instructions available to schedule.

17.4.2 Unroll-and-Compact Software Pipelining
An alternate approach to software pipelining unrolls copies of the loop body and
searches for a repeating pattern in the instructions that are being initiated at each
step. If it finds such a pattern, it constructs the pipelined loop body from the pat
tern and the prologue and epilogue from the instructions preceding and following
the pattern, respectively. For example, suppose we have the sparc code shown in
Figure 17.23, whose loop body has the dependence DAG shown in Figure 17.24
(assuming a three-cycle latency for the f adds and fmuls instructions and ignoring
the nop in the delay slot of the branch). Then Figure 17.25 shows a possible uncon
strained greedy schedule of the iterations of the loop, assuming that the instructions

556 Code Scheduling

Time
Iteration step

1 2 3 4

1 A C F
2 BE
3
4 Prologue
5 D A C F
6 BE
7

8 G
9 H D A C F Loop body

10 I BE

11
12 G
13 H D A C F
14 I BE
15 Epilogue
16 G
17 H D
18 I

19
20 G
21 H
22 I

FIG. 17.25 A possible unconstrained schedule of the iterations of the loop in Figure 17.23. The
boxed parts represent the prologue, body, and epilogue of the software-pipelined loop.

shown for each time step can be executed in parallel. The boxed parts of the figure
show the prologue, body, and epilogue of the software pipelined loop. We call the
resulting schedule “ unconstrained” because it does not take into account limitations
imposed by the number of available registers or the instruction-level parallelism of
the processor.

Turning the resulting code into the correct prologue, loop body, and epilogue
requires dealing with resource constraints and adjusting some instructions to be
ing executed in the new sequence. Figure 17.26(a) shows the instruction sequence
that results from simply enumerating the unrolled instructions in order, while Fig
ure 17.26(b) shows the result of fixing up the instructions to take into account the
order in which they are executed and their need for an additional register. Note that,

Section 17.4 Software Pipelining 557

Id [13],f0 Id [13],f0
Id [iO],f2 Id [10],f2
deccc il deccc il
fmuls f31,fO,f1 fmuls f31,f0,f1
add i3,i5,i3 add i3,i5,i3
fadds f2,f1,f2 fadds f2,f1,f2
Id [13],f0 Id [13],f0
Id [10],f2 Id [10+15],f3
deccc 11 deccc il
fmuls f31,f0,f1 fmuls f31,f0,f1
add i3,i5,i3 add i3,i5,i3
St f2, [iO] L: st f2,[10]
add i0,i5,i0 add iO,i5,iO
fadds f2,f1,f2 fadds f3,f1,f2
Id [13],f0 Id [13],f0
Id [10], f 2 Id [10+15],f3
deccc il deccc il
fmuls f31,f0,f1 fmuls f31,f0,f1
add i3,i5,i3
bpos L bpos L
nop add i3,i5,i3
St f2, [10] st f2,[10]
add iO,i5,iO add i0,i5,i0
fadds f2,f1,f2 fadds f3,f1,f2
bpos L
St f2,[10] st f2,[10]
add iO,i5,iO add i0,i5,i0
bpos L

(a) (b)
FIG. 17.26 (a) Resulting instruction sequence for the pipelined loop, and (b) the result of doing

register renaming (Section 17.4.5) and fixing the addresses in load instructions so that
they will execute correctly.

in addition to deleting the two branches from the epilogue, we have modified all
but the first occurrences of Id [iO] , f 2 and fad d s f 2 , f 1 , f 2 to Id [i0 + i5] , f 3 and
fad d s f 3 , f l , f 2 , respectively, so as to use the correct address and to avoid reusing
register f 2 before its value is stored. The former modification is necessary because
the second Id has been moved above the add that increments register iO. Dealing
with parallelism constraints may motivate rearranging the instructions to take bet
ter advantage of the available execution units. For example, if the processor allowed
one memory or integer operation, one floating-point addition and one multiplica
tion, and one branch to be in process at once, then a valid alternate schedule would
put the second Id in the loop below the f muls, but this would require ten cycles per
iteration rather than the nine that the current arrangement uses.

Producing such pipelinings is conceptually simple. The ican algorithm to find a
repeating pattern in the unrolled body (which becomes the body of the pipelined

558 C ode Scheduling

Sched: sequence of Node

procedure Pipeline_Schedule(i,nblocks,ninsts,LBlock,SizeLimit,
ExecTime) returns integer x integer
i, nblocks, SizeLimit: in integer
ninsts: in array [1**nblocks] of integer
LBlock: in array [l**nblocks] of array [••] LIRInst
ExecTime: in integer — > integer

begin
j, k: integer
Insts: (sequence of integer) x integer — > sequence

of Instruction
Dag: DAG
ii: integer x array [••] of LIRInst
for j := 2 to SizeLimit do

ii := Unroll(nblocks,i,ninsts,LBlock,j,nil)
Dag:= Build_DAG(iill,ii!2)
Schedule(I Dag.Nodes I,Dag,Dag.Roots,DagSucc,DagPred,ExecTime)
for k := j - 1 by -1 to 1 do

if Insts(Sched,k) = Insts(Sched,j)
& State(Sched,k) = State(Sched,j) then
return <k,j>

fi
od

od
return <i,j>

end I I Pipeline_Schedule
FIG. 17.27 Algorithm to find a repeating unit from which to construct a software pipelining.

loop) is shown in Figure 17.27. We assum e again that the loop body is a single
basic block LBlock [i] [1 •• ninsts [i]]. Unroll (nblocks,/, ninsts, LBlock,/, &)
produces / copies o f the loop body LBlock [i] [1 • • ninsts [/]] (see Figure 17.30 for
the algorithm Unroll()) . Schedule (/ ,D ,R ,D S , D P , E X) is the basic-block sched
uler given in Figure 17.6. Insts (S , /) denotes the sequence o f instructions executed
during time step i in the schedule S, and State (S , i) denotes the resource state corre
sponding to time step i in schedule S after perform ing iterations 1 through i — 1. The
resource state can be modeled by resource vectors, as described in Section 9.2. The
algorithm incorporates a stopping condition (SizeLimit), based on the unrolled size
o f the loop, to bound the search space.

After executing the algorithm successfully, the instructions in time steps k
through / — 1 are the basis for constructing the pipelined loop body, those in steps 1
through k — 1 are for the prologue, and those in steps /, . . . are for the epilogue.
O f course, constructing the final prologue, body, and epilogue requires adjusting
the code to deal with resource constraints, as in our exam ple above. The scheduling
algorithm returns a pair o f integers </,/’>, where i is the number o f instructions in the
original loop body and / is the factor by which it has been unrolled.

Section 17.4 Software Pipelining 559

for i := 1 to 100 do for i :=
s := s + a[i] s : =

s : =
end

(a) (b)
FIG. 17.28 (a) A Pascal loop, and (b) the result of unrolling it by a factor of two.

1 by 2 to 99 do begin
s + a[i]
s + a[i+l]

17.4.3 Loop Unrolling
Loop unrolling replaces the body of a loop by several copies of the body and adjusts
the loop-control code accordingly. The number of copies is called the unrolling
factor and the original loop is called the rolled loop. In another subsection below,
we discuss variable expansion, which is a transformation that can improve the
effectiveness of loop unrolling and software pipelining.

Unrolling reduces the overhead of executing an indexed loop and may improve
the effectiveness of other optimizations, such as common-subexpression elimination,
induction-variable optimizations, instruction scheduling, and software pipelining.

For example, the code in Figure 17.28(b) is a version of the loop in Fig
ure 17.28(a) that has been unrolled by a factor of two. The unrolled loop executes
the loop-closing test and branch half as many times as the original loop and may in
crease the effectiveness of instruction scheduling by, e.g., making two loads of a [i]
values available to be scheduled in each iteration. On the other hand, the unrolled
version is larger than the rolled version, so it may impact the effectiveness of the
instruction cache, possibly negating the improvement gained from unrolling. Such
concerns dictate that we exercise caution in deciding which loops to unroll and by
what unrolling factors.

Also, notice that we have oversimplified the unrolling transformation in the ex
ample: we have assumed that the loop bounds are known constants and that the
unrolling factor divides the number of iterations evenly. In general, these conditions
are, of course, not satisfied. However, loops with general bounds can still be un
rolled. What we need to do is to keep a rolled copy of the loop, exit the unrolled
copy when the number of iterations remaining is less than the unrolling factor, and
then use the rolled copy to execute the remaining iterations. We take this approach
rather than testing in each unrolled copy of the loop body for early termination be
cause one reason for unrolling loops is to allow instruction scheduling more latitude,
in particular to allow it to interleave instructions from the copies of the body, which
it cannot do as effectively if there is conditional control flow between the copies.

Figure 17.29(a) gives an example of a Fortran 77 loop and Figure 17.29(b)
shows the result of unrolling it by a factor of u with a rolled copy. Of course, the
unrolling transformation can be further generalized to loops that increment the loop
counter by values other than 1.

ican code to implement this approach is shown in Figure 17.30. The
call U n ro ll(n b lo ck s ,ra ,n in sts,B lo ck ,factor ,init) unrolls factor copies of
Block[m] [1 • *ninsts[m]] and makes a rolled copy also if it cannot determine that

560 Code Scheduling

do i = lo,hi-u+l,u
body
body/i+l/i

body/±+\i-l/i
enddo
do i = i,hi

body
enddo

(a) (b)

FIG. 17.29 (a) A more general Fortran 77 loop, and (b) the result of unrolling it by a factor of w.
The notation body/i/j means body with i substituted for /.

the number of iterations is a multiple of the unrolling factor. The instructions it is de
signed to operate on are MIRInsts and LIR Insts, and In stru c tio n is meant here to
encompass only those two of our three varieties of intermediate code. Note that the al
gorithm deals with a loop that contains only a single basic block and loop control of
a particular type: it assumes that v a r l is modified only by Block [m] [n in sts [m] -2]
and that

do i = lo,hi
body

enddo

Block[m][1] = <kind: label, lbl:,,Ll">
Block[m][ninsts[m]-2] = <kind:binasgn,left:varl,opr:add,

opdl:<kind:var,val:var1>,opd2:incr>
Block[m][ninsts [m]-1] = <kind:binasgn,left:var3,opr:less,

opdl:<kind:var,val:varl),opd2:final)
Block[m][ninsts [m]] = <kind:valif,opd:<kind:var,val:var3>,

lbl:"Ll">

but it can easily be generalized. It uses several functions, as follows:

1. Constant (opd) returns tru e if operand opd is a constant, and f a l s e otherwise.

2. new_tmp() returns a new temporary name.

3. n ew _label() returns a new label.

One aspect of the unrolling process for loops that contain more than one basic block
is not covered by the code in Figure 17.30— labels that occur in the body of the loop
need to be renamed in each copy to make them distinct.

As noted above, the most important issues in loop unrolling are deciding which
loops to unroll and by what factor. This has two aspects: one involves architec
tural characteristics, such as the number of registers available, the available overlap
among, for example, floating-point operations and memory references, and the size
and organization of the instruction cache; and the other is the selection of particular
loops in a program to unroll and the unrolling factors to use for them. The impact
of some of the architectural characteristics is often best determined by experimenta
tion. The result is usually a heuristic, but unrolling decisions for individual loops can

Section 17.4 Software Pipelining 561

procedure Unroll(nblocks,m,ninsts,Block,factor,init)
returns integer x array [••] of Instruction
m, nblocks, factor, init: in integer
ninsts: in array [1**nblocks] of integer
Block: in array [1•-nblocks] of array [••] of Instruction

begin
Ulnst: array [••] of Instruction
tj: Var
lj: Label
i, j, div: integer
Ulnst[1] := Block [m][1]
for i 2 to ninsts[m]-2 do

for j := 1 to factor do
Ulnst[(j—1)*(ninsts[m]-3)+i] :® Block[m][i]

od
od
tj := new_tmp()
Ulnst[factor*(ninsts[m]-3)+2] := Block[m][ninsts[m]-1]
Ulnst[factor*(ninsts[m]-3)+3] := Block[m][ninsts[m]]
div := factor*Block[m][ninsts[m]-2].opd2.val
if Constant(init) & Constant(Block[m][ninsts[m]-2].opd2)

& Constant(Block[m][ninsts[m]-1].opd2)
& (Block[m] [n in s ts [m]-l] .opd2. val-init+l)#/,div = 0 then
return <factor*(ninsts[m]-3)+3,Ulnst)

else
lj := new_label()
Ulnst [factor*(ninsts[m]-3)+4] := <kind:label,lbl:lj>
for i := 2 to ninsts[m]-l do

Ulnst[factor*(ninsts[m]-3)+i+3] := Block[m] [i]
od
Ulnst[factor*(ninsts[m]-3)+i+3] :=

<kind:valif,opd:Block[m][ninsts[m]].opd,lbl:1j >
return <(factor+1)*(ninsts[m]-3)+6,Ulnst)

fi
end || Unroll

FIG. 17.30 ican code to implement loop unrolling for a specific pattern of loop control.

benefit significantly from feedback from profiled runs of the program that contains
the loops.

The result o f a set o f such experiments would be rules that can be used to decide
what loops to unroll, which might depend, for exam ple, on the following types o f
characteristics o f loops:

1. those that contain only a single basic block (i.e., straight-line code),

2. those that contain a certain balance o f floating-point and memory operations or a
certain balance of integer memory operations,

3. those that generate a small number o f intermediate-code instructions, and

4. those that have simple loop control.

562 Code Scheduling

The first and second criteria restrict unrolling to loops that are most likely to
benefit from instruction scheduling. The third keeps the unrolled blocks of code
short, so as not to adversely impact cache performance. The last criterion keeps the
compiler from unrolling loops for which it is difficult to determine when to take
the early exit to the rolled copy for the final iterations, such as when traversing
a linked list. The unrolling factor may be anywhere from two up, depending on
the specific contents of the loop body, but will usually not be more than four and
almost never more than eight, although further development of VLIW machines may
provide good use for larger unrolling factors.

It may be desirable to provide the programmer with a compiler option or a
pragma to specify which loops to unroll and what factors to unroll them by.

Loop unrolling generally increases the available instruction-level parallelism, es
pecially if several other transformations are performed on the copies of the loop
body to remove unnecessary dependences. Such transformations include software
register renaming (see Section 17.4.5), variable expansion (see next subsection), and
instruction combining (see Section 18.12). Using dependence testing to disambiguate
potential aliases between memory addresses can also remove dependences. Thus,
unrolling has the potential of significant benefit for most implementations and par
ticularly for superscalar and VLIW ones.

Instruction combining can make more registers available for renaming. As an
example of this, consider the code sequence

r2 <r- r l + 1
r3 <- r2 * 2

Assuming that we are generating code for a machine that has shift and add instruc
tions, such as pa-risc , and that r2 is dead after this sequence, it can be transformed
into

r3 <- 2 * iT + 2

thus making r2 available.

17.4.4 Variable Expansion
Variable expansion in the body of an unrolled loop that has an unrolling factor of n
selects variables that can be expanded into n separate copies, one for each copy of
the loop body, and that can be combined at the loop’s exits to produce the values
that the original variables would have had. The expansion has the desirable prop
erty of decreasing the number of dependences in the loop, thus making instruction
scheduling likely to be more effective when applied to it.

The easily detected opportunities for variable expansion include accumulator,
induction, and search variables. Figure 17.31(a) gives examples of all three types,
and Figure 17.31(b) shows the result of unrolling the loop by a factor of two and ex
panding the accumulator, induction, and search variables. Note that some of the in
duction variables (the addresses of the array elements) have not been expanded, since
the example is hir code; however, they are also amenable to variable expansion.

Section 17.4 Software Pipelining 563

acc <- 10

max <- 0

imax <- 0

for i <- 1 to 100 do
acc <- acc + a[i]*b[i]
if a[i] > max then

max <- a[i]
imax <- i

endif

endfor

(a)

acc <- 10
accl <- 0
max 0
maxi <- 0
imax <- 0
imaxl 0
il 2
for i <- 1 by 2 to 99 do

acc <- acc + a[i]*b[i]
if a[i] > max then

max <- a[i]
imax <- i

endif
accl <- accl + a[il]*b[il]
if a[il] > maxi then

maxi <- a[il]
imaxl <- il

endif
il <- il + 2

endfor
acc <- acc + accl
if maxi > max then

max <- maxi
imax <- imaxl

endif
(b)

FIG. 17.31 (a) A hir loop with examples of accumulator (acc), induction (i), and search (max and
imax) variables; and (b) the loop after unrolling by a factor of two and expanding the
accumulator, induction, and search variables.

The algorithms for the three kinds of variable expansion are broadly similar. We
discuss only accumulator-variable expansion and leave it to the reader to adapt the
approach to the other two types of variables.

To determine whether a variable serves as an additive accumulator (multipli
cative ones are also possible but are less frequent), we require that it be used and
defined in the loop only by add and/or subtract instructions and that the unrolled
loop body contain n copies of such instructions, one per copy of the loop body,
where n is the unrolling factor. Having determined that a variable is an additive ac
cumulator, we replace the second through « th copies by new temporary variables,
initialize them all to zero at the loop entrance, and at each of the loop’s exits, add
them to the original variable.

In the example in Figure 17.31, acc is an additive accumulator. In the unrolled
version, it has been replaced with a c c l in the second copy of the body; a c c l has
been initialized to zero before entering the loop; and an instruction to add it to acc
has been included at the loop exit.

564 Code Scheduling

1 fl <- f2 + 1.0 f27 <- f2 + 1.0 fl +- f3 * 2.0
2 [fp+52] <- fl [fp+52] <- f27 f27 <- f2 + 1.0
3 fl <- f3 * 2.0 fl -e- f3 * 2.0 [fp+40] *- fl
4 [fp+40] fl [fp+40] +- fl [fp+52] *- f27

(a) (b) (c)

FIG. 17.32 (a) An example of lir code to which register renaming may be applied, (b) the result
of performing it, and (c) an alternate schedule of the instructions made possible by the
renaming.

17.4.5 Register Renaming
Register renaming is a transformation that may increase the flexibility available
to code scheduling. It can be applied to low-level code (in our case, lir code) to
remove unnecessary dependences between instructions that use the same register
by replacing some of the uses by other registers. For example, in the basic block
shown in Figure 17.32(a), the use of f l in all four instructions, combined with
the information that f 1 is live at the exit from the block, makes it impossible to
reorder the instructions at all. The substitution of f 27 for f 1 in the first and second
instructions (assuming that f27 is not live at that point) shown in Figure 17.32(b)
allows the instructions to be scheduled in any order that preserves the occurrence
of the definitions of f27 and f 1 before their respective uses, such as the order in
Figure 17.32(c).

We simplify our discussion of renaming somewhat by assuming that all registers
are of the same type. For the more realistic case of separate integer and floating-point
register sets, we apply the algorithm twice, once for each register set.

Given basic block i consisting of instructions LBlock [z] [1 • • n \ , we first need to
determine several sets of registers, as follows:

1. Regs is the set of all general-purpose registers provided by the architecture.

2. RegsUsed(z) is the set of registers used and/or defined in block z.

3. RegsLiveEntry(z) is the set of registers that are live on entry to block z.

4. RegsLiveExit (z) is the set of registers that are live on exit from block z.

5. Def sL iveE xit (z) is the set of indexes of instructions that define registers that are
live on exit from block z.

A combination of inspection and data-flow analysis can be used to determine these
sets. AvailRegs, the set of registers available for renaming in block z, is then

AvailRegs = Regs - (RegsUsed(z) u RegsLiveEntry(z)
u RegsLiveExit (z))

Next, for each register r in RegsUsed(z), we compute DefUses(r), the maximal
sequence of pairs </,s> such that / is the index of an instruction in block z that
defines r, and s is the set of indexes of instructions in block z that use the value
of r as computed by instruction /; the elements of the sequence are ordered by the

Section 17.4 Software Pipelining 565

definitions in the pairs. Then, as long as there are registers in AvailRegs and pairs
in DefUses (r) such that the definition is dead on exit from the block, we replace
register r in its definitions and uses by a register selected from AvailRegs.

For our example block (call it A) in Figure 17.32(a), the sets are as follows:

Regs = {f0,f1,...,f31}
RegsUsed(A) = {fl,f2,f3>
RegsLiveEntry(A) = {f2,f3}
RegsLiveExit(A) = {fl}
DefsLiveExit(A) = {3}
AvailRegs = {f0,f4,...,f31>
DefUses(fl) = [<1,{2»,<3,{4»]

so the definition of fl in line 1 and its use in line 2 of column (a) are replaced
by a register chosen randomly from AvailRegs, namely, f27, as shown in col
umn (b).

i c a n code to rename registers in a basic block is given in Figure 17.33. We
assume that Regs, RegsUsed(), RegsLiveEntry (), RegsLiveExit (), and
Def sLiveExit () have been precomputed. The procedures used in the code are as
follows:

1. Defines (inst ,r) returns true if instruction inst defines register r, and false other
wise.

2. Uses (inst, r) returns true if instruction inst uses register r as an operand, and false
otherwise.

3. replace.result(z, LBlock, ra,<zr) replaces the result register in instruction
LBlock[ra] [z] by ar.

4. replace.operands(z,LBlock,m ,r ,a r) replaces occurrences of r as an operand reg
ister in instruction LBlock [ra] [z] by ar.

Note that if register r is in RegsLiveEntry(ra) but not in RegsLiveExit (ra),
then r becomes available as a renaming register after its last use in the block; we
have not accounted for this in the code.

Register renaming can be adapted to work on extended basic blocks as long as
we are careful to maintain unchanged the last definition of each register that is live
on exit from each exit block. For example, in the code in Figure 17.34, given that f 1
is live on exit from B3 but not from B2, we must preserve the last definition of f 1 in
block Bl, but we can rename f 1 in B2.

17.4.6 Other Approaches to Software Pipelining
It is indicative of the state of the art in software pipelining that there have been
numerous other approaches proposed in recent years. These include circular sched
uling, which resembles our window-scheduling approach, and a variety of methods
that resemble our unroll-and-compact approach, including the following:

566 Code Scheduling

Regs: set of Register
RegsUsed, RegsLiveEntry, RegsLiveExit: integer — > set of Register
DefsLiveExit: integer —> set of integer

procedure Register.Rename(m,ninsts,LBlock)
m: in integer
ninsts: in array [l**m] of integer
LBlock: inout array [••] of array [••] of LIRInst

begin
AvailRegs: set of Register
r, ar: Register
def, i, j: integer
uses: set of integer
DefUses: Register — > sequence of (integer x set of integer)
AvailRegs := Regs - (RegsUsed(m) u RegsLiveEntry(m) u RegsLiveExit(m))
if AvailRegs = 0 then

return
fi
for each r e RegsUsed(m) do

DefUses (r) := []
i := 1
while i ̂ninsts[m] do

if Defines(LBlock[m][i],r) then
def := i; uses := 0
for j i+1 to ninsts[m] do

if Uses(LBlock[m][j],r) then
uses u= {j}

fi
if Defines(LBlock[m][j],r) then

i j
goto LI

fi
LI: od

f i
DefUses(r) [<def,uses>]
i += 1

od
od

F I G . 1 7 .3 3 i c a n c o d e t o r e n a m e r e g i s t e r s in a b a s ic b lo c k .

1. Lam ’s approach for VLIW systems,

2. optimal loop parallelization,

3. perfect pipelining,

4. Bodin and Charot’s approach,

5. approaches to software pipelining with resource constraints, and

6. decomposed software pipelining.

Section 17.4 Software Pipelining 567

for each r e RegsUsed(m) do
while IDefUses(r)I > 0 do

def := (DefUses(r)ll)@l
uses := (DefUses(r)11)@2
DefUses(r) ©= 1
if def £ DefsLiveExit(m) then

ar := ♦AvailRegs
AvailRegs -= {ar}
replace_result(def,LBlock,m,ar)
for each i e uses do

replace_operands(i,LBlock,m,r,ar)
od

fi
od

od
end I I Register.Rename

F IG . 1 7 .3 3 (continued)

F IG . 1 7 .3 4 An exam ple o f an extended basic block for register renam ing.

Thus it is still an active area of research to determine what the best approach is, both
in terms of resulting loop performance and efficiency of the pipelining algorithm.
(See Section 17.8 for detailed references.)

An interesting experiment was reported by Ruttenberg et al. An optimal soft
ware pipelining algorithm called m o s t , developed at McGill University, was adapted
to serve in place of the pipeliner in the m i p s compilers and a series of experiments
were performed to compare the heuristic algorithm in the m i p s compilers with the
optimal one. In compiling all the SPEC92 benchmarks, a better schedule was found
for only one loop by the optimal algorithm than the heuristic one, yet the opti
mal algorithm required about 3,000 times the amount of time used by the heuristic
algorithm. Thus, software pipelining is definitely worth including in an aggressive
optimizing compiler, and heuristic approaches may perform very well for most pro
grams.

568 Code Scheduling

LI: Id [r2],r3 * LI: Id [r2],r3
Id [rl] ,f0 * Id [rl] ,f0
cmp r3,0 LIa: cmp r3,0
ble L2 ble L2
nop nop
add r4,1,r4 add r4,1,r4
f adds f2,f0,f3 fadds f2,f0,f3

* Id [r2],r3
* Id [rl] ,f0

b L3 b L3
nop nop

L2: fsubs f3,f0,f3 L2: fsubs f3,f0,f3
stf f3, [rl] stf f3,[rl]
bg LI bg Lla
nop nop

* Id [r2],r3
* Id [rl],f0

L3: sub r2,4,r2 L3: sub r2,4,r2
sub rl,4,rl sub rl,4,rl
cmp rl ,0 cmp rl ,4

Id [r2],r3
Id [rl],f0

bg LI bg Lla
nop nop

cmp r3,0
ble L2a
nop
add r4,1,r4
b L3a
fadds f2,f0,f3

L2a: fsubs f3,f0,f3
stf f3, [rl]

L3a: sub r2,4,r2
sub rl,4,rl

(a) (b)
FIG. 17.35 (a) A s p a r c lo o p c o n ta in in g a c o n d it io n a l , a n d (b) th e re su lt o f w in d o w sc h e d u lin g it an d

m o v in g th e tw o I d in s tru c t io n s m a rk e d w ith a s te r isk s in to b o th a rm s o f th e c o n d it io n a l.

17.4.7 Hierarchical Reduction
Hierarchical reduction is a technique that was developed by Lam ([Lam88] and
[Lam90]) to handle pipelining of loops that contain control-flow constructs. The
method consists of two parts, one to handle conditionals and the other to handle
nested loops. To handle nested loops, one pipelines from the innermost loop out
ward, reducing each loop as it is scheduled to a single node, with the scheduling and
resource constraints of the loop attached to the node that represents it.

To handle conditionals, one first does basic-block scheduling on the then and
e lse branches independently and then reduces the conditional to a single node,

Section 17.5 Trace Scheduling 569

again with the scheduling and resource constraints of the entire if- th e n -e lse
attached to it. This, in effect, pads the shorter of the two branches to have the
same latency as the longer ones. On the other hand, one need not produce code
that satisfies this constraint—inserting unnecessary nops would merely waste space,
not improve the schedule.

As an example of software pipelining applied to a loop containing a conditional,
consider the code in Figure 17.35(a), assuming we are compiling for the same
processor structure as assumed for the code in Figure 17.15. If we window schedule
the first two instructions in the loop (the two Ids marked with asterisks) to become
the end of the loop body and we move the two loads into both branches of the
conditional, we obtain the code in Figure 17.35(b). We can then reschedule the then
and e lse branches and do further pipelining, if desirable.

17.5 Trace Scheduling
Trace scheduling is an instruction scheduling method developed by Fisher [Fish81]
that is much more ambitious than the ones we have discussed so far. It is most useful
for VLIW machines and superscalar implementations of degree greater than about
eight.

A trace is a sequence of instructions, including branches but not including loops,
that is executed for some input data. Trace scheduling uses a basic-block scheduling
method (such as the one described in Section 17.1.2) to schedule the instructions
in each entire trace, beginning with the trace with the highest execution frequency.
It then adds compensation code, as needed, at each entry to and exit from a trace
to compensate for any effects that out-of-order execution may have had that are
inconsistent with that entry or exit. Loop bodies are generally unrolled several times
before being scheduled. The scheduling and compensation process is repeated until
either all traces have been scheduled or a chosen threshold of execution frequency
has been reached. Any remaining traces are scheduled by standard methods, such as
the basic-block and software-pipelining approaches. While trace scheduling can be
quite effective with estimated execution profiles, like most scheduling methods it is
more effective when provided with profiling feedback.

As a simple example of trace scheduling, consider the flowgraph fragment in
Figure 17.36. Suppose we determine that the most frequently executed path through
the flowgraph consists of blocks Bl, B3, B4, B5, and B7. Since B4 is the body of a loop,
this path is divided into three traces, one consisting of Bl and B3, the second consist
ing of the loop body B4, and the third containing B5 and B7. Each of the three traces
would be scheduled independently, with, for example, compensation code added at
the exit from the trace for Bl and B3 corresponding to taking the N exit from block
Bl. Suppose the code for blocks Bl, B2, and B3 is as shown in Figure 17.37(a). In
Figure 17.37(b), the trace scheduler has decided to move the assignment y x - y
across the branch into block B3; a copy of this instruction must then be placed at
the beginning of B2 as compensation code. After the three selected traces have been
scheduled, each of B2 and B6 would be scheduled as a separate trace.

570 Code Scheduling

F IG . 1 7 .3 6 An exam p le for trace scheduling.

B l : x <- x + 1
y x - y
i f x < 5 g o to B3

B 2 : z <- x * z
x <- x + 1
g o to B5

B 3 : y 2 * y
x <- x - 2

i f x < 5 g o to B3
B2: y <- x - y

Z <r- X * Z
X < - X + 1
g o to B5

B3: y <- x - y
y <- 2 * y
x <- x - 2

(a) (b)

F IG . 1 7 .3 7 (a) E xam ple mir code for the trace in Figure 1 7 .3 6 m ade up o f B l and B3 (along with
code for B2), an d (b) the resu lt o f a scheduling operation and com pen sation code.

T race sc h ed u lin g ca n freq u en tly ach ieve large p e rfo rm a n c e im p ro v em en ts fo r
V L IW o r h igh -d egree su p e r sc a la r m ach in e s, b u t it c a n a lso resu lt in large in creases
in co d e size a n d in p o o r o r e rra tic p e rfo rm a n c e if a p r o g r a m ’s b e h av io r varies
s ign ifican tly w ith its in p u t.

Section 17.6 Percolation Scheduling 571

17.6 Percolation Scheduling
Percolation scheduling is another aggressive cross-block scheduling method that was
developed by Nicolau [Nico86]. It is designed to work on parallel computation
graphs (PCGs) consisting of computation nodes, each of which includes a set of
operations that are performed in parallel, a tree of control-flow operations that may
determine a set of successor nodes, and a default successor that is used if the tree
is empty. Of course, this represents a departure from our intermediate-code forms
in that each of them enforces sequential semantics on the contents of a basic block.
A computation node is either one of two special nodes called enter and e x it ; or
a node that consists of a set of operations O that are executed in parallel (with all
loads performed before all stores), a continuation tree T that conditionally selects a
set of successor computation nodes, and a continuation C that is used if T is empty.
(In Figure 17.39, the type PCGnode is used to represent computation nodes.)

Percolation scheduling uses an additional type of dependence relation called
write-live dependence, written <$wl, that is defined as follows. Let v be a computation
node and u be one of its successors. Then, v <$wl u if there exists a successor w of
v such that some variable live on the edge v^>w is written to in node m, where a
variable is live on an edge if there is a path beginning with the edge and extending
to the parallel computation graph’s exit on which the variable is read before it is
written. In Figure 17.38, the variable n produces a write-live dependence v <$wI u.

Percolation scheduling consists of four basic transformations that can be applied
to PCGs, called delete node, move operation, move conditional, and unify. The first

(m n)

i
[exit I

wl u,F IG . 1 7 .3 8 An exam ple o f write-live dependence, nam ely, v 8 because o f variab le n.

572 Code Scheduling

procedure Perc_Schedule_l(r)
r: in PCGnode

begin
Cand: set of PCGnode
n: PCGnode
again: boolean
repeat

again false
Cand := {r}
for each n e Cand do

if Delete_Node_Applic(n) then
Delete_Node(n)
Cand u= Succ(n)
again := true

elif Move_Oper_Applic(n) then
Move_0per(n)
Cand u= Succ(n)
again := true

elif Move_Cond_Applic(n) then
Move_Cond(n)
Cand u= Succ(n)
again := true

elif Unify_Applic(n) then
Unify(n)
Cand u= Succ(n)
again := true

fi
Cand -= {n}

od
until !again

end |I Perc_Schedule_l
FIG. 17.39 A simple algorithm for percolation scheduling.

deletes nodes that have become empty; the second and third move operations and
conditionals, respectively, to predecessor nodes; and the last moves a set of identical
operations from all the successors of a node to that node.

The algorithm to apply these transformations to a PCG may be anywhere
from trivially simple to quite complicated. For example, we can construct four
predicates that test applicability of the transformations (Delete_Node_Applic(),
Move_Oper_Applic(), Move_Cond_Applic(), and Unify_Applic()) to a sub
graph that is rooted at a particular PCG node and four procedures (Delete_Node(),
Move_0per(), Move_Cond(), and Unify(), respectively) to apply them. Given
those predicates and procedures, the code in Figure 17.39 is a simple percolation
scheduler. It tries, for each node, to apply each of the four transformations and re
peats the transformations until no more apply. However, this won’t quite do: there is
no guarantee that the algorithm will terminate on an arbitrary PCG. What is needed
is to break the PCG into components that are DAGs and then to apply the algorithm
to them. Then termination can be guaranteed.

Section 17.7 Wrap-Up 573

Clearly other regimes for applying the transformations are possible and other
types of optimizations can profitably be mixed in with percolation scheduling. For
example, moving an operation into a node may create an opportunity for common-
subexpression elimination.

Nicolau defines a series of meta-transformations that are built from the basic
four. These include: (1) a transformation called m igrate () that moves an operation
as far upward in a PCG as dependences will allow it to go; (2) an extension of the
technique to irreducible PCGs, i.e., to those with multiple-entry loops; and (3) a
transformation called compact_path() that generalizes trace scheduling by moving
operations upward along the path with the highest execution frequency.

17.7 Wrap-Up
This chapter has focused on methods to schedule instructions to improve perfor
mance. These are some of the most important optimizations for most programs
on most machines, including all Rises and more and more cisc implementations.
We have covered branch scheduling, basic-block scheduling, cross-block scheduling,
software pipelining (including loop unrolling, variable expansion, register renaming,
and hierarchical reduction), boosting, trace scheduling, and percolation scheduling.

After recognizing that almost all of the scheduling problems are at least NP-
hard, even in their simplest formulations, we have proceeded to describe heuristic
solutions that almost always work very well in practice.

Combining basic-block and branch scheduling is the easiest to implement of
the approaches discussed; even this approach can produce major improvements in
execution speed, frequently at least 10%.

Cross-block and speculative scheduling are harder to implement but improve
on the basic-block form by moving instructions between blocks. These methods fre
quently produce even larger decreases in execution time, particularly if the hardware
supports speculative loads.

Software pipelining (with loop unrolling, variable expansion, register renaming,
and hierarchical reduction) operates on loop bodies and can result in even larger per
formance improvements. There are several different kinds of approaches to software
pipelining, of which we have described two examples, one easier to implement and
one harder but usually more effective. There is, as yet, no definitive answer on the
best approach to use, as indicated by the list of methods in Section 17.4.6.

Loop unrolling is a transformation that replaces a loop body with some number
of copies of the body and adjusts the loop-control code accordingly. If the compiler
does not include software pipelining, we recommend doing loop unrolling between
dead-code elimination and code hoisting in box C4 of the diagram in Figure 17.40.

Variable expansion is a subsidiary technique that is useful in loop bodies that
have been unrolled, to decouple operations in each copy that put their results in a
particular variable. It provides one such variable for each loop body and combines
their resulting values after the loop. Register renaming is similar to variable expan
sion in that it removes unnecessary dependences between instructions that use the
same registers even though they don’t need to.

574 C ode Scheduling

FIG. 17.40 Order of optimizations with scheduling phases in bold type.

All the transform ations discussed above are best performed very close to the
end o f the optim ization (and com pilation) process, since, to be more than marginally
effective, they require either a form o f machine code or a low-level intermediate code
that accurately models the target machine.

Trace and percolation scheduling are two global code-scheduling methods that
can have very large benefits for some types o f program s, mostly numeric ones that
operate on arrays, and for some architectures, typically high-degree superscalar and
VLIW machines. They are best structured as drivers for the optim ization process,
i.e., we would build an optim izer around either type o f global scheduling and invoke
other optim izations, as appropriate, from them.

Figure 17.40 shows a suggested order for optim ization, with scheduling opti
m izations in bold type. We do instruction scheduling (branch, basic-block, cross-

Section 17.8 Further Reading 575

FIG. 17.40 (continued)

block, and software pipelining and its subsidiaries) immediately before register
allocation and, if any spill code has been generated, repeat branch and basic-
block scheduling after register allocation. A compiler that does not include software
pipelining should place loop unrolling and variable expansion earlier in the compila
tion process, along with other loop optimizations. Trace and percolation scheduling
are omitted from the diagram since, as described above, they require a complete
restructuring of the optimization process.

17.8 Further Reading
Rymarczyk’s guidelines for assembly-language programmers to get the best advan
tage from the pipelined processors in IBM System/370 implementations is [Ryma82].
m ip s-x is described in [Chow86].

See [GarJ79] for a proof that basic-block scheduling is an NP-hard problem.
Basic-block schedulers that use list scheduling include those described in [GibM86]
and [Warr90]. The proof that list scheduling produces a schedule that is within a
factor of two of optimal for a machine with one or more identical pipelines is given
by Lawler et al. [LawL87].

576 Code Scheduling

Smotherman et al. [SmoK91] survey the types of DAGs and heuristics used in a
series of implemented schedulers, including ones developed by Gibbons and Much-
nick [GibM86], Krishnamurthy [Kris90], Schlansker [Schl91], Shieh and Papachris-
tou [ShiP89], Tiemann [Tiem89], and Warren [Warr90]. Hennessy and Gross’s
machine-level DAG is described in [HenG83]. Balanced scheduling is described in
[KerE93] and [LoEg95]. Golumbic and Rainish’s discussion of transformations that
help cover the branch delays in power is found in [GolR90].

The GNU instruction-scheduler generator is, unfortunately, not very well de
scribed. The scheduler that formed the basis for it is described in [Tiem89]. The
scheduler generator is probably best described by the code that implements it,
namely, the file ge n attrtab . c in the main directory of the GNU C compiler distribu
tion (see Section C.3.1) and by examples in the machine-description files machine.md
found in the conf ig subdirectory.

Approaches currently in use for scheduling across basic-block boundaries are
discussed in [Wall92], [BerC92], and [MahR94]. [EbcG94] discusses the application
of scheduling techniques developed for VLIW architectures to superscalar Rises.

Speculative loads and their use in scheduling are discussed in [RogL92],
[ColN87], [WeaG94], and [Powe93].

[EbcG94] describes both speculative scheduling and unspeculation. [GolR90]
and [BerR91] describe earlier approaches to speculative scheduling.

Circular scheduling is described in [Jain91]. Descriptions of pipeline-scheduling
methods that resemble our unroll-and-compact approach are as follows:

Method Reference

Lam’s approach for vliw systems [Lam88]
Optimal loop parallelization [AikN88a] and [Aike88]
Perfect pipelining [AikN88b] and [Aike88]
Bodin and Charot’s approach [BodC90]
Approaches with resource constraints [EisW92] and [AikN91]
Decomposed software pipelining [WanE93]

The approach to software pipelining used in the mips compilers, the optimal pipelin
ing algorithm most developed at McGill University, and a comparison of them are
described in [RutG96].

Variable expansion is described in Mahlke et al. [MahC92].
The details of hierarchical reduction can be found in [Lam88] and [Lam90].

Trace scheduling is described in [Fish81] and [E1H85]. Percolation scheduling is first
described in [Nico86].

17.9 Exercises
17.1 For each of the heuristics given in Section 17.1.2, write a sequence of lir instructions

for which using only that heuristic provides the best schedule and one for which it
does not.

Section 17.9 Exercises 577

17.2 The text in Section 17.4.3 alludes to some modifications that need to be made
to the code produced by an unroll-and-compact software pipeliner. What are the
modifications and why are they needed?

Give an example of the use of hierarchical reduction to pipeline a loop that contains
an inner loop and an if- th e n -e lse construct.

Give an example of a basic block of lir code for which register renaming allows a
schedule that decreases execution time by at least one-third.

Modify the list scheduling algorithm in Figure 17.6 for use in scheduling code for
a three-scalar implementation in which there are two integer pipelines and one
floating-point pipeline.

Generalize the algorithm from the preceding exercise so that it schedules code for an
w-scalar processor with « z processors of each of m types PClassO) such that

m

\ Z n' = n
i= 1

and instructions Ji, J2, . . . , Ik such that /; can execute on processor / if and only if
IC la ss Ui) = P C lass(/). Let have an issue latency of cycles and a result latency
of r£, independent of any interinstruction conflicts.

17.7 Give ican code to expand (a) accumulator and (b) search variables in an unrolled
loop.

17.3

17.4

17.5

ADV 17.6

CHAPTER 18

Control-Flow and
Low-Level Optimizations

T his chapter covers optimizations that apply to the control flow of a proce
dure, dead-code elimination, and the remaining global optimizations that
are best carried out on programs in a low-level intermediate code (such as
lir), or on a structured form of assembly language.

Some of them, such as dead-code elimination, may profitably be applied several
times during compilation, because several other transformations may create dead
code and it is desirable to eliminate it promptly to reduce the size of the procedure
that is being compiled.

The control-flow transformations that produce longer basic blocks have the
potential to increase available instruction-level parallelism, which is particularly
important for superscalar implementations.

Accurate branch prediction is important because it increases the chance that a
processor will fetch the correct continuation path from an instruction cache, the
main memory, or a second-level cache. As cache delays become longer relative to
cycle time, the importance of branch prediction continues to increase.

The last few optimizations in this chapter are often known as postpass or
peephole optimizations. The first term is used because they are generally among the
last optimizations to be performed and are always done after code generation. The
other term refers to the fact that many of them can be carried out by moving a small
window or peephole across the generated code to search for segments of code they
apply to.

The transformations discussed below are as follows: 1

1. unreachable-code elimination, which removes blocks that cannot possibly be exe
cuted because there are no paths from the entry to the blocks;

2. straightening, which creates longer basic blocks by replacing some kinds of branches
by the code they branch to;

579

580 Control-Flow and Low-Level Optimizations

3. if simplifications, which eliminate unused arms of ifs and possibly entire if con
structs;

4. loop simplifications, which replace some empty or very simple loops by straight-line
code;

5. loop inversion, which replaces a test at the beginning of a loop and an unconditional
closing branch at the end by a test at the end;

6. unswitching, which moves loop-invariant conditionals out of loops;

7. branch optimizations, which replace various kinds of branches to branches by sim
pler code;

8. tail merging, or cross jumping, which turns identical tails of basic blocks into one
such tail and branches from the others to the tail of the remaining one;

9. conditional moves, which can replace some simple if constructs by code sequences
that contain no branches;

10. dead-code elimination, which removes instructions that can be determined to have
no effect on the result of a computation;

11. branch prediction, which refers to predicting, either statically or dynamically,
whether a conditional branch causes a transfer of control or not; and

12. machine idioms and instruction combining, which replace single instructions or
sequences of instructions by single ones that perform the same task faster.

18.1 Unreachable-Code Elimination
Unreachable code is code that cannot possibly be executed, regardless of the in
put data. It may never have been executable for any input data to begin with, or
it may have achieved that status as a result of other optimizations. Its elimination
has no direct effect on the execution speed of a program but obviously decreases
the space the program occupies, and so may have secondary effects on its speed,
particularly by improving its instruction-cache utilization. Also, elimination of un
reachable code may enable other control-flow transformations, such as straightening
(see Section 18.2), that reduce execution time.

Note that elimination of unreachable code is one of two transformations that
are occasionally confused with each other. The other is dead-code elimination (see
Section 18.10), which removes code that is executable but that has no effect on the
result of the computation being performed.

To identify and remove unreachable code, we assume that there is a table of basic
blocks and, for each block, the sets of predecessors and successors. We proceed as
follows:

1. Set again to fa l s e .

2. Iterate through the Block [] array, looking for blocks such that there is no non
empty path from the entry block to those blocks. When such a block is found,

Section 18.1 Unreachable-Code Elimination 581

procedure Elim_Unreach_Code(en,nblocks,ninsts,Block,Pred,Succ)
en: in integer
nblocks: inout integer
ninsts: inout array [1**nblocks] of integer
Block: inout array [1**nblocks] of array [1••nblocks] of Instruction
Pred, Succ: inout integer — > set of integer

begin
again: boolean
i: integer
repeat

again := false
i := ♦Succ(en)
while i < nblocks do

if No_Path(en,i) then
ninsts[i] := 0
Block[i] := nil
again := true
delete_block(i,nblocks,ninsts,Block,Succ,Pred)

fi
i += 1

od
until !again

end || Elim_Unreach_Code
FIG. 18.1 Algorithm to eliminate unreachable code.

delete it and adjust the predecessor and successor functions to reflect its having been
removed and set again to true.

3. If again is true, go to step 1.

4. Adjust the Block and related data structures to compact the blocks at the beginning
of the Block array.

Note that the last step above is unnecessary if it is acceptable to simply set
Block [/] = n i l for an unreachable block /.

ican code for the routine Elim_Unreach_Code() to implement this is given in
Figure 18.1. The algorithm uses the function No_Path(/,/), which returns true if
there is no non-empty path from block i to block /, and f a l s e otherwise; and the
function delete_block(/‘, nblocks, n in sts,B lock ,Su cc,P red), which is defined
in Figure 4.17.

Figure 18.2(a) shows the flowgraph of a mir procedure that contains unreach
able code, namely, blocks B2, B3, and B5. The value of n is 7 and the n in sts , Pred,
and Succ data structures for this code are given in Table 18.1(a). After unreachable-
code elimination, the value of nblocks is 4, the data structures’ values are as shown
in Table 18.1(b), and the resulting flowgraph is as shown in Figure 18.2(b).

582 C ontrol-F low and Low -Level O ptim ization s

(a) (b)

FIG. 18.2 Our example (a) before and (b) after unreachable-code elimination.

TABLE 18.1 The basic-block data structures for the flowgraph in Figure 18.2.

i ninsts [/] Succ0‘) PredO)
entry 0 {Bl} 0
B1 3 {B4> {entry}
B2 3 {B3} {B5}
B3 1 {B5> {B2}
B4 5 {exit} {Bl}
B5 1 {B2,exit} {B3}
exit 0 0 {B4,B5}
(a)

i ninsts [/] SuccO) Pred(/)
entry 0 {Bl} 0
B1 3 {B4} {entry}
B4 5 {exit} {Bl}
exit 0 0 {B4}
(b)

Section 18.2 Straightening 583

18.2 Straightening
Straightening is an optimization that applies, in its most basic form, to pairs of basic
blocks such that the first has no successors other than the second and the second
has no predecessors other than the first. Since they are both basic blocks, either the
second one immediately follows the first one or the first of them must end with an
unconditional branch to the second. In the former case, the transformation does
nothing and in the latter it replaces the branch with the second block. Figure 18.3
shows an example. Block B1 has a single successor B2, whose only predecessor is B l.
The transformation fuses them into the new block Bla.

However, the transformation is not quite as simple as the flowgraphs suggest.
Consider the code in Figure 18.4(a), in which the blocks beginning with L I and L2
correspond to B l and B2, respectively. The first block ends with an unconditional
branch to L2, and we assume that the block beginning with L2 has no other pre
decessors. The transformed code in Figure 18.4(b) has replaced the goto L2 with a

(a) (b)

FIG. 18.3 (a) An example for straightening, and (b) the result of applying the transformation.

LI: . . .
a <- b + c
goto L2

L6: . . .
goto L4

L2: b c * 2
a <- a + 1
if (c > 0) goto L3

L5: . . .
(a)

LI: . . .
a <- b + c
b < - c * 2
a <- a + 1
if (c > 0) goto L3
goto L5

L6: . . .
goto L4

L5: . . .
(b)

FIG. 18.4 mir code versions of the example code in Figure 18.3.

584 Control-Flow and Low-Level O ptim izations

copy of the block beginning with L2 and has deleted the original copy of that block.
Note that since the copied block ends with a conditional transfer, it needs to have
a branch to the fall-through path from the original block placed at the end of it.
Clearly, straightening has the greatest benefit if the copied block ends with an uncon
ditional branch also, since it then does not require a new branch for the fall-through
path and may enable straightening to be applied again.

Straightening can be generalized to pairs of blocks such that the first ends with a
conditional branch and the second has no other predecessors. If it is known that one
path is more likely to be taken than the other, it can be made the fall-through path
and, if necessary, the condition tested can be inverted. In most implementations,
this is almost always faster than making the less likely path the fall-through. For
architectures (or implementations) with static branch prediction (see Section 18.11),
this requires that we predict that the branch falls through rather than branching.

ican code to perform straightening is given in Figure 18.5, and the auxil
iary routine F u se_ B lo ck s() that is used in the process is in Figure 18.6. The

procedure Straighten(nblocks,ninsts,Block,Succ,Pred)
nblocks: inout integer
ninsts: inout array [1 •-nblocks] of integer
Block: inout array [1**nblocks] of array of [••] of LIRInst
Succ, Pred: inout integer —> set of integer

begin
change := true: boolean
i, j: integer
while change do

change := false
i := 1
while i ̂nblocks do

if |Succ(i)| = 1 & Pred(^Succ(i)) * {i} then
j := ♦Succ(i)
Fuse_Blocks(nblocks,n in s t s ,Block, Succ,Pred, i , j)
change := true

f i
i += 1

od
od

end || Straighten
FIG. 18.5 ican code to perform straightening of basic-block pairs.

procedure Fuse.Blocks(nblocks,ninsts,Block,Succ,Pred,i,j)
nblocks: inout integer
ninsts: inout array [1**nblocks] of integer
Block: inout array [1**nblocks] of array of [••] of LIRInst
Succ, Pred: inout integer —> set of integer
i, j: in integer

FIG. 18.6 The routine Fuse_Blocks() used by S tra ig h te n ().

Section 18.3 If Simplifications 585

begin
k, 1: integer
label: Label
if Block[i][ninsts[i]].kind = goto then

k := ninsts[i] - 1
else

k := ninsts[i]
fi
if Block[j][1].kind * label then

k += 1
Block [i] [k] Block [j] [1]

fi
for 1 := 2 to ninsts[j] do

k +« 1
Block [i] [k] := Block [j] [1]

od
if Block[i][k].kind * goto then

label := Fall_Through(j,ninsts,Block)
ninsts [i] := k + 1
Block[i][ninsts[i]] <kind:goto,lbl:label)

fi
ninsts[j] 0
Succ(i) := Succ(j)
Elim_Unreach_Code(nblocks,ninsts,Block,Pred,Succ)

end |I Fuse.Blocks
FIG. 18.6 (continued)

call Fall_Through(/,ninsts,Block) returns the label of the block that execution
would fall through to after executing block /; if there is none, it supplies one and
returns its value.

18.3 I f Sim plifications
I f simplifications apply to conditional constructs one or both of whose arms are
empty. This may result from code hoisting or other optimizing transform ations or
may be present in the source code to begin with, especially if it was generated
by a program rather than directly by a person. This section describes three such
simplifications that have to do with empty arms of a conditional, constant-valued
conditions, and common subexpressions in dependent conditionals.

If either the then or e l s e part of an i f construct is empty, the corresponding
branch can be eliminated. If the then part of an i f - t h e n - e l s e is empty, we reverse
the sense of the condition, so the branch for the then part can be removed. If both
parts are empty, we remove the entire control structure and retain only as much of
the condition computation as cannot be determined to be free of live side effects.

A second control-flow simplification that applies to i f s arises from constant
valued conditions. A constant-valued condition automatically makes one arm of the

586 Control-Flow and Low-Level Optimizations

(a) (b)
FIG. 18.7 (a) An example with a condition that is a common subexpression, and (b) the result of

removing the dead arm of the i f .

i f unexecutable and hence removable. If it is the only arm, it makes the entire i f
construct removable, as long as the condition computation has no live side effects.

A third control-flow simplification that applies to i f s is the occurrence of com
mon subexpressions as conditions in an i f and in a subsequent dependent i f ; of
course, the values of the variables involved must not have been changed between the
tests. Such a case is illustrated in Figure 18.7. The test (a > d) or bool at the end of
block B2 is guaranteed to be satisfied because a > d was satisfied in block B1 if we
have gotten to B2, and neither a nor d has been changed in between. Thus, the test in
B2 and all of block B4 can be removed. As in this case, this simplification may make
straightening applicable.

18.4 Loop Simplifications
A loop whose body is empty can be eliminated, as long as the iteration-control code
has no live side effects. If the iteration-control code has side effects, they may be
simple enough that they can be replaced by nonlooping code. In particular, if the
loop simply increments or decrements the loop-control variable by a constant and
checks it against a constant final value, the final value can be computed at compile
time and a statement that assigns it to the variable can be inserted in place of the
loop.

The second and third simplifications discussed in the preceding section for i f s
also apply to loops and to nests of i f s within loops and vice versa.

Another simplification that applies to loops is that some of them have simple
enough loop-control code that it is possible to determine how many times they will
be executed and, if the number is small enough, they can profitably be unrolled into

Section 18.5 Loop Inversion 587

L2:

LI:

s <-
i <-
if i
i <-
s <-
goto

0
0
> 4 goto LI
i + 1
s + i
L2

(a)

s <- 0
i <- 0
i <- i + 1
s <- s + i
i <- i + 1
s <- s + i
i <- i + 1
s <- s + i
i <- i + 1
s <- s + i
(b)

i <- 4
s <- 10

(c)

FIG. 18.8 (a) An example of a loop that can be turned into (b) straight-line code and (c) executed
at compile time.

branchless code. In some cases, the resulting code can be executed at compile time,
as in Figure 18.8.

18.5 Loop Inversion
Loop inversion, in source-language terms, transforms a while loop into a re p e a t
loop. In other words, it moves the loop-closing test from before the body of the loop
to after it. In its simplest form, loop inversion requires that we either determine that
the loop is entered, i.e., that the loop body is executed at least once and hence that
it is safe to move the instruction, or else it requires that we generate a test before
the entry to the loop to determine whether it is entered. This has the advantage that
only one branch instruction need be executed to close the loop, rather than one to
get from the end back to the beginning and another at the beginning to perform the
test.

Determining that the loop is entered may be as simple as observing that the loop
is a Fortran 77 do loop or a Pascal fo r loop with constant bounds and that the upper
one exceeds the lower one, or it may require proving data-flow-analytic facts about
the values of the bound expressions and/or the iteration variable. Loop inversion
transforms a loop with a conditional branch at the top and an unconditional closing
branch at the bottom into one with just a conditional closing branch at the bottom
that tests the negation of the original condition.

Figure 18.9 shows an example of loop inversion in C. In (a), we have a C
fo r loop and in (b), we have its expansion as a w hile loop. Since its termination
condition is initially false, its body is executed at least once, so it can be transformed
into the rep ea t loop shown in (c).

An important subcase of loop inversion concerns nested loops with the range
of the inner loop’s iteration-control variable being a non-empty subset of the range
of the outer loops, as shown in the Fortran 77 code in Figure 18.10. In this case,
the inner loop must be executed at least once whenever the outer loop is executed.
Hence, loop inversion definitely applies to the inner loop.

588 Control-Flow and Low-Level Optimizations

f o r (i = 0 ; i < 10 0 ; i+ +)
{ a [i] = i + 1 ;

>
(a)

i = 0 ;
w h ile (i < 10 0)

{ a [i] = i + 1 ;
i+ + ;

}
(b)

i = 0 ;
r e p e a t
{ a [i] = i + 1 ;

i + + ;
> u n t i l (i >= 10 0)

(c)

FIG* 18*9 An example of loop inversion in C.

do i = l,n
do j = l,n

a(i,j) = a(i,j) + c * b(i)
enddo

enddo
FIG. 18.10 Nested loops with identical bounds in a Fortran 77 example.

f o r (i = a ; i < b ; i+ +)

{ c [i] = i + 1 ;

}

i f (a >= b) g o to L ;
i = a ;
r e p e a t
{ c [i] = i + 1 ;

i+ + ;

>
u n t i l (i >= b)

(a) (b)
FIG. 18.11 Inverting a C loop that we cannot determine to be entered.

If we cannot determine that a loop is entered, we can place an i f ahead of
its inverted form that checks the entry condition and branches around the loop.
Figure 18.11 gives an example of this approach.

18.6 Unswitching
Unswitching is a control-flow transformation that moves loop-invariant conditional
branches out of loops. For example, in the Fortran 77 code in Figure 18.12(a), the
predicate k .eq .2 is independent of the value of i . Moving the predicate test out

Section 18.7 Branch Optimizations 589

do i = 1,100
if (k.eq.2) then

a(i) = a(i) + 1
else

a(i) = a(i) - 1
endif

enddo

(a)

if (k.eq.2) then
do i = 1,100

a(i) » a(i) + 1
enddo

else
do i = 1,100

a(i) = a(i) - 1
enddo

endif
(b)

FIG. 18.12 (a) Fortran 77 code with a loop-invariant predicate nested in a loop, and (b) the result
of unswitching it.

do i = 1,100
if ((k.eq.2).and.(a(i).gt.0)) then

a(i) = a(i) + 1
endif

enddo

(a)

FIG. 18.13 Unswitching a conditional without an e lse part.

if (k.eq.2) then
do i = 1,100

if (a(i).gt.O) then
a(i) = a(i) + 1

endif
enddo

else
i = 101

endif
(b)

of the loop produces the code shown in Figure 18.12(b). While this increases code
space, it reduces the number of instructions executed. Note that the conditional
must be nested directly inside the looping construct for the transformation to be
applicable. The example in Figure 18.13 illustrates two aspects of unswitching: first,
the invariant condition need not account for the entire predicate; and second, if the
conditional has no e ls e part, it is essential to supply one in the transformed code
that sets the loop-control variable to its final value, unless it can be shown to be dead.

18.7 Branch Optimizations
There are several kinds of branch optimizations that are generally postponed to the
latter phases of the compilation process, once the shape of the final code has been
determined. We discuss some of them in this section.

Branches to branch instructions are remarkably common, especially if a rela
tively simple-minded code-generation strategy is used. Detecting such situations is
trivial—we simply check what instruction appears at the target of each branch—as
long as we do so before filling branch delay slots (for architectures that have them).
The cases are as follows:

590 Control-Flow and Low-Level Optimizations

1. An unconditional branch to an unconditional branch can be replaced by a branch to
the latter’s target.

2. A conditional branch to an unconditional branch can be replaced by the correspond
ing conditional branch to the latter branch’s target.

3. An unconditional branch to a conditional branch can be replaced by a copy of the
conditional branch.

4. A conditional branch to a conditional branch can be replaced by a conditional
branch with the former’s test and the latter’s target, as long as the latter condition is
true whenever the former one is.

For e x a m p le , in th e m i r s e q u e n c e

if a = 0 goto LI

LI: if a >= 0 goto L2

L2: . . .
th e f ir s t b r a n c h c a n b e c h a n g e d t o if a = 0 g o t o L2, s in c e a > = 0 is t ru e i f a = 0 is .

Another case that is relatively common in code generated by standard code
generation strategies is an unconditional branch whose target is the next instruction.
This case is trivial to recognize and the optimization is obvious: delete the branch.
Equally obvious is a situation in which a block ends with a conditional branch to the
second following instruction, followed by an unconditional branch to some other
target. In this case, we reverse the sense of the conditional branch, change its target
to the target of the unconditional branch, and delete the latter. For example,

if a = 0 goto LI
goto L2

LI: . . .
becomes

if a != 0 goto L2
LI: . . .

18.8 Tail Merging or Cross Jumping
Tail merging> also known as cross jumping, is an optimization that always saves
code space and may also save time. It searches for basic blocks in which the last few
instructions are identical and that continue execution at the same location, either
by one branching to the instruction following the other or by both branching to the
same location. What the optimization does is to replace the matching instructions of
one of the blocks by a branch to the corresponding point in the other. Obviously, if
one of them ends without a branch, it is the preferred one to be left unmodified. For
example, the code in Figure 18.14(a) would be transformed into the code in (b).

Section 18.9 Conditional Moves 591

rl <- r2 + r3
r4 <- r3 shl 2
r2 <- r2 + 1
r2 <- r4 - r2
goto LI

rl <- r2 + r3
goto L2

r5 <- r4 - 6
r4 <- r3 shl 2
r2 <- r2 + 1
r2 <- r4 - r2

r5 <- r4 - 6
L2: r4 r3 shl 2

r2 <- r2 + 1
r2 r4 - r2

LI:
(a) (b)

FIG. 18.14 (a) A l i r c o d e e x a m p le fo r t a i l m e r g in g , a n d (b) th e r e s u l t o f t r a n s fo r m in g it.

To do tail merging, we simply scan backward through the predecessors of blocks
that have multiple predecessors looking for common sequences of instructions and
we replace all but one such copy with a branch to the beginning of the remaining
one (usually creating a new basic block in the process).

18.9 Conditional Moves
Conditional moves are instructions that copy a source to a target if and only if a
specified condition is satisfied. They are found in several modern architectures and
implementations, such as sparc-V9 and the Pentium Pro. They can be used to replace
some simple branching code sequences with code that includes no branches. For
example, the code in Figure 18.15(a), which computes the maximum of a and b and
stores it in c, can be replaced by the code in Figure 18.15(b).

The approach to replacing branching code by conditional moves is pattern
matching on the intermediate code. In the simplest case, the original code must have
the form shown in Figure 18.16(a) or Figure 18.17(a) and it may be replaced by
the equivalent code in Figure 18.16(b) or Figure 18.17(b), respectively. Of course,
sequences with more than one assignment may be matched and replaced also, but
these simple patterns cover most of the cases found in real code.

if a > b goto LI tl <- a > b
c <- b c <- b
goto L2 c «-(tl) a

LI: c <- a
L2:
(a) (b)

FIG. 18.15 Code to compute the maximum of a and b (a) with branches and (b) with conditional
moves.

592 Control-Flow and Low-Level Optimizations

if opdl relop opdl goto label 1 reg opd3
reg opd3 t <- opdl relop opdl
goto labell reg <-(£) opd4

label!: reg <- opd4
/zat£?e/2:
(a) (b)

FIG. 18.16 (a) Example code pattern for which branches may be replaced by conditional moves,
and (b) the result of the replacement.

reg <- opd3 reg <- opd3
if opdl relop opdl goto labell t <- opdl ! relop opdl
reg <- opd4 reg <-(*) opd4

labell:
(a) (b)

FIG. 18.17 (a) Another example code pattern for which branches may be replaced by conditional
moves, and (b) the result of the replacement.

18.10 Dead-Code Elimination
A variable is dead if it is not used on any path from the location in the code where
it is defined to the exit point of the routine in question. An instruction is dead if
it computes only values that are not used on any executable path leading from the
instruction. If a dead variable’s value is assigned to a local variable, the variable
and the instruction that assigns to it are dead if the variable is not used on any
executable path to the procedure’s exit (including its being returned as the value
of the procedure). If it is assigned to a variable with wider visibility, it generally
requires interprocedural analysis to determine whether it is dead, unless there is
another instruction that assigns to the same variable on every executable path from
its point of computation.

Programs may include dead code before optimization, but such code is much
more likely to arise from optimization; strength reduction (see Section 14.1.2) is an
example of an optimization that produces dead code, and there are many others.
Many optimizations create dead code as part of a division of labor principle: keep
each optimization phase as simple as possible so as make it easy to implement and
maintain, leaving it to other phases to clean up after it.

Our determination of dead instructions uses an optimistic approach. It begins by
marking all instructions that compute essential values, where a value is essential if it
either is definitely returned or output by the procedure or it affects a storage location
that may be accessible from outside the procedure. From there, the algorithm itera
tively marks instructions that contribute to the computation of essential values. When
that process has stabilized, all unmarked instructions are dead and may be deleted.

One subtlety in the algorithm is that it detects variables that are used only to
define new values for themselves; such variables are dead, since they contribute
nothing to the program containing them except wasted time and space. For example,
in the code in Figure 18.18, the variable i is inessential since it contributes only to
computing new values for itself.

Section 18.10 Dead-Code Elimination 593

FIG. 18.18 Variable i contributes only to defining itself and thus is inessential.

Identification of dead code can be formulated as a data-flow analysis, but it is
easier to use a worklist and du- and ud-chains for it. The approach is as follows:

1. Initialize the worklist to the set of block-index pairs of instructions that are essential.
(In Figure 18.19, this is the set of </,/> such that MarkD'] [/] = tru e on entry to the
procedure.)

2. Remove an </,/> pair from the worklist. For each variable v used in that instruction,
mark each instruction in its ud-chain \JD(v,</,/>) and place the instruction’s block-
index pair on the worklist.

3. If the </,/> instruction is an assignment, say, i /^ e x p , then for each instruction
position <&,/> in its du-chain DU(i/,</,/>), if instruction <&,/> is an i f , mark it
and add <&,/> to the worklist.

4. Repeat the last two steps until the worklist is empty.

5. Remove from the procedure each instruction that is unmarked and each basic block
that has become empty.

ican code for this process is shown in Figure 18.19. The routine Vars_Used(Block,
x) returns the set of variables used as operands in instruction Block [x§l] |>@2],
and Delete_Unmarked_Insts() uses d e le te _ in st () to delete each unmarked in
struction and adjusts Mark [] [] to reflect the deletions. We could also check whether
any control-flow transformations are enabled as a result or we could leave that to a
separate pass; such transformations might include the i f simplification and empty-
loop elimination transformations discussed in Sections 18.3 and 18.4, respectively.

One point that requires care is that we must be certain that an operation that
produces a dead value is not being performed for a side effect, such as setting
the condition codes. For example, a sparc integer subtract instruction that targets
register rO and that sets the condition codes is not dead if there is a future use of the
resulting condition codes’ value.

5 9 4 Control-Flow and Low-Level Optimizations

UdDu = integer x integer
UdDuChain = (Symbol x UdDu) — > set of UdDu

procedure Dead_Code_Elim(nblocks,ninsts,Block,Mark,UD,DU,Succ,Pred)
nblocks: inout integer
ninsts: inout array [1•-nblocks] of integer
Block: inout array [1••nblocks] of array [••] of MIRInst
Mark: in array [1**nblocks] of array [••] of boolean
UD, DU: in UdDuChain
Succ, Pred: inout integer — > set of integer

begin
i, j: integer
x, y: integer x integer
v: Var
Worklist: set of (integer x integer)
|| set of positions of essential instructions
Worklist := {<i,j> e integer x integer where Mark[i][j]}
while Worklist * 0 do

x := ♦Worklist; Worklist -= {x>
I| mark instructions that define values used by
I| required instructions
for each v e Vars_Used(Block,x) do

for each y e UD(v,x) do
if !Mark[y@l] [y@2] then

Mark[y@l][y@2] := true
Worklist u= {y>

fi
od

od
I| mark conditionals that use values defined by
I| required instructions
if Has.Left(Block[x@l][x@2].kind) then

for each y e DU(Block[x@l][x@2].left,x) do
if !Mark[y@l][y@2] & Block[y@l][y@2].kind

e {binif,unif,valif,bintrap,untrap,valtrap} then
Mark[y@l] [y@2] := true
Worklist u= {y}

fi
od

fi
od
Delete_Unmarked_Insts(nblocks,ninsts,Block,Succ,Pred,Mark)

end I I Dead_Code_Elim

FIG. 18.19 ican routine to detect and remove dead code.

Section 18.10 Dead-Code Elimination 595

FIG. 18.20 An example for dead-code elimination.

As an example of the algorithm applied to mir code, consider the flowgraph in
Figure 18.20. The ud- and du-chains for this flowgraph are as follows:

Variable
Definition Du-Chain

and

i in <B1,1> {<B2,1»
i in <B2,1> {<B2,1>,<B4,1»
j in <B1,2> {<B2,1>,<B2,2>,<]
j in <B2,3> {<B2,1>,<B2(2>,<]
k in <B1,3> {<B3,1»
k in <B3,1> {<B3,1»
1 in <B2,2> {<B3,2»
n in <B1,4> {<B2,4»

Variable Use Ud-Chain
i in <B2,1> {<B1,1>,<B2,1»
i in <B4,1> {<B2,1»
j in <B2,1> {<B1,2>,<B2,3»
j in <B2,2> {<B1,2>,<B2,3»
j in <B2,3> {<B1,2>,<B2,3»
j in <B2,4> {<B2,3»
j in <B3,1> {<B2,3»
j in <B4,1> {<B2,3»
kin <B3,1> {<B1,3>,<B3,1»
1 in <B3,2> {<B2,2»
nin <B2,4> {<B1,4»

596 Control-Flow and Low-Level Optimizations

Initially, the set of essential instructions consists of the print and the return,
so only Mark[B3] [2] = Mark[B4] [1] = true, and Worklist = {<B3,2>, <B4,1>}.

Now we begin marking instructions that contribute to the essential instructions.
First we remove x » <B3,2> from the worklist, resulting in Worklist = {<B4,1»,
and find that Vars_Used (Block, <B3,2>) = {1}. So we check the one member of the
ud-chain for 1 in <B3,2>, namely, <B2,2>, set Mark[B2] [2] = true, and add <B2,2>
to the worklist, resulting in Worklist = {<B4,1>,<B2,2».

Next we determine that Has_Left(Block[B3] [2] .kind) = false, so we move
on to the next element of the worklist. We remove x = <B4,1> from the worklist,
leaving it with the value Worklist = {<B2,2», and find that Vars_Used(Block,
<B4,1>) = {i,j>. So we set v = i and check each member of UD(i,<B4,l>) =
{<B2,1>>. We set Mark[B2] [1] = true and add <B2,1> to the worklist, resulting
in Worklist = {<B2,2>, <B2,1>}. Next we set v = j, and find that UD(j ,<B4,1>) =
{<B2,3>> resulting in setting Mark[B2] [3] = true and adding <B2,3> to the
worklist, so Worklist = {<B2,2>,<B2,1>,<B2,3)}. Next we determine that
Has_Left(Block[B4] [1] .kind) = false, so we move on to the next element of
the worklist.

Now we remove x = <B2,2> from the worklist, leaving it with the value
Worklist = {<B2,1>, <B2,3>>, and find that Vars_Used(Block,<B2,2>) = {j}. So
we set v = j and check each member of UD(j,<B2,2>) = {<B1,2>,<B2,3». This
results in setting Mark[Bl] [2] = true (Mark[B2] [3] is already true) and adding
<B1,2> to the worklist, i.e., Worklist = {<B2,1>, <B2,3>, <B1,2».

Next we remove <B2,1> from the worklist, leaving Worklist = {<B2,3>,
<B1,2>>. Vars_Used(Block,<B2,1>) = {i,j>, so we examine UD(i,<B2,l>) =
{<B1,1>, <B2,1». We set Mark[Bl] [1] = true and put <B1,1> on the worklist,
resulting in Worklist = {<B2,3>,<B1,2),<B1,1». Mark[B2] [1] is already set to
true, so we proceed to the next element of the worklist. Now UD(j,<B2,l>) =
{<B1,2>,<B2,3», both of which are already marked, so we move on.

Next we remove <B2,3> from the worklist, leaving it with the value Worklist
= {<B1,2>>. Now Vars_Used(Block, <B2,3>) = {j>, so we check whether either of
Mark[Bl] [2] and Mark[B2] [3] is marked. Both are already marked, so we proceed
to determine that Has.Left(Block[B2] [3] .left) = true, so we check each of
Block [B2] [1], Block [B2] [2], Block [B2] [3], Block [B2] [4], Block [B3] [1], and
Block [B4] [1] to determine whether the instructions in any of those positions are
conditionals and unmarked. Only Block [B2] [4] is, so we set Mark[B2] [4] = true
and add <B2,4> to the worklist, resulting in Worklist = {<B1,2),<B2,4».

N ow we remove <B1,2> from the worklist, leaving it with the value Worklist =
{<B1,1>, <B2,4>}. N ow Vars_Used(Block, <B1,2» = 0 and DU(Block[Bl] [2] ,j)
= {<B2,1>, <B2,2), <B2,3)}, all of which are already marked.

Next we remove <B1,1> from the worklist, leaving it with the value Work-
list = {<B2,4». Now Vars_Used(Block,<B1,1>) = 0, DU(Block[Bl] [1] ,i) =
{<B2,1>}, and <B2,1> is already marked.

Finally, we remove <B2,4> from the worklist, leaving it empty. Mark[B2] [4] is
already true, so the algorithm terminates with the value of Mark being as shown in
Figure 18.21(a) and the flowgraph resulting from performing dead-code elimination
is shown in Figure 18.21(b).

Section 18.11 Branch Prediction 597

Block Position Value

B1

B2

B3
B4
(a)

true
true
false
true
true
true
true
true
false
true
true

B4

(b)
FIG. 18.21 (a) The Mark table after identifying dead code and (b) the flowgraph in Figure 18.20

after dead-code elimination.

Knoop, Riithing, and Steffen [KnoR94] have extended dead-code elimination to
the elimination of partially dead code, where “partial” is used in the same sense as in
partial-redundancy elimination, i.e., dead on some paths but possibly not on others.

18.11 Branch Prediction
In this and the following section, we discuss optimizations that are almost always de
ferred until machine code has been generated. For this reason, they are often known
as postpass optimizations. Another common term for some of them is peephole op
timizations, because they can be carried out by moving a small window or peephole
across the generated code or its dependence DAG to look for opportunities to per
form them. Note that using the dependence DAG facilitates finding pairs (or larger
groups) of instructions that are connected by the functions they perform, such as load
ing an array element via a pointer and incrementing the pointer to the next element.

Branch prediction refers to predicting, either statically or dynamically, whether
a conditional branch causes a transfer of control or not. Accurate prediction of
branches is important because it allows a processor to fetch instructions on the
continuation path from an instruction cache into an instruction prefetch buffer, or
from main memory or a second-level cache into the instruction cache, ahead of the
execution of the branch that causes the transfer of control to them. As cache delays
become longer relative to cycle time, prediction becomes more and more important.

Dynamic methods of branch prediction include a variety of schemes, ranging
from a simple cache of the addresses of conditional branches and whether each
branched the last time it was executed, to larger caches that contain, for a set of

598 Control-Flow and Low-Level Optimizations

recent branches, the first few instructions at the target (the fall-through path need
not be cached, because the ordinary instruction-fetch mechanism applies to it). Of
course, such schemes require hardware resources to implement and may be quite
complex—for example, the latter scheme needs logic to invalidate a cache entry
if either a branch instruction or the code at its target or fall-through is changed
dynamically. Also, simpler schemes, such as the first one mentioned above, may not
be very effective—it may be the case, for example, that a particular branch alternates
between branching and not branching each time it is executed.

Static branch-prediction methods require much less hardware to implement and
have been shown to be almost as good as dynamic prediction. Some architectures,
such as sparc-V9, provide conditional branches with a means for specifying a static
branch prediction; some implementations of others, such as the Rios version of
power, have unequal delays for the taken and fall-through paths, so that choosing
the more likely path to be the one with less delay has significant benefit.

As a measure of the quality of static branch prediction, we define the perfect
static predictor as a predictor that by some means, perhaps oracular, predicts each
conditional branch instruction statically to branch or not branch in such a way as to
be correct at least 50% of the time for that branch. Thus, a perfect static predictor
is right 50% of the time if a branch causes a transfer of control exactly half the time
and does better than that if it takes one path (either path) more often than the other.
If the branch either always branches or never branches, it will be right 100% of the
time. The perfect static predictor, when computed dynamically over all branches in
a given program, provides an upper bound on how well any static predictor can do
for that program.

Some simple heuristics do better than average. For example, predicting a back
ward conditional branch to be taken is relatively successful, because most backward
branches close loops and most loops are executed more than once before exiting.
Similarly, predicting forward branches not to branch can be reasonably successful,
since some fraction of them test for exceptional conditions and branch around the
code that handles them.

Much better heuristics for static branch prediction are, for example, discussed
by Ball and Larus [BalL93], who improve on the simple backward heuristic men
tioned above by defining loop branches more exactly. Suppose that we are given
a flowgraph and have determined its natural loops (see Section 7.4). Define a loop
branch to be one that has an outgoing edge in the flowgraph that is either a back edge
or an exit edge from the loop;1 a nonloop branch is any other conditional branch. To
predict loop branches statically, we simply choose the back edge. This can be from
moderately to very successful for real programs.

For nonloop branches, several simple heuristics contribute to being able to
predict them much more successfully. For example, the opcode heuristic checks
for branches based on integer comparison to zero or a negative integer value and
equality tests between floating-point values. It predicts that integer branches for

1. As Ball and Larus note, it is possible for both outgoing edges to be back edges. They indicate
that they have not observed this to be the case in practice, but that if it did occur we should choose
the edge for the inner loop to be predicted.

Section 18.12 Machine Idioms and Instruction Combining 599

nonpositive values and floating-point equality branches do not branch, since the
former are frequently used as error indicators and the latter are rarely true. The loop
heuristic checks whether one successor basic block does not postdominate the block
containing the branch and is neither a loop header nor a preheader. If a successor
block satisfies this heuristic, the branch to it is predicted to branch.

This is an area in which research is ongoing. See Section 18.14 at the end of this
chapter for references to more recent work.

18.12 Machine Idioms and Instruction Combining
There are several varieties of optimization that can only reasonably be applied once
one has generated machine-specific code or that are best left to near the end of the
compilation process. If one does global optimization on a low-level intermediate
code, they can be performed earlier, but care needs to be taken in some cases to
make the most effective choices in performing them. An example of this is the case
discussed below of combining into a single instruction a memory reference via a
pointer to an array element and incrementing the pointer to the next element. While
some architectures—such as p a - r i s c , p o w e r , and PowerPC— allow this, it may not
be the best choice, since induction-variable optimizations may remove the increment
ing instruction, so we do instruction combining near the end of compilation.

Machine idioms are instructions or instruction sequences for a particular archi
tecture that provide a more efficient way of performing a computation than one
might use if one were compiling for a more generic architecture. Many machine id
ioms are instances of instruction combining, i.e., the replacement of a sequence of
instructions by a single one that achieves the same effect.

Since all R is e s execute most computational instructions in a single cycle, most
but not all machine idioms for R is e s combine pairs of instructions into single ones.
For other architectures—such as the VAX, the Motorola M 68000, and the Intel
386 family—there are machine idioms that replace single instructions by others that
require fewer cycles and others that combine several instructions into one.

In this section, we present some examples of machine idioms for several architec
tures. The examples are by no means exhaustive—they are simply intended to suggest
the range of possibilities. In most cases, we focus on a particular architecture. The pri
mary technique for recognizing opportunities to use machine idioms is pattern match
ing. The search has two main parts. The first part is looking for instructions whose
purpose can be achieved by faster, more specialized instructions. The second part be
gins by looking for an instruction that may be the first of a group that can be combined
into a shorter or faster sequence; finding one triggers a search for the other instruc
tion^) that are needed to form the appropriate group. Unless the target architecture
allows functionally independent instructions to be combined into one (as, in some
cases, was true for the Stanford m i p s architecture), the searching can be done most
efficiently and effectively on the dependence DAG, rather than on straight-line code.

For all Rise architectures, there is the opportunity to simplify code that con
structs full-width (i.e., 32-bit or 64-bit) constants, if the constants are discovered to
be short enough to fit in the immediate fields provided in instructions. While it is
desirable to completely avoid generating instruction sequences that construct long

600 Control-Flow and Low-Level Optimizations

constants when they’re not needed, it is often more desirable to simplify code gen
eration by generating them and leaving it to postpass optimization to simplify them
where possible. For example, the sparc sequence

sethi °/0hi (const) ,rl8
or r 18,°/0lo(const) ,rl8

which puts the value const into r l8 can be simplified if its high-order 20 bits are all
zeros or all ones to

add rO,const,r18
Next, consider multiplication of an integer variable by an integer constant. Sup

pose, in particular, that we are multiplying a variable in register r l by 5 and putting
the result in r2. In most architectures, we could do this by using the integer multiply
instruction, but it is generally a multicycle instruction and, in some machines such
as pa-risc , it requires moving the operands to floating-point registers and the result
back to an integer register. But there is a much less expensive way. For pa-risc, we
can simply generate the one-cycle instruction

SH2ADD rl,rl,r2
which shifts r l left two bits and adds its original value to that. For the others, we
can use a sequence corresponding to the lir instructions

r2 rl shl 2
r2 <- r2 + rl
For sparc, we can combine a subtract that produces a value with a test that

compares its two operands, so that, e.g.,

sub rl,r2,r3

subcc rl,r2,r0
bg LI

becomes

subcc rl,r2,r3

bg LI
For m ips, we can determine whether two values (assumed to be in r l and r2)

have the same sign without any branches by using the sequence

slti r3,rl,0
slti r4,r2,0
and r3,r3,r4

If the values have the same sign, r3 ends up equal to 1; otherwise, it equals 0.
In the Motorola 88000, pa-risc , and the Intel 386 architecture family, one can

access parallel arrays of bytes, halfwords, words, and doublewords with indexes
that increment by 1 by using scaled loads and stores. If r2 and r3 point to arrays of

Section 18.12 Machine Idioms and Instruction Combining 601

doublewords and halfwords, respectively, and r l indexes the elements o f the arrays,
then elements of the two arrays can be loaded and the index updated to access the
next elements o f both arrays by the M otorola 88000 sequence

ld.d r4,r2 [rl]
ld.h r6,r3[rl]
add rl,rl,l

in s te a d o f r e q u ir in g t w o s e p a r a te in d e x e s , o n e in c r e m e n t in g b y 2 a n d th e o t h e r b y

8 , a n d p e r h a p s a th ir d in d e x f o r c o u n t in g i t e r a t io n s o f th e lo o p .

In p a - r i s c , p o w e r , and PowerPC, one can do a load or store with increment
and replace the value in one of the registers that is used to form the memory address
with the new value of the address. In the latter two, the update always occurs after
the load or store, while for p a - r i s c , it can be specified to occur before or after the
operation. Thus, for example, one can access successive elements of an array of
halfwords in PowerPC by executing

lhau r3,2(rl)
r e p e a te d ly a n d in p a - r i s c b y

LDHS,MA 2(0,rl),r3
For p a - r i s c , one can terminate a loop with an add and branch instruction that

adds a register and either an immediate or a register, puts the result in the first
register, and then branches if the result satisfies a specified condition. Thus, a loop
over an array indexed by rl, with r2 containing the final value of the index, can be
terminated by the instruction

ADDBT,<= r2,rl,L1
where LI labels the first instruction of the loop body.

An instruction combiner may increase the number of superscalar instruction
groups that are required to execute a sequence of instructions. For example, suppose
we have an implementation with three pipelines (two integer and one floating
point) and an instruction sequence that can be grouped as shown in Figure 18.22(a),
where the sub must precede the b r and the add2 must follow the cmp. Combining

Int Int Fit

load addl f l t l
cmp sub f l t 2
br add2 f lt3

(a)

Int Int Fit

load addl f l t l
sub — f l t2
cmpbr — f l t3
add2 ? ?

(b)

FIG. 18.22 (a) Example of code for a superscalar processor for which instruction combining can
decrease performance, as shown in (b).

602 Control-Flow and Low-Level Optimizations

the cmp and the br into a compare and branch instruction (cmpbr) results in the
instructions requiring four issue slots, as shown in Figure 18.22(b), rather than
the three slots they originally needed. This effect can be mitigated by making the
instruction combiner and an instruction decomposer available as subroutines to
the instruction scheduler, so that it can try the possible instruction sequences to
determine which one produces the best schedule, but one needs to be careful to limit
the extent of such attempts, since most scheduling problems are at least NP-hard.

The reverse is also a possibility—including information about the pipeline struc
ture in the instruction combiner and structuring it to estimate the impact on sched
uling of the combinations it makes—but this is likely to significantly complicate the
combiner and not to work well in practice, since scheduling has a much wider win
dow on the code than a peephole optimizer usually does, unless it also works on the
basic-block DAG.

As noted above, these are only a few examples of machine idioms. The diligent
compiler writer will find many others by intimately getting to know the instruction
set being compiled for and by inspecting examples of generated code.

For cisc architecture implementations, there is sometimes a need for instruction
decomposing, the inverse of instruction combining, which turns an instruction into
a series of instructions that perform the same overall function. An example of this
can be seen in the Intel 386 architecture-family code generated for the subroutine
s i () and the corresponding main program in Figures 21.23 and 21.24. The inlined
code for the subroutine in the main program is cisc-style code, while that in the
subroutine is Rise-style (and unrolled by a factor of four). Note that either of these
could have been generated first and the other produced from it.

18.13 Wrap-Up
This chapter has covered control-flow optimizations, unreachable- and dead-code
elimination, and the remaining global optimizations that are best carried out on
low-level code, namely, static branch prediction, machine idioms, and instruction
combining. Some of these optimizations, such as dead-code elimination, may prof
itably be applied several times during compilation. Some are best carried out on
low-level intermediate code or on a structured form of assembly or machine lan
guage.

Most of these optimizations, other than dead-code elimination, have minimal
impact when applied once to a particular code segment. However, applying them all
to an entire procedure may result in substantial savings, especially if the ones that
apply to loops are used heavily.

The control-flow transformations that produce longer basic blocks have the
potential to increase available instruction-level parallelism, which is particularly
important for superscalar implementations.

Dead-code elimination removes instructions that can be determined to have no
effect on the result of a computation. It is an important optimization, not only be
cause some programs contain dead code as originally written, but also because many

Section 18.13 Wrap-Up 603

FIG. 18.23 Order of optimizations with control-flow and low-level optimizations in bold type.
(continued)

of the other optimizations create dead code. We recommend that it be performed
several times during optimizing compilation, as shown in Figure 18.23.

Branch prediction continues to increase in importance as cache delays become
longer relative to processor cycle time. Accurate prediction is important because it
increases the chance that the processor will fetch the correct continuation path from
the instruction cache or from another unit beyond it in the memory hierarchy.

The other optimizations discussed in this chapter are the postpass, or peephole,
ones. They include machine idioms and instruction combining and are generally
among the last optimizations performed and are always done after code generation.

6 0 4 Control-Flow and Low-Level Optim izations

FIG. 18.23 (continued)

They can be performed by moving a small window or peephole across the generated
code or over the dependence DAGs for the basic blocks to look for code sequences
they apply to.

The suggested order of optimizations in an aggressive optimizing compiler is
given in Figure 18.23; optimizations covered in this chapter are highlighted in bold
type.

18.14 Further Reading
Unswitching is first discussed in [AllC72a].

The dead-code detection algorithm given in Section 18.10 is derived from one
developed by Kennedy [Kenn81].

Knoop, Riithing, and Steffen’s extension of dead-code elimination to eliminate
partially dead code is found in [KnoR94].

Comparison of the branches actually taken to the perfect static predictor to
determine the effectiveness of branch prediction schemes was developed by Ball
and Larus [BalL93]. That paper also describes several useful heuristics for branch
prediction. More recent papers, such as [Patt95] and [CalG95], describe still better
heuristics.

The Stanford mips architecture is described in [GilG83].

Section 18.15 Exercises 605

. 15 Exercises
18.1 Write an i c a n procedure to detect and perform the i f simplifications discussed in

Section 18.3.

18.2 Write an i c a n procedure that detects opportunities for tail merging in l i r code and
that transforms the code accordingly. Is there anything to be gained by searching the
DAGs for the basic blocks for common sequences that end with leaves or for sets of
independent instructions that occur as leaves or their predecessors?

18.3 Give three examples of useful instruction sequences that can be made more efficient
by using conditional moves.

18.4 Show that the dead-code elimination algorithm in Figure 18.19 recognizes and
eliminates definitions of sets of variables v j, t/3, . . . } that only contribute to
defining each other and hence are not essential.

18.5 Instrument the source code of a nontrivial-size program you have available to com
pute and print statistics for each conditional branch that indicate what fraction of
the time it branches. Can you infer from the results any useful rules for static branch
prediction?

18.6 Design a pattern language for assembly-language instruction sequences that can be
combined or transformed as machine idioms. You will need a way, for example, to
represent registers abstractly so that you can require that the same register be used
in two instructions without pinning it down to a specific register.

18.7 Write a program that searches assembly language for opportunities to use instruction
combining and machine idioms represented in the pattern language designed for
Exercise 18.6 and that applies them to the code. The program should take as its
input a file of patterns and a file of assembly language to which to apply them.

CHAPTER 19

Interprocedural Analysis
and Optimization

M odularity has long been regarded as a virtue in program construction—
and rightly so, since proper decomposition into procedures encourages
the creation of well-designed programs that are easier to understand
and maintain. In recent years, object-oriented languages have pushed this trend

even further. While some languages, such as C++, provide the programmer with an
explicit way to declare that a procedure should be expanded in-line, most encourage
the view that a procedure consists of an interface and a black box implementing
it or, more generally, that a data type or class consists of an interface and one
or more black boxes that implement it. This approach encourages abstraction and
hence contributes to good program design and maintainability, but it also inhibits
optimization and so may result in less efficient code than would otherwise result.
Lacking interprocedural control- and data-flow information, one must generally
assume that a called procedure may use or change any variable it might be able
to access and that a procedure’s caller provides arbitrary values as parameters. Both
of these assumptions clearly inhibit optimization.

Almost all the optimizations we have considered so far have been intraproce
dural. That is, they are applied within a single procedure, without regard to the
calling context in which that procedure is used or the procedures it calls. Only tail-
call optimization (Section 15.1), procedure integration (Section 15.2), and inlining
(Section 15.3) are in any way interprocedural.

Interprocedural optimizations are ones that use the calling relationships among
a set of procedures to drive optimizations in one or more of them or in how they
relate to each other. For example, if one could determine that every call to a pro
cedure f (i , j ,k) in a program passed the constant 2 as the value of i , this would
enable constant propagation of the 2 into f () ’s code. Similarly, if one could deter
mine that every call passed either 2 or 5 as the value of i and identify which calls
passed which value, one could replace f () by two procedures f _2() and f _5()—
a process called procedure cloning—and the calls to f () by calls to the appropriate

607

608 Interprocedural Analysis and Optimization

one of them. Similarly, if one knows that a called procedure modifies only its own
local variables and particular parameters, one may freely optimize the code around
calls to it, as long as one takes into account the procedure’s known effects.

As for the intraprocedural case, interprocedural optimization consists of a se
ries of phases that do control-flow analysis, data-flow analysis, alias analysis, and
transformations. It differs from intraprocedural optimization in that many of the
benefits of interprocedural analysis derive from improving the effectiveness and ap
plicability of optimizations within individual procedures, rather than transforming
the relationships among procedures. In this chapter, we explore the following:

1. interprocedural control-flow analysis and, in particular, construction of a program’s
control-flow graph;

2. several varieties of interprocedural data-flow analysis, including both flow-sensitive
and flow-insensitive side-effect analysis and constant propagation;

3. interprocedural alias analysis;

4. how to use the information gained from interprocedural analysis to do optimization;
and

5. interprocedural register allocation.

We assume in the remainder of this chapter that all parameters are passed by
reference, unless mentioned otherwise, and we leave it to the reader to adapt the
methods discussed to other parameter-passing disciplines. Note that passing a non
pointer as a value parameter creates no aliases, while passing a pointer as a value
parameter is closely akin to passing the object it points to by reference.

Some studies suggest that interprocedural analysis is unproductive or too expen
sive to be worthwhile (see Section 19.10 for references). For example, Richardson
and Ganapathi investigated the effectiveness of interprocedural optimization in com
parison to procedure integration. They found that procedure integration is very
effective at enhancing optimization, but that compilation is slowed down signifi
cantly by it, often by as much as a factor of 10. On the other hand, the limited
interprocedural analysis they did showed comparatively little benefit in optimiza
tion. Also, interprocedural analysis can be an expensive addition to a compiler and
increases the complexity of the compiler. In general, the typical cost and impact of
interprocedural analysis are, as yet, not well understood. Some evidence suggests
that it is more valuable for parallelizing compilers than for compilers for sequential
machines.

Separate compilation impacts the effectiveness of interprocedural analysis and
optimization, since one can’t determine the effects of routines that have not been
compiled yet. On the other hand, modern programming environments typically
provide a repository for compilation units, their relationships, and information
about them. This facilitates interprocedural analysis by providing a way to save and
access the relevant information (see Section 19.8).

The distinctions between may and must information and flow-sensitive and
flow-insensitive information discussed at the beginning of Chapter 10 and in Sec
tion 11.2 apply to interprocedural optimization also. In particular, the M O D () and
REF() computations discussed in Section 19.2.1 are examples of flow-insensitive

Section 19.1 Interprocedural Control-Flow Analysis: The Call Graph 609

problems and the D E F () and U SE () functions are examples of flow-sensitive prob
lems. Also, DEF() is must summary information, while USE() is may summary
information.

19.1 Interprocedural Control-Flow Analysis:
The Call Graph
The problem addressed by interprocedural control-flow analysis is construction of
a program’s call graph.1 Given a program P consisting of procedures p i , . . . ,p w,
the (static) call graph of P is the graph Gp (or, usually, just G) = (N, S, E, r) with
the node set N = { p i , . . . , p „}, the set S of call-site labels,1 2 the set E c N x N x S
of labeled edges, and the distinguished entry node r e N (representing the main
program), where for each e = (p/, s^,p7), s*, denotes a call site in pz from which p;
is called. If there is only one call from procedure pt to p;, we may omit the call site
s& and write the edge as p,->py.

As an example of a call graph, consider the program skeleton in Figure 19.1.
Procedure f calls g and h, g calls h and i , and i calls g and j ; note that there are
two calls from f to g. The call graph for this program is shown in Figure 19.2. The
entry node is indicated by the heavy circle and the two calls from f to g by the two
labels on the edge connecting them.

Like depth-first order and its relatives in intraprocedural analysis, there are
orders that are useful in several kinds of interprocedural problems, at least for nonre-
cursive programs. One is known as invocation order and corresponds to processing
a procedure before all its callees, i.e., breadth-first search of the call graph. Simi
larly, reverse invocation order processes a procedure after its callees. If our example
in Figures 19.1 and 19.2 lacked the call from i to g, then f , g , h , i , j would be an
invocation-order listing of its nodes. As our example shows, the procedures in a re
cursive program do not have such an order, unless we collapse strongly connected
components to single nodes and are concerned with calls between them.

Two other orders that are of use in interprocedural analysis refer to the static
nesting of procedures. Outside-in order deals with each procedure before the ones
statically (or lexically) enclosed within it. Inside-out order deals with each procedure
after the ones statically enclosed within it. For our example, j , f , g , h , i is an inside-
out order of the call graph.

There are two issues that can make constructing call graphs difficult, namely,
separate compilation and procedure-valued variables. Without them, constructing a
program’s call graph is an easy exercise, as shown by the i c a n code for the procedure
Build_Call_Graph() in Figure 19.3. In the algorithm, P is the set of procedures

1. As we shall see, the call graph is actually a m ultigraph , with multiple directed edges from one
node to another, or, alternatively, multiple labels on some edges. However, like most authors in this
field, we refer to it as simply a graph.
2. Note that in higher-level languages, line numbers are usually not sufficient to serve as call-site
labels, since more than one call may be made from a single line of code.

610 Interprocedural Analysis and Optim ization

1 procedure f ()
2 begin
3 c a ll g()
4 c a ll g()
5 c a ll h()
6 end I I f
7 procedure g()
8 begin
9 c a ll h()
10 c a ll i ()
11 end I I g
12 procedure h()
13 begin
14 end I I h
15 procedure i ()
16 procedure j ()
17 begin
18 end I I j
19 begin
20 c a ll g()
21 c a ll j ()
22 end I I i

FIG. 19.1 A program skeleton.

FIG. 19.2 Call graph for the program skeleton in Figure 19.1.

that make up the program whose call graph is to be constructed, N is the set of nodes
in the graph,3 r is the root procedure (often called main), and E is the set of labeled
edges in the graph. The labels denote the call sites, i.e., < p ,/,g > e E if and only if
call site i in procedure p calls q. The procedures used in the algorithm are as follows:

1. n um insts(p) is the number of instructions in procedure p.

2. c a l l s e t (p ,z) returns the set of procedures called by the zth instruction in proce
dure p.

3. Note that P = N as long as every procedure in P is reachable from r.

Section 19.1 Interprocedural Control-Flow Analysis: The Call Graph 611

LabeledEdge = Procedure * integer * Procedure

procedure Build_Call_Graph(P,r ,N,E,numinsts)
P: in set of Procedure
r : in Procedure
N: out set of Procedure
E: out set of LabeledEdge
numinsts: in Procedure —> integer

begin
i : integer
p, q: Procedure
OldN := 0: set of Procedure
N := {r>
E := 0
while OldN * N do

p :« ♦(N - OldN)
OldN := N
for i := 1 to numinsts(p) do

for each q e c a llse t(p ,i) do
N u= {q>
E u= { < p , i ,q »

od
od

od
end I I Build_Call_Graph

FIG. 19.3 Constructing the call graph.

3,4 5

0

©

©

©IT©
FIG. 19.4 Partial call graphs resulting from separate compilation of parts of Figure 19.1.

Separate compilation can be bypassed as an issue by doing interprocedural
analysis and optimization only when an entire program is presented to a compiler
at once, or it can be handled by saving, during each compilation, a representation
of the part of the call graph seen during that compilation and building the graph
incrementally. In our example above, if f and g constituted one compilation unit
and the other three procedures another, then we would have the two partial call
graphs shown in Figure 19.4, and the interprocedural optimizer could “glue” the
two graphs together to make a complete static call graph.

612 In terprocedu ral A n alysis and O ptim ization

P, N, W: set of Procedure
E: set of LabeledEdge
PVVs: set of ProcVar
PVCalls: set of LabeledEdge
PVVals: ProcVar —> set of Procedure
PVBinds: ProcVar — > set of ProcVar
preturns: Procedure x integer x Var x Procedure x Var

procedure Build_Call_Graph_with_PVVs(r,Inst,numinsts)
r: in Procedure
Inst: in Procedure — > array [••] of Instruction
numinsts: in Procedure — > integer

begin
p, q, u, v: ProcVar u Procedure
i, j: integer
more, change: boolean
N := W := {r}
E := PVVs := PVCalls := PVVals := PVBinds := 0
I| repeat until the call graph stops expanding
repeat

more := false
I| accumulate procedure-valued variables and
I| constants, calls, values, and bindings
while W * 0 do

p :« *W; W — {p>
for i := 1 to numinsts(p) do

more V= Process.Inst(p,i,Inst)
od

od
FIG. 19.5 Constructing the call graph with procedure-valued variables.

The call-graph construction algorithm is simple enough that we choose to pro
vide no example of its operation. The reader can easily construct one.

Procedure-valued variables present a more difficult problem. Weihl [Weih80]
has shown that constructing the call graph of a recursive program with proce
dure variables is PSPACE-hard, so this process can be very expensive in both
time and space. One approach to doing so is to construct the call graph incre
mentally, as shown by the code in Figures 19.5, 19.6, and 19.7, which imple
ments three procedures B uild_C all_G raph_w ith_PV V s() , P r o c e s s .I n s t (), and
P r o c e s s _ C a l l (), respectively. For now, ignore the outermost re p e a t loop in
Build_C all_G raph_w ith_P V V s(). We begin by constructing as much of the graph
as is evident from explicit calls. Then we determine initial sets of values for the pro
cedure variables and propagate them to all possible uses—i.e., to procedure-valued
parameters, assignments, and returns—and from there to the call sites that use those
procedure-valued variables. The procedure P r o c e s s . I n s t (p 9i 9Inst) handles each
instruction in a procedure, while P r o c e s s _ C a l l (/ ? , / ,g) deals with calls. The al
gorithm uses four data structures to record information about procedure-valued
variables, as follows:

Section 19.1 Interprocedural Control-Flow Analysis: The Call Graph 613

I I propagate bindings
* repeat

change := false
for each u e PVVs do

for each v e PVVs (v * u) do
if v e PVBinds(u)

& PVBinds(u) * PVBinds(v) then
PVBinds(u) u= PVBinds(v)
change := true

fi
od

od
until !change
I| add nodes and edges to the call graph
for each <p,i,q> e PVCalls do

for each u e PVVals(q) do
N u= {u}
E u= {<p,i,q»
W u= {u}

od
for each u e PVBinds(q) do

for each v e PVVals(u) do
N u= {v}
E u= {<p,i,v>}
W u= {v}

od
od

od
until Imore

end || Build_Call_Graph_with_PVVs
FIG. 19.5 (continued)

proc_const, proc_var: Opereuid — > booleeui
nparams: Procedure — > integer
param: (Procedure x integer) — > Opereuid
arg: (Procedure x integer x integer) — > Operand
in.param, out_param: (Procedure x integer) — > Operand

procedure Process_Inst(p,i,Inst) returns boolean
p: in Procedure
i: in integer
Inst: in Procedure — > array [••] of Instruction

begin
q, u, v: ProcVar u Procedure
j: integer
more := false: booleeui

(continued)

FIG. 19.6 The procedure P r o c e s s .I n s t () used in constructing the call graph with procedure
valued variables.

614 In terprocedu ral A nalysis and O ptim ization

I I accumulate calls
for each q e callset(p,i) do

more V= Process_Call(p,i,q)
if preturns(p,i,u,q,v) then

if proc_const(v) then
PVVs u= {u}
PVVals(u) u= {v}
if v £ N then

more := true
fi

else
PVVs u= {u,v}
PVBinds(u) u= {v}

fi
fi

od
if Inst(p)[i].kind = valasgn

& proc_var(Inst(p)[i].left) then
I| accumulate bindings
if proc_const(Inst(p)[i].opd.val) then

PVVs u= {Inst(p)[i].left}
PVVals(Inst(p)[i].left) u= {Inst(p) [i].opd.val}
if Inst(p)[i].opd.val £ N then

more := true
fi

else
PVVs u= {Inst(p)[i].left,Inst(p)[i].opd.val}
PVBinds(Inst(p)[i].left) u= {Inst(p)[i].opd.val}

fi
fi
return more

end I I Process_Inst
FIG, 19.6 (continued)

procedure Process_Call(p,i,q) returns boolean
p: in Procedure
i: in integer
q: in ProcVar u Procedure

begin
j: integer
more := false: boolean
if proc_const(q) then

I I add nodes and edges to the call graph
N u= {q}
E u= {<p,i,q>}
W u= {q}

FIG. 19.7 The procedure P ro c e ss_ C a ll() used in constructing the call graph with procedure
valued variables.

Section 19.1 Interprocedural Control-Flow Analysis: The Call Graph 615

I I deal with passing procedure-valued objects as parameters
for j := 1 to nparams(q) do

if proc_var(param(q,j)) & in_param(q,j) then
if proc_const(arg(p,i,j)) then

PVVs u= {param(q,j)}
PVVals(param(q,j)) u= {arg(p,i,j)>
if arg(p,i,j) ̂N then

more := true
fi

else
PVVs u= {param(q,j),arg(p,i,j)}
PVBinds(param(q,j)) u= {arg(p,i,j)}

fi
fi
I| and return of procedure-valued objects
if proc.var(param(q,j)) & out_param(q,j) then

if proc.const(arg(p,i,j)) then
PVVs u= {arg(p,i,j)}
PVVals(arg(p,i,j)) u= {param(q,j)>
if param(q,j) t N then

more := true
fi

else
PVVs u= {param(q,j),arg(p,i,j)}
PVBinds(arg(p,i,j)) u= {param(q,j)>

fi
fi

od
else

PVVs u= {q>
PVCalls u= {<p,i,q»

fi
return more

end I I Process_Call
FIG. 19.7 (continuedj

1. PVVs records all the procedure-valued variables.

2. PVCalls records call sites that invoke procedure-valued variables.

3. PVVals records the procedure constants that are assigned, bound, or returned to
procedure-valued variables.

4. PVBinds records the procedure-valued variables that are assigned, bound, or re
turned to procedure-valued variables.

There are nine types of actions in a program that concern procedure-valued vari
ables. They and the initial actions we take for them are as follows:

616 Interprocedural Analysis and Optimization

1. Call to a procedure-valued variable vp at site s in procedure p : put the triple <p,s,i/p>
into PVCalls.

2. Bind a procedure constant p as an actual argument to a procedure-valued formal
parameter vp: put the <i/p,p> pair into the finite function PVVals and put vp into
PVVs.

3. Bind a procedure-valued variable vp as an actual argument to a procedure-valued
formal parameter fp: put a <i/p/p> pair into the finite function PVBinds and put
both procedure variables into PVVs.

4. Assign one procedure-valued variable vpl to another vpl: put the <i/pl,i/p2> pair
into PVBinds and put both procedure variables into PVVs.

5. Assign a procedure constant p to a procedure-valued variable vp: put the <i/p,p> pair
into PVVals and put vp into PVVs.

6. Bind a procedure-valued variable vp to a procedure-valued output parameter fp of a
call: put the <vp jp> pair into PVBinds and put both procedure variables into PVVs.

7. Bind a procedure constant p to a procedure-valued output parameter fp of a call:
put the </p,p> pair into PVVals and put fp into PVVs.

8. Return a procedure-valued variable vpl to a procedure-valued variable vpl: put the
(vpl^vpiy pair into PVBinds and put both procedure variables into PVVs.

9. Return a procedure constant p to a procedure-valued variable vp: put the <i/p,p>
pair into PVVals and put vp into PVVs.

After these initial actions, we construct from PVCalls, PVVals, and PVBinds,
for each procedure-valued variable, the set of procedure-valued variables that
can be bound, assigned, or returned to it; then we construct a call-graph edge
for each call site from which a procedure-valued variable is called and for each
procedure constant that may be bound as its value. The outermost loop in
Build_Call_Graph_with_PVVs() takes care of the possibility that one or more
parts of the program are reachable only by means of calls through procedure-valued
variables.

The procedures used in the algorithm are as follows: 1

1. num insts(p) is the number of instructions in p.

2. In st(p) [1 • •num insts(p)] is the array of instructions that make up procedure p.

3. c a l l s e t (p,z) returns the set of procedures called by the zth instruction in proce
dure p.

4. p ro c .co n st(p) returns true if p is a procedure constant, and f a l s e otherwise.

5. proc_var(p) returns tru e if p is a procedure-valued variable, and f a l s e otherwise.

6. nparams (p) returns the number of formal parameters of procedure p.

Section 19.1 Interprocedural Control-Flow Analysis: The Call Graph 617

procedure f()
f begin
1 call g()

end
procedure g()
begin

g p: Procedure
1 p := h
2 call p()
3 call j(i)

end
procedure h()

h begin
1 call i()

end
procedure i()

i begin
1 call g()

end
procedure j(a)

a: Procedure
j begin
1 call a()

end
FIG. 19.8 An example program skeleton with procedure-valued variables.

7. a r g (p , i ,/) returns the /th actual argument of the procedure called by the ith instruc
tion in p .

8. param (p ,/) returns the ; th formal parameter of procedure p.

9. in .param (p ,i) returns tru e if the zth parameter of p receives a value from its caller,
and f a l s e otherwise.

10. out_param (p,z) returns tru e if the zth parameter of p returns a value to its caller,
and f a l s e otherwise.

11. p re tu rn s (p ,i ,u ,q ,v) returns tru e if the zth instruction in p calls procedure g,
which returns its value in variable z/, which in turn is assigned to p ’s variable u .

This propagation process yields a conservative approximation of the call graph,
but it may require exponential time for recursive programs, so it needs to be applied
with care. Note that what we have produced is flow-insensitive may call information;
it is possible to make it flow sensitive, but that incurs another increase in computa
tional cost. Note also that there is still a practical case we have not handled, namely,
call-backs from library routines to procedures in the program.

As an example of constructing the call graph for a program with procedure
valued variables, consider the program skeleton shown in Figure 19.8. Assuming
that f () is the main procedure, initially we have N = W = { f >; and E, PVVs, PVCalls,

618 Interprocedural A nalysis and O ptim ization

PVVals, and PVBinds are all empty. The for loop immediately inside the out
ermost (repeat) loop in Build_Call_Graph_with_PVVs(f,Inst,numinsts) sets
p = f, W = 0, and i = 1 and calls Process.Inst (f, 1, Inst). Process_Inst () calls
Process_Call (f, 1, g), which sets N = {f, g}, E = {<f, 1,g>}, and W = {g}, and re
turns false. Then Process.Inst() returns false.

Next, the for loop sets p to g, W to 0 and i to 1 and proceeds to call
Process_Inst(g,l,Inst), which determines that Inst(g) [1] is p : = h and that
h is a procedure constant, and so sets PVVs = {p} and PVVals(p) = {h}, and returns
true. So the variable more in Build_Call_Graph_with_PVVs() is set to true.

Next, i is set to 2 and Process.Inst(g,2,Inst) is called. It calls
Process_Call(g,2,p), which sets PVVs = {p} and PVCalls = {<g,2,p», and re
turns false.

Next, i is set to 3 and Process_Inst(g,3,Inst) is called, which, in turn,
calls Process_Call(g,2,j), resulting in N = {f,g,j}, E = {<f,l,g>, <g,3,j»,
W = {j}, and PVVals(a) = {i}, and which returns true.

Next, p is set to j, W to 0, and i to 1, and we call Process_Inst(j ,l,Inst),
which in turn calls Process_Call(j , 1 ,a). Process_Call() sets PVVs = {p,a}and
PVCalls = {<g,2,p>,<j ,l,a>}, and returns false.

Now W is empty, so the main routine enters the inner rep ea t loop marked with
an asterisk in Figure 19.5. The condition within the nested fo r loops is not satisfied,
so the main routine enters the following fo r loop, which sets N = { f , g , j , h , i > ,
E = {<f, 1 ,g > , < g ,3 , j> , < g ,2 ,h > , <j , l , i » , and W = {h ,i> .

Since more = tru e , the main loop is repeated, this time leaving N as is, set
ting E = {<f, 1 ,g > , < g ,3 , j> , < g ,2 ,h >, <j , 1,i > , <h, 1,i > , < i , l , g » , and set
ting W = 0. No further changes occur to the data structures, and the final call graph
is as shown in Figure 19.9.

O f course, programs that create new code at run time make it impossible to
construct a complete static call graph.

FIG. 19.9 Call graph of the program skeleton with procedure-valued variables shown in
Figure 19.8.

Section 19.2 Interprocedural Data-Flow Analysis 619

19.2 Interprocedural Data-Flow Analysis
The issue addressed by interprocedural data-flow analysis is determining a useful but
conservative approximation of how a program manipulates data at the level of its
call graph. The most useful such information generally consists of knowing (1) what
variables may be modified as side effects of a procedure call and (2) what parameters
of a called procedure have constant values when it is called from a particular call
site. Knowing the range of possible side effects of a call allows us to freely optimize
the code around the call, as long as we avoid variables that may be affected by the
called procedure. Knowing that one or more parameters have particular constant
values in a given call allows us to determine whether it may be useful to clone a
copy of the procedure’s body for that call site and then to optimize it based on the
constant parameter values. Such information may also be useful in driving procedure
integration decisions (see Section 15.2).

Of course, aliasing complicates interprocedural analysis as it does intraproce
dural problems. We deal with alias computation and integrating its results with
alias-free interprocedural data-flow analysis in Section 19.4.

19.2.1 Flow-Insensitive Side-Effect Analysis
As suggested above, the goal of interprocedural side-effect analysis is to determine,
for each call site, a safe approximation of the side effects that the procedure invoked
at that call site may have. We include in that approximation any side effects of
procedures called from that site, and so on.

We characterize side effects by four functions from instructions to sets of vari
ables. Instructions, including call sites, are represented by (procedure name,instruc
tion number) pairs. The functions are

DEE, MOD, REE, USE : Procedure x in teger —> se t of Var

as follows:

DEE(p, i) - the set of variables that must be defined (i.e., that are definitely assigned
values) by executing the zth instruction in procedure p.

M OD(p , i) = the set of variables that may be modified (i.e., that may be assigned values)
by executing the zth instruction in procedure p .

REE(p, i) = the set of variables that may be referenced (i.e., that may have their values
fetched) by executing the zth instruction in procedure p.

, i) = the set of variables that may be referenced (i.e., that may be fetched) by the
instruction in procedure p before being defined by it.

These functions are easy to compute for individual instructions that do not involve
calls, as long as we disregard aliasing, discussion of which we postpone until Sec
tion 19.4. To represent these sets with aliasing disregarded, we prefix a D to the
sets’ names, e.g., alias-free MOD is DMOD. For example, DDEE(p, i) for an as
signment instruction v <- exp is {i/} and for a predicate pred it is 0, assuming that

620 Interprocedural Analysis and Optimization

the expression and predicate include no calls. Similarly, DREF(p , i) for the assign
ment instruction is the set of variables that occur in exp and, for the predicate, the
set of variables that occur in pred.

As an example, we concentrate on computing DMOD, using an approach based
on the work of Cooper and Kennedy (see Section 19.10 for references).

Throughout this section, we use the program in Figure 19.10 as an example.
Its static nesting structure and call graph are shown in Figure 19.11. Note that
there are three distinct j s in the program—the global variable in main(), the local
variable in n(), and the formal parameter of m(), which we denote by j l9 j 2, and
j 3, respectively, in what follows. To allow totally general naming of variables and
parameters, we would need to identify the sequence of procedures each variable is
nested in, e.g., we might denote the global j by <j , [main] >, the local j in g () by
<j , [main,g] >, and the parameter j of m() by <j , [main,g,n,m] >.

First we define the following:

1. LM OD (p , i) is the set of variables that may be modified locally by executing the /th
instruction in procedure p (excluding the effects of procedure calls that appear in
that instruction).

2. IMOD(p) is the set of variables that may be modified by executing procedure p
without executing any calls within it.

3. IM OD+ (p) is the set of variables that may be either directly modified by procedure
p or passed by reference to another procedure and that may be modified as a side
effect of it.

4. GMOD(p) is the set of all variables that may be modified by an invocation of
procedure p.

5. RMOD(p) is the set of formal parameters of p that may be modified as side effects
of invoking procedure p.

6. Nonlocals(p) is the set of variables that are visible in procedure p but that are not
local to it.

7. Formals(p) is the set of formal parameters of procedure p.

8. numinsts(p) is the number of instructions in procedure p.

9. callsites(p) is the set of integers i such that the zth instruction in procedure p calls
some procedure.

10. callset(p , i) is the set of procedures called from the zth instruction in procedure p . 4

11. nested(p) is the set of procedures statically nested in procedure p.

4. Note that in our intermediate languages hir, mir, and lir, an instruction may call at most one
procedure. However, we allow for multiple calls per instruction to illustrate how to encompass that
situation.

Section 19.2 Interprocedural Data-Flow Analysis 621

procedure main()

f

global i , j , e
procedure f(x)
begin

1 i := 2
2 j := g (i ,x)
3 i f x = 0 then
4 j x + 1
5 f i
6 return j

m

end I| f
procedure g(a,b)

loca l j
procedure n (k ,l)

procedure m(w,y,j)
begin

1 j := n(w,i)
2 return y + j

n
end |I m

begin
1 k := j + 1
2 CN1II
3 return k + m (i,i ,k)

g
end |I n

begin
1 i f a > 1 then
2 a := b + 2
3 else
4 b := h(a,b)
5 f i
6 return a + b + n(b,b)

h

end |I g
procedure h(c,d)
begin

1 e := e /g (l,d)
2 return e

main
end I I h

begin
1 c a ll f (i)

end || main

FIG. 19.10 An example program used throughout this section.

12. bpj^{) is the function that maps formal parameters in procedure q to their cor
responding formal parameters at instruction i in procedure p, which is assumed to
include a call to q . Variables global to both p and q are passed through from p to q
also.

13. Inst() is the function that, for a procedure p, yields the array of instructions that
make up p in order, namely, Inst(p)[1 • • numinsts(p)).

6 2 2 In terp roced u ral A n aly sis and O ptim ization

main main o
n f o

m

m
(a) (b)

FIG. 19.11 (a) Static nesting structure and (b) call graph of the program in Figure 19.10.

N ow D M O D(p, i) can be com puted as the union o f LMOD(p, i) (which can
be com puted easily for any instruction) with a union o f generalized modification
sets GMOD(), for procedures q called from instruction i in procedure p, filtered
through a bp̂ q{) function that m aps form ats o f q to the corresponding formats of
p , that is

GMOD(p) can be computed as the union of IMOD+(p) with the union of
GMOD() values (restricted to nonlocal variables) for all the call sites in p, i.e.,

IMOD^(p) is the union o f IMOD(p) with the union of all the RMOD(q) values
for all procedures q called from p, filtered through a bp^q{) function, as follows:

DMOD(p, i) = LMOD(p, i) U | J bp̂ q(GMOD(q))
qecallset(pyi)

GMOD(q) D Nonlocals(q)
1 <i<numinsts(p) qecallset(pj)

IMOD+(p) = IMOD(p) U [J (J bp^q(RMOD(q))
iecallsites(p) qecallset(pj)

Section 19.2 Interprocedural Data-Flow Analysis 623

IMOD: Procedure — > set of Var

procedure Compute.IMOD(p,P)
p : in Procedure
P: in set of Procedure

begin
V := 0: set of Var
i : integer
q: Procedure
I I apply data-flow equations to compute IMOD
for i := 1 to numinsts(p) do

V u= LM0D(p,i)
od
IMOD(p) := V

end || Compute.IMOD
FIG. 19.12 ican algorithm to compute IMOD() for a program P.

Finally, IM O D (p), i.e.,

IM OD(p) = |J LM O D (p, i)
1 <i<num insts{p)

Note that IMOD can be computed easily, so computing DM OD efficiently
reduces to computing RM OD and GM OD efficiently.

To compute RM O D , we use a data structure called the binding graph. While
this could be done by standard interprocedural data-flow analysis, the approach
described here is more efficient. The binding graph B = (Nb, E b)5 for a program
P has nodes in N b that represent the formal parameters in P and edges in E b that
represent bindings of a caller’s formal parameters to a callee’s parameters. If at some
call site in p there is a call of q that binds formal parameter x of p to formal
parameter y of q , then there is an edge x^>y in E b— or transitively, through some
number of calls, x is bound to a formal parameter z of some procedure r, then there
is also an edge x->z in E b. Note that only uses of a procedure’s formal parameters
as actual arguments to a called procedure generate edges in E b.

The ican routine Compute_IMOD() in Figure 19.12. For our example program,
the values of Nonlocals and IM OD are as shown in Table 19.1.

The ican routine Build_Binding_Graph() in Figure 19.13 constructs the bind
ing graph for a program P. The value of nparam s(p) is the number of formal
parameters of p, and param (p,z) is the zth formal parameter of p . The value of
p a s se d (p , i 9q , x 9y) is tru e if instruction i in procedure p calls procedure q and
binds p ’s formal parameter x to q's formal parameter y, and f a l s e otherwise.

To build the binding graph for the program in Figure 19.10, we initially set
P = {m ain ,f ,g ,h ,n ,m }, N = 0, E = 0, and oldE = 0. Assuming that we process pro-

5. This is a Gfeek uppercase beta, not the Roman letter B.

624 Interprocedural Analysis and Optimization

TABLE 19.1 Values of Nonlocals() and IMOD() for the program in Figure 19.10.

Nonlocals(main) = 0 /MOD(main) = 0

Nonlocals(f) = {©»i »ji> IMOD(f) = f i . j l)
Nonlocals(g) = le »i. Ji) IMOD(g) = {a,b}
Nonlocals(n) = { a ,b ,e , i , j2} IMOD(n) = {k,l}
Nonlocals(m) = {a ,b ,e ,i ,k ,l} IMOD(m) = {J3I
Nonlocals(h) = (e .i . j i) IMOD(h) = {e)

cedure main() first, we encounter a call in line 1, so we have p = main, i = 1, and
q = f , and we call Bind_Pairs(main, 1 , f), which leaves N and E unchanged. We
encounter no other calls in main(), so we process f () next, which adds x and b to
N and the edge x->b to E, resulting in

N = {x ,b> E = {x->b}

Next, we process g(), which adds a, c, d, k, and 1 to N and adds several edges to E,
as follows:

N = { x ,b ,a ,c ,d ,k , l> E = {x->b, a->c, b->d, b->k, b -> l}

Processing h() leaves N unchanged, but augments E again, as follows:

N = { x ,b ,a ,c ,d ,k , l }
E = {x —>b, a—>c, b->d, b—>k, b—>1, d—>b}

The process continues until finally the last top-level loop in Build_Binding_Graph()
adds the transitive edges to E, resulting in

N = { x ,b ,a ,c ,d ,k , l ,w ,x , j3}
E = {x —>b, a—>c, b—>d, b—>k, b—>1, d—>b, d—>k, d—>1, k—> j3,

d -> j3, b - » j3, w-»k, w->j3, x->d, x->k, x -> j3, x -> l}

and the graphic representation in Figure 19.14. Note that, as for this example, the
binding graph is generally not connected and contains cycles only if the program is
recursive.

Next, we define RMOD on a program’s binding graph. The function RBMOD
from nodes in N b to Boolean values is such that RBMOD (x) is true if x is modified
as a side effect of calling some procedure, and f a l s e otherwise. Computing RBMOD
can then be done by solving the data-flow equations

RBMOD(x) = Bp e P (x e Formals(p) n IMOD(p)) v \ J RBMOD(y)
x —>yeE%

on the binding graph, with RBMOD(x) initialized to fa l s e for all x. The algorithm
Compute_RBM0D (P , N ,E) , where P is the set of procedures in the call graph, and N

Section 19.2 Interprocedural Data-Flow Analysis 6 2 5

procedure Build_Binding_Graph(P,N,E)
P: in set of Procedure
N: out set of Var
E: out set of (Var x Var)

begin
p, q: Procedure
i, m, n: integer
e, f: Var x Var
oldE: set of (Var x Var)
I| construct graph that models passing parameters
I| as parameters to other routines
N := E := oldE := 0
repeat

oldE := E
for each p e P do

for i := 1 to numinsts(p) do
for each q e callset(p,i) do

Bind_Pairs(p,i,q,N,E)
od

od
od

until E = oldE
repeat

oldE := E
for each e e E do

for each f e E (f * e) do
if e@2 = f@l & e@l * f@2 then

E u= {e@l->f@2}
fi

od
od

until E = oldE
end || Build_Binding_Graph

procedure Bind_Pairs(p,i,q,N,E)
p, q: in Procedure
i: in integer
N: inout set of Var
E: inout set of (Var x Var)

begin
m, n: integer
for m := 1 to nparams(p) do

for n := 1 to nparams(q) do
if passed(p,i,q,param(p,m),param(q,n)) then

N u= {param(p,m),param(q,n)}
E u= {param(p,m)->param(q,n)}

fi
od

od
end || Bind_Pairs

FIG. 19.13 Algorithm to construct the binding graph B for a program P.

626 Interprocedural Analysis and Optimization

FIG. 19.14 Binding graph for the program in Figure 19.10.

RBMOD: Var — > boolean

procedure Compute_RBMOD(P,N,E)
P: in set of Procedure
N: in set of Var
E: in set of (Var x Var)

begin
p: Procedure
n: Var
e: Var x Var
oldRBMOD: Var —> boolean
RBMOD := 0
repeat

oldRBMOD := RBMOD
for each n e N do

RBMOD(n) := 3p e p (n e Formals(p) n IMOD(p))
for each e e E (e@l = n) do

RBMOD(n) V= RBMOD(e02)
od

od
until RBMOD = oldRBMOD

end I I Compute_RBM0D

FIG. 19.15 Algorithm to compute RBMOD() on the binding graph B.

and E are the sets of nodes and edges, respectively, of the binding graph, is shown in
Figure 19.15. The outermost loop should be executed in postorder, i.e., as much as
possible, each node should be processed after its successors in the binding graph.

Now, RMOD(p) for a procedure p is simply the set of formal parameters x of p
such that RBMOD(x) is tru e, i.e.,

RMOD(p) = {x | x € Formals(p) & RBM OD(x)}

As an example of computing RBMOD , we compute it for our example program
in Figure 19.10, whose binding graph is in Figure 19.14. To compute RMOD , we
call Compute_RBMOD(P,N,E) with

Section 19.2 Interprocedural Data-Flow Analysis 627

TABLE 19.2 Initial values of RBMOD()
obtained by evaluating
the existentially quantified
expression in the equations
for RBM OD() for the nodes
in the binding graph for our
example in Figure 19.10.

RBMOD(x) = false
RBMOD(b) = true
RBMOD(a) = true
RBMOD(c) = false
RBMOD(d) = false
RBMOD(k) = true
RBMOD(1) = false
RBMOD(w) = false
RBMOD(y) = true
RBMOD(j 3) = true

TABLE 19.3 Final values of RBM O D () for the nodes in the binding graph
for our example in Figure 19.10.

RBMOD(x) = fa lse v RBMOD(b) v RBMOD(j 3) = true
RBMOD(b) = true
RBMOD(a) = true
RBMOD(c) = fa lse
RBMOD(d) = false v RBMOD(b) = true
RBMOD(k) = true
RBMOD(l) = false
RBMOD(w) = false v RBMOD(j 3) = true
RBMOD(y) = true
RBMOD(j 3) = true

P = { m a i n , f , g , h , n , m >

N = { x , b , a , c , d , k , l , w , z , j >

E = { x - > b , a - > c , b - > d , b - > k , b - > l , d - > b , d - > k , d - > l , k - > j 3 ,

b - > j 3 , w - > k , w - > j 3 , x - > d , x - > k , x - > j 3 , x - > l }

The algorithm initializes RBMOD() for each node in the binding graph as
shown in Table 19.2 and then iterates, computing RBMOD() for the nodes until
it converges,6 resulting in the values shown in Table 19.3.

6. Note that the data-flow equations for RBMOD are defined on the two-element lattice with
fa lse c true.

628 Interprocedural Analysis and Optimization

TABLE 19.4 Values of RM OD() for our
example in Figure 19.10.
RMOD (main) = 0
RMOD(f) = {x}
RMOD(g) ={a,b}
RMOD(n) = {k}
RMOD(m) = {w, y, j 3}
RMOD(h) = {d}

IMODPLUS: Procedure — > set of Var
procedure Compute_IMODPLUS(P)

P: in set of Procedure
begin

p, q: Procedure
i: integer
IMODPLUS := 0
for each p e p do

IMODPLUS(p) := IMOD(p)
for each i e callsites(p) do

for each q e callset(p,i) do
IMODPLUS(p) U— b(p,i,q,RM0D(q))

od
od

od
end I I Compute_IMODPLUS

FIG. 19.16 ican algorithm to compute 7 M O D +().

Thus, RM OD () is as shown in Table 19.4.
Recall that IM OD+ is defined as

IM OD+ (p) — IMOD(p) U (J bp^ q(RMOD{q))
qecallset(pj)

so it can be computed easily as shown in Figure 19.16 (note that we use b (p , i ,q ,r)
to represent bp^q(r) in the algorithm) and its values for our example are as shown
in Table 19.5.

To compute GMOD from /M OD+ efficiently, we use the algorithms given in
Figures 19.17 and 19.18, which operate on the call graph (i.e., Edges is the set of
edges in the call graph, not the binding graph).

Given a call graph with procedures P, edges Edges, and main routine r, the
i c a n routines S t r a t i f y () and Set .L e v e ls () in Figure 19.17 constructs the func
tion Level () that maps procedures to their nesting levels. For each nesting level

Section 19.2 Interprocedural Data-Flow Analysis 629

TABLE 19.5 Values of IMOD+ () for our example in Figure 19.10.

IMOD+(main) = /MOD(main) J ̂;main, l, f(K M O D (f))
= {i,j1)U{i) = {i,ji)

IMOD+ (f) = IM OD(i) U bf >2>g(RMOD(g)) = { i , j x} U {i,x }

IMOD+ (g) = IMOD(g) U bg>4th(RMOD(h)) U fcg,6ln(RMOD(n))
= {a,b}U{b}U{b} = {a,b}

IMOD+ (a) = IMOD(n) U £>n,3 ,m(RMOD(m)) = {k.y}
IMOD+ (m) = IMOD(m) U bm>1>n(RMOD(n)) = {j3} U {w)

= {J3>W)
IMOD+ (h) = lMOD(h) U bh<ltg (RMOD(g)) = {e} U {d} = {e,d}

N, R: array [••] of set of Procedure
E: array [••] of set of (Procedure x Procedure)
Level := 0: Procedure — > integer
depth, NextDfn: integer
Dfn: Procedure —> integer
LowLink: Procedure — > integer
GMOD, IMODPLUS, Nonlocals: Procedure —> set of Var
Stack: sequence of Procedure

procedure Stratify(P,Edges,r) returns integer
P: in set of Procedure
Edges: in set of (Procedure x Procedure)
r: in Procedure

begin
i, j, depth: integer
p, q: Procedure
WL := P: set of Procedure
Level(r) := 0
Set_Levels(r)
depth := 0
for i := 0 to depth do

N[i] := 0
for j :s 0 to i-1 do

WL u= {p e P where Level(p) = j}
od
for j := i to depth do

for each p e p (Level(p) = j) do ,
(continued)

FIG. 19.17 Algorithm to compute nesting levels Level () in a call graph and the subgraphs
(consisting of nodes N[] , roots R[] , and edges E[]) that exclude routines that call
others at lower nesting levels. S t r a t i f y () uses Set_Levels to compute the nesting
level of each procedure.

630 Interprocedural Analysis and Optim ization

if called(p) n WL = 0 then
N [i] u= {p}

fi
od
WL u= {p e p where Level(p) = j}

od
E [i] := Edges n (N[i] x N[i])
R[i] := {p e N[i] where Level (p) = i}

od
return depth

end I| Stratify

procedure Set_Levels(r)
r: in Procedure

begin
p: Procedure
for each p e nested(r) do

Level(p) := Level(r) + 1
if Level(p) > depth then

depth := Level(p)
fi
Set_Levels(p)

od
end I I Set_Levels

FIG. 19.17 (continued)

procedure Compute_GMOD()
begin

i: integer
n, r: Procedure
for i := depth by -1 to 0 do

for each r e R[i] do
NextDfn := 0
for each n e N[i] do

Dfn(n) := 0
od
Stack := []
GMOD_Search(i,r)

od
od

end |I Compute_GM0D
FIG. 19.18 Algorithm for computing GMOD() efficiently from IMOD+ () by using a version of

Tarjan’s algorithm.

Section 19.2 Interprocedural Data-Flow Analysis 631

procedure GMOD_Search(i,p)
i: in integer
p: in Procedure

begin
j: integer
u: Procedure
e: Procedure x Procedure
LowLink(p) := Dfn(p) := NextDfn += 1
GMOD(p) := IMODPLUS(p)
Stack ®= [p]
for each e e E[i] (e@l = p) do

if Dfn[e@2] = 0 then
GM0D_Search(i,e@2)
LowLink(p) := min(LowLink(p),LowLink(e@2))

fi
if Dfn(e@2) < Dfn(p) & 3j e integer (Stacksj=e@2) then

LowLink(p) := min(Dfn(e@2),LowLink(p))
else

GMOD(p) u= GM0D(e@2) n Nonlocals(e@2)
fi

od
* if LowLink(p) = Dfn(p) then

repeat
u := Stackl-1
Stack ©= -1
GMOD(u) u= GMOD(p) n Nonlocals(p)

until u = p
fi

end || GMOD.Search
FIG. 19.18 (continued)

0 ^ i ^ depth of the program, S t r a t i f y () also computes the subgraph with nodes
N [i] , roots R [i] ,7 and edges E [i] such that a routine is in N [i] if all the routines it
calls have nesting levels greater than or equal to i . The routine c a lle d (p) returns
the set of procedures called from procedure p.

Applying S t r a t i f y () to our example program results in depth = 3 and the
data structures in Table 19.6.

The GM OD computation is an adaptation of Tarjan’s algorithm to compute
strongly connected components (see Section 7.4). The underlying idea is that, for
a strongly connected component— i.e., a set of mutually recursive procedures—
GM OD for its root node represents all the side effects that may occur in nodes (i.e.,
procedures) in the component, so GM OD for each node in it is the union of IM OD+
for the node with GM OD for the root node intersected with the set of nonlocal

7. Note that a subgraph may have multiple roots if, for example, the main routine (at level 0) calls
two routines (at level 1).

632 Interprocedural Analysis and Optimization

TABLE 19*6 Values of Level(), N[], R[], and E[] for our example
program in Figure 19.10.

Level(main) = 0
Level(f) * Level(g) = Level(h) = 1
Level(n) - 2
Level(m) - 3

N[0] * {main,f,g,h,n,m>
N[1] = {f,g,h,n,m>
N [2] = {n,m}
N[3] = {m>

R[0] = {main}
R[l] = {f>
R[2] = {n}
R[3] = {m}

E[0] = {main-^f, f->g, g-^h, g-^n, h->g, n-^m, m->n}
E [1] = {f->g, g-*h, g->n, h-^g, n->m, m->n}
E[2] = {n->m, m->n}
E [3] = 0

TABLE 19.7 Initial values for GMOD() for our
example program.
GMOD(main)
GMOD(f)
GMOD(g)
GMOD(n)
GMOD(m)
GMOD(h)

IMOD+(main)={i , j j)
IMOD+(f) = { i , j i ,x}

7MOD+ (g)={a,b)
/M O D + (n)={k,y)
7MOD+ (m)={ j 3 ,w)
7MOD+ (h)={d,e)

variables that occur in the procedure. The central point of the algorithm is that the
test marked with an asterisk in Figure 19.18 evaluates to true if and only if p is the
root of a strongly connected component of the call graph.

As an example of the computation of GM OD , we apply the algorithm to the
program in Figure 19.10. We invoke Compute_GMOD(main), which performs the
depth-first search and identification of strongly connected components and, in effect,
initializes GMOD to the values shown in Table 19.7. Then it accumulates, in order,
the values shown in Table 19.8.

Now, finally, we apply the defining equation for DMOD, to get the values shown
in Table 19.9.

The computational complexity of this approach to computing flow-insensitive
side effects is 0 (e n + d w2), where n and e are the numbers of nodes and edges,
respectively, in the call graph and d is the depth of lexical nesting in the program.
The factor of d may be removed by combining the iterations in Compute_GM0D()
into a single pass over the call graph (see Exercise 19.2 in Section 19.11).

Similar decompositions can be used to compute the other flow-insensitive may
summary functions.

Section 19.2 Interprocedural Data-Flow Analysis 633

TABLE 19.8 Final values for GMOD() for our example program.

TABLE 19.9

GMOD(m)
GMOD(n)
GMOD(h)
GMOD(g)

GMOD(f)

GMOD(main)

= { w>
= {k,y!
= (d,e)
= {a,b} U (GMOD(h) n Nonlocals(h))
= {a,b} U {e}={a,b,e}
= {i, jj ,x) U (GMOD(g) n Nonlocals(g))
= U.ji.x) u {e}={e, i, j i ,x)
= {i, j!} U (GMOD(f) n Nonlocals(f))
= {i.ji)U{e}={e,i, j i}

Values of D M O D () for our example program.
DMOD (main, 1) = LMOD (main, 1) = 0
DMOD(f, 1) = LMOD(f, l) = {i)
DMOD(f, 2) = LMOD(i, 2) U bf j2)g(GMOD(g))

= (ji) U (e,i,x) = {e,i, ji ,x}
DMOD(f, 3) = LMOD(i, 3) = 0
DMOD(f, 4) = LMOD(f,4) = {j1}
DMOD(f, 5) = LMOD(f, 5) = 0
DMOD(f, 6) = LMOD(f, 6) = 0
DMOD(g, 1) = LMOD(g, 1) = 0
DMOD(g, 2) = LMOD(g, 2) = {a}
DMOD(g, 3) = LMOD(g, 3) = 0
DMOD(g, 4) = LMOD{g, 4) U bg^jjCGMODOi))

= (b) U {b,e} = {b,e}
DMOD(g, 5) = LMOD(g, 5) = {a)
DMOD(g, 6) = LMOD{g, 6) = {a}
DMOD(h, 1) = LMOD(h, 1) U bh,l,g(GMOD(g))

= (el U (b) = {b,e}
DMOD(h, 2) = LMOD{ h, 2) = 0
DMOD(n, 1) = LMOD(n, 1) = (k)
DMOD(n, 2) = LMOD(n, 2) = (y)
DMOD(n, 3) = LMOD(n, 3) = 0
DMOD(m, 1) = LMOD(m, 1) = (j3l
DMOD(m, 2) = LMOD{ m, 2) = 0

634 Interprocedural Analysis and Optimization

19.2.2 Flow-Sensitive Side Effects: The Program Summary Graph
Myers [Myer81] showed that computing flow-sensitive side effects is co-NP-complete,
as long as aliasing is taken into account. He also introduced a model called the
program supergraph that supports determination of flow-sensitive side effects.

Callahan [Call88] gives practical methods to compute approximate solutions of
flow-sensitive problems based on the so-called program summary graph, which aug
ments the nodes in a graph derived from the call graph and the parameter-passing
patterns with information about flow-sensitive effects inside the corresponding pro
cedures. The graph is intermediate in size and complexity between the call graph and
Myers’s supergraph.

In this section, we give an overview of the program summary graph and the
computation of flow-sensitive side-effect information it enables. We assume that
the parameter-passing discipline is call by reference. Suppose that we are given a
program comprising a set of procedures P. Then the program summary graph for
P consists of two nodes for each formal parameter of each procedure, called entry
and exit nodes; two nodes for each actual argument at each call site, called call and
return nodes; and edges that connect call nodes to entry nodes, exit nodes to return
nodes, and some entry and return nodes to call and exit nodes.

In greater detail, let p and q be procedures such that instruction i in p calls q .
Then the formal parameters of q are

param(g, 1) ,. . ., param (g,nparam s(g))

and the actual arguments of the call to q are

a r g (p , / , l) a r g (p , / ,nparam s(g))

There is a call node c l (p , / ,a r g (p , / , /)) and a return node r t (p ,/ ,a r g (p ,/ ,/))
for each triple (p, /,a r g (p ,/ ,/)) , and an entry node en(g ,param (g,/)) and an
exit node ex (g ,p aram (g ,/)) for each pair (g,param (g,/)). There is an edge from
c l (p , / ,a r g (p , / , /)) to en (g ,param (g ,/)) and another from ex(g ,p aram (g ,/)) to
r t (p , /, a rg (p ,/ , /)) . Also, there are edges as follows:

1. from en(p,param (p,/‘)) to c l (p , / ,a r g (p , / ,£)) if the value of paramCp,/) reaches
call site (p, i) and is bound there to arg (p ,/ ,&),

2. from en (p ,param (p ,/)) to ex(p ,param (p,&)) if the value of par am (p ,/) on entry
to p reaches p ’s exit as the value of param (p,&),

3. from r t (p , / ,a r g (p , / , /)) to c l (p ,£ ,a r g (p ,£ , /)) if the value of a rg (p ,/ ,/) on
return to p reaches call site (p, k) as the value of a r g (p ,£ ,/) , and

4. from r t (p , / ,a r g (p , / , /)) to ex (p ,p aram (p ,£)) if the value of a rg (p ,/ ,/) on re
turn to p reaches p ’s exit as the value of par am (p ,£).

We assume that at a call site an actual argument is used and then killed, that
a procedure entry defines all formal parameters, and that a return uses all the
parameters.

Section 19.2 Interprocedural Data-Flow Analysis 6 35

procedure f(x)
f begin
1 i := 2
2 if x = 0 then
3 j := g(j,0)
4 else
5 j := g(i,x)
6 f i
7 return j

end || f
procedure g(a,b)

g begin
1 if a > 1 then
2 a := b + 2
3 else
4 b := h(a,b)
5 f i
6 return a + b + j

end I I g
procedure h(c,d)

h begin
1 e := e/g(l,d)
2 return e

end I I h
FIG. 19.19 An example program for flow-sensitive side-effect computation.

As an example, consider the program in Figure 19.19. Its program summary
graph is shown in Figure 19.20. The following explains some of the edges:

1. There is an edge from en (f ,x) to e x (f ,x) because the value of x on entry to f ()
may reach its exit.

2. There is an edge from e n (f ,x) to c l (f , 5 , x) because the value of x on entry to f ()
may be passed to formal parameter b of g () at call site <f ,5>.

3. There is no edge from en (f ,x) to c l (f ,3 , j) because the value of x on entry to f ()
cannot be passed to formal parameter b of g () at call site <f ,3>.

4. There is an edge from c l (h , l ,d) to en (g ,b) because the value of d in the call to
g () at call site <h, 1> may be passed to formal parameter b of g ().

5. There is an edge from e x (g ,b) to r t (f ,5 ,x) because the value of b on exit from
g () is bound to the formal parameter x of f ().

Given the program summary graph, we can now define the properties Kill and
Use. A variable v is killed (and Kill(v) is true) if it must be modified, regardless of
control flow; it is used (and Use(v) is true) if there is a use of it before it is killed.
Now, the set of killed variables, for example, can be determined by the data-flow
equations

636 Interprocedural Analysis and Optimization

en(f,x)

FIG. 19.20 Program summary graph for the program in Figure 19.19.

for x , an exit node
for x , an entry or return node

for x, a call node, and y and z,
the corresponding return and
entry nodes

where E is the set of edges in the program summary graph. Similar equations
apply for the Use() property, and the framework can be extended to handle global
variables. Callahan gives efficient algorithms for computing the data-flow properties.
The algorithms run in time bounded by 0 (n • s), where n is the number of procedures
and s is a measure of the size of the program summary graph.

Kill(x) —

false
A KiU(y)

x~>yeE

Kill(y) V Kill(z)

Section 19.3 Interprocedural Constant Propagation 637

19.2.3 Other Issues in Computing Side Effects

We have not discussed the effects of a series of issues that occur in real programs,
such as recursion, aliasing, label variables, pointers, unions, procedure parameters,
and exception handling. Interprocedural aliasing is discussed in Section 19.4. Some
of the other issues are addressed by Weihl [Weih80], while others are addressed only
in implemented systems, such as Parafrase [Kuck74] and ParaScope [CooH93].

19.3 Interprocedural Constant Propagation
Interprocedural constant propagation can be formulated as either a site-independent
or a site-specific method. The site-independent form determines, for each procedure
in a program, the subset of its parameters such that each parameter has the same
constant value in every invocation of the procedure. The site-specific form deter
mines, for each particular procedure called from each particular site, the subset of
parameters that have the same constant values each time the procedure is called.

In either case, the analysis problem comes within the criteria determined by
Myers to make it either NP-complete or co-NP-complete, so the typical approach
has been to invent less expensive but less precise methods.

Callahan et al. [CalC86] describe a method to perform interprocedural constant
propagation that may be either flow sensitive or flow insensitive, depending on the
choice of what they call jump and return-jump functions. Our approach is derived
from theirs. We assume for simplicity that the sets of formal parameters of the
procedures that make up a program are non-intersecting.

A jump function J (p , i ,L ,x) , for call site i in procedure p that calls procedure
q with the list of actual arguments L, maps information about the actual arguments
of the call from that call site to information about formal parameter x of q at its
entry point. Similarly, a return-jump function R (p ,L ,x) , for a procedure p, maps
the information about the list of formal parameters L of p to information about the
value returned through formal parameter x by p. For example, for the procedures
shown in Figure 19.23 below,

J(f,1,[i,j],a) = i
J(f,1, [i,j],b) = j
R(g,[a,b],a) = 2

are possible jump and return-jump function values for call site < f , 1> and procedure
g() (as we shall see below, they are “pass-through parameter” jump and return-
jump functions). Further, we define the support of jump function J (p ,/,L ,:x :) ,
written J su p p o r t (p ,/ ,L ,x) , to be the set of actual arguments used in defining
J (p , / ,L ,x) ; similarly for return-jump functions. Thus, for our example we have

Jsupport(f,1,[i,j],a) = {i}
Jsupport(f,1,[i,j],b) = {j}
RsupportCg,[a,b] ,a) = 0
The interprocedural constant-propagation algorithm, using only forward jump

functions, is shown in Figure 19.21. It uses the lattice ICP given in Figure 8.3 and

638 Interprocedural Analysis and Optimization

procedure Intpr_Const_Prop(P,r,Cval)
P: in set of Procedure
r: in Procedure
Cval: out Var — > ICP

begin
WL := {r>: set of Procedure
p, q: Procedure
v: Var
i , j : in te ge r
prev : ICP
Pars: Procedure — > set of Var
ArgList: Procedure x integer x Procedure

— > sequence of (Var u Const)
Eval: Expr x ICP — > ICP
I I construct sets of parameters and lists of arguments
I I and initialize Cval() for each parameter
for each p e p do

Pars(p) := 0
for i := 1 to nparams(p) do

Cval(param(p,i)) := t
Pars(p) u= {param(p,i)>

od
for i := 1 to numinsts(p) do

for each q e callset(p,i) do
ArgList(p,i,q) := []
for j := 1 to nparams(q) do

A rgL is t(p ,i ,q) ®= [a r g (p , i , j)]
od

od
od

od
FIG. 19.21 Site-independent interprocedural constant-propagation algorithm.

reproduced here in Figure 19.22. As in Chapter 8, T is the initial value for each
putative constant-valued variable, constants represent themselves, and _L means that
a variable’s value is not constant. The procedures used in the algorithm include one
new one, namely, Eval(J(p,i,L,v) ,Cval), which evaluates J(p,i,L,v) over ICP,
i.e., with the variables in Jsupport (p,i,L,v) getting their values from Cval() and
with the operations performed over ICP. The programming language’s operations
need to be mapped appropriately to operations on ICP, e.g.,

1 + 1 = 1
1 + 2 = 3

1 + T = T

As an example of interprocedural constant propagation, consider the program
in Figure 19.23. A possible set of jump functions and their support sets for this

Section 19.3 Interprocedural Constant Propagation 639

while WL * 0 do
p := ♦WL; WL -= {p>
for i := 1 to numinsts(p) do

for each q e callset(p,i) do
for j := 1 to nparams(q) do

II if q()Js jth parameter can be evaluated using values that
II are arguments of p(), evaluate it and update its Cval()
if Jsupport(p,i,ArgList(p,i,q),param(q,j)) £ Pars(p) then

prev := Cval(param(q,j))
Cval(param(q,j)) n= Eval(J(p,i,

ArgList(p,i,q),param(q,j)),Cval)
if Cval(param(q,j)) c prev then

WL u= {q}
fi

fi
od

od
od

od
end I I Intpr_Const_Prop

FIG. 19.21 (continued)

T

false ... -2 -1 0 1 2 • • • true

±

FIG. 19.22 Integer constant-propagation lattice ICP.

program are shown in Table 19.10. For these jump-function values, the algorithm
first initializes

Pars(e) = 0 ArgList(e,1,f) = [x,l]
Pars(f) = {i,j> ArgList(f,l,g) = [i,j]
Pars(g) = {a,b} ArgList(f,2,g) = [j]

Cval(i) = Cval(j) = Cval(a) = Cval(b) = t

and WL = {e}. Then it removes e from WL and processes the one instruction in e (). It
determines that f e callset(e, 1) is true, so it then iterates over the parameters (i
and j) of f (). It evaluates J(e,l, [] ,i) = i and stores that value in Cval(i), also
setting WL = { f } . Similar actions result in setting Cval(j) = 1. Next, the algorithm
sets p = f and i = 1 and processes the call to g() at that site. This results in setting
Cval(a) = i and Cval(b) = 1. For i = 2, we get Cval(a) = J- and Cval(b) = 1
again. The final result is

640 Interprocedural Analysis and Optimization

procedure e()
begin

e x, c: integer
1 c := f(x,l)

end
procedure f(i,j)
begin

f s, t: integer
1 s := g(i,j)
2 t :=
3 return s + t

end
procedure g(a,b)

g begin
1 a := 2
2 b := b + a
3 return a

end

FIG. 19.23 An example for interprocedural constant propagation.

TABLE 19.10 Possible jump functions and their support sets
for the example program in Figure 19.23.

J (e , l , [] , i) = x
J (e , l , [] , j) = 1
J (f ,1,[i , j] , a) = i
J (f ,1,[i , j],b) = j
J (f ,2,[i , j] ,a) = j
J (f ,2,[i,j],b) = j

Jsupport(e, 1, [] ,i) = 0
Jsupport(e, 1, [] , j) = 0
Jsupport(f,1,[i,j],a) = {i>
Jsupport(f,1,[i,j],b) = {j}
Jsupport(f,2,[i,j],a) = {j>
Jsupport(f,2,[i,j] ,b) = {j} * 1

Cval(i) = ±
Cval(j) = 1
Cval(a) = x
Cval(b) = 1

Thus, formal parameter j is constant at each call to f () and b is constant at each
call to g ().

There is a range of possible choices for jump and return-jump functions, ranging
from individual constants to results of symbolic interpretation. They include the
following:

1. Literal constant. This choice makes each J () value either a constant, if the call site
passes a literal constant, or X, and it does not propagate interprocedural constants
through procedure bodies.

2. Interprocedural constant. This choice makes each J () value either constant, if
intraprocedural constant propagation can determine it to be so, or X otherwise.

Section 19.4 Interprocedural Alias Analysis 641

3. Pass-through parameter. This choice (which is the one we used in the example above)
uses interprocedural constants, where they are available, as values of parameters that
are passed through to a called routine unchanged, or X otherwise.

4. Polynomial parameter. This choice uses intraprocedural constants where available
and polynomial functions of the parameters passed to a routine if the value of an
actual argument passed within the procedure is a polynomial in its parameters, and
± otherwise.

5. Symbolic execution. This approach simulates the execution of each procedure to
determine constant parameter values.

These choices range, in numerical order, from least to most expensive and, corre
spondingly, from least to most informative. Grove and Torczon [GroT93] discuss
jump and return-jump functions, their computational costs, and the information
they provide.

Use of jump functions allows computation of both call-site-independent and
call-site-specific constants in time 0 (n + e), for a call graph with n nodes and e
edges and for all but the most complex choices of jump functions. For the call-site-
specific form, we modify the algorithm by converting the procedures to SSA form
(for computational efficiency) and evaluate them flow sensitively.

Return-jump functions are useful only in the call-site-specific (or flow-sensitive)
form of analysis. To understand this, consider our example program in Figure 19.23.
The natural time to use the return-jump functions is in a prepass over the program
(before using the forward jump functions) performed from the leaves of the call
graph (including arbitrarily selected members of leaf strongly connected compo
nents). The natural choice of return-jump function for procedure g() and parameter
a is R(g, [a ,b] ,a) = 2 . With this choice, we would set C val(a) = 2 for call site 1 in
procedure f (). This choice, however, is not appropriate: if we now perform con
stant propagation with forward jump functions, we have a value for C val(a) that
applies to calls of g() after the first one, but not to the first one. Thus, flow sensi
tivity is essential if we use return-jump functions. Using return-jump functions does
not affect the computational complexity of the algorithm.

Call-site-specific interprocedural constant propagation can be used to drive pro
cedure cloning, as discussed in Section 19.5.

19.4 Interprocedural Alias Analysis
As discussed in Chapter 10, intraprocedural aliasing possibilities differ significantly
from one language to another, with the extremes represented by Fortran and C. In
interprocedural alias analysis, an additional dimension is added, namely, two-level
scoping, as in both Fortran and C, versus multi-level scoping, as found, for example,
in Pascal, PL/I, and Mesa.

The Fortran standards specifically prohibit assignment to an aliased variable. C,
on the other hand, allows one to take the address of almost any object, pass it almost
anywhere, and do nearly arbitrary things with it.

642 Interprocedural Analysis and Optimization

global i, j
procedure f()
begin

g(i)
g (j)

end
procedure g(a)
begin

i := i + 1
j j + 1
return a

end
FIG. 19.24 An example of interprocedural aliasing.

Interprocedural aliases are generally created by parameter passing and by access
to nonlocal variables. As discussed in the introduction to Chapter 10, the char
acterization of aliasing as a relation depends on whether we are taking time (or,
equivalently, flow sensitivity) into account. We are concerned with flow-insensitive
aliasing here, except in the discussion of languages with call by value and pointers
in Section 19.4.2. As an example of the intransitivity of flow-insensitive interpro
cedural aliasing, consider the code in Figure 19.24 and assume that parameters are
passed by reference. Then i alias a and j alias a ate valid, but it is not the case that
i alias j .

Flow-sensitive alias analysis is at least as expensive as flow-sensitive side-effect
analysis (see Section 19.2.2), so we content ourselves with a flow-insensitive ver
sion for call by reference and a malleable version for call by value with pointers,
where malleable means that it may be flow sensitive or not, as in the discussion of
intraprocedural alias analysis in Sections 10.2 and 10.3.

19.4.1 Flow-Insensitive Alias Analysis
We use the function ALIAS: Var x Procedure —> se t of Var to describe the sets
of all aliases in each procedure in a program. In particular, ALIAS(x, p) = s if and
only if s consists of all the variables that may be aliases of x in procedure p.

The basic idea for computing ALIAS is to follow all the possible chains of
argument-parameter and nonlocal variable-parameter bindings at all call sites in
depth-first order, incrementally accumulating alias pairs.

An efficient approach developed by Cooper and Kennedy [CooK89] handles
formal parameters and nonlocal variables separately, based on the observation that
nonlocal variables can only have formal parameters as aliases, as long as the source
language does not allow pointer aliasing. This significantly reduces the number of
pairs that might need to be computed. We describe an approach based on theirs.

For a language like Pascal or Mesa in which procedures may be nested and
visibility of variables is determined by the nesting, there are two complications in
alias determination. One is that formal parameters to a routine at nesting level /
may be nonlocal variables to a routine contained within it at nesting level m > /.

Section 19.4 Interprocedural Alias Analysis 643

The other is essentially the mirror image of the first complication, i.e., that variables
defined at nesting level / are not visible at levels less than /. To describe this problem
further, we use the concept of the extended formal-parameter set of a procedure,
which we develop below.

In outline, for a program P, the approach to alias determination consists of four
steps, as follows:

1. First, we construct an extended version of the program’s binding graph B (see
Section 19.2.1 and Figure 19.26) that takes extended formal parameters into account
and its pair binding graph n (see below).

2. Next, we solve a forward data-flow problem over B to compute, for each formal
parameter /*p, the set A(fp) of variables v (not including formal parameters) that fp
may be aliased to by a call chain that binds v to fp .

3. Next, we perform a marking algorithm on n (which may also be thought of as
solving a forward data-flow analysis problem) to determine formal parameters that
may be aliased to each other.

4. Finally, we combine the information from the preceding steps.

Once the aliasing information has been obtained, it can be combined with the alias-
free solutions to interprocedural data-flow problems to produce the full solutions.

The set of extended formal parameters of a procedure p, written ExtFormals(p)
is the set of all formal parameters visible within p, including those of procedures
that p is nested in, that are not rendered invisible by intervening declarations. For
example, in Figure 19.25 the extended formal parameter set of procedure n() is
{m,z,w}.

The modified version of the code to build the binding graph is shown in Fig
ure 19.26 (note that only the routine Bind_Pairs() differs from the version in
Figure 19.13). The value of passed(p , i ,q ,x ,y) is true if instruction i in proce
dure p calls procedure q and binds p ’s extended formal parameter x to q’s extended
formal parameter y, and false otherwise.

As an example of this process, we use the program in Figure 19.25. We dis
tinguish the global b and the one local to h() by subscripting them as bi and b2 ,
respectively, in what follows. Note that to allow totally general naming of vari
ables and parameters, we need to identify the sequence of procedures each variable
is nested in; e.g., we might denote the global b by <b, []>, the local b in h() by
<b, [h] >, and the parameter y of t () by <y, [h ,t] >. The example’s call and binding
graphs are shown in Figure 19.27.

A nonlocal variable can only become aliased to a formal parameter in a proce
dure in which the nonlocal variable is visible and only by its being passed as an actual
argument to that formal parameter. So we define A(fp), where fp is a formal param
eter, to be the set of nonlocal variables v (including formal parameters of routines
that the declaration of fp is nested in) that fp may be aliased to by a chain of one or
more calls that binds v to fp. To compute A (), we make two forward passes over the
binding graph B, first accumulating bindings that pass nonlocal variables as param
eters, and then following binding chains. The algorithm Nonlocal_Aliases() that

644 Interprocedural Analysis and Optimization

global a, b
procedure e()

e begin
1 a := f(1,b)

end I| e
procedure f(x,y)

f begin
1 y := h(l,2,x,x)
2 return g(a,y) + b + y

end I| f
procedure g(z,w)

local c
procedure n(m)

n begin
1 a := p(z,m)
2 return m + a + c

end || n
g begin
1 w := n(c) + h(l,z,w,4)
2 return h(z,z,a,w) + n(w)

end || g
procedure h(i,j,k,l)

local b
procedure t(u,v)

t begin
1 return u + v * p(u,b)

end || t
h begin
1 b := j * 1 + t(j,k)
2 return i + t(b,k)

end || h
procedure p(r,s)

p begin
1 b := r * s

end || p
FIG* 19.25 An example program for interprocedural alias computation.

does this is given in Figure 19.28; the N, R, and E arguments are the sets of nodes,
roots, and edges in the binding graph, respectively. The procedures used in the figure
are as follows: 1

1. Shallower (v) is the set of variables declared at nesting levels less than or equal to
the nesting level at which v is declared.

2. Form als(p) is the set of formal parameters of procedure p.

3. Nonlocals (p) is the set of variables that are nonlocal to p and that are not formal
parameters of any procedure in which p is nested.

Section 19.4 Interprocedural Alias Analysis 6 4 5

procedure Build_Binding_Graph(P,N,E,pinsts)
P: in set of Procedure
N: out set of Var
E: out set of (Var x Var)
pinsts: in Procedure — > integer

begin
p, q: Procedure
i, m, n: integer
oldE: set of (Var x Var)
N := E := oldE := 0
repeat

oldE := E
for each p e p do

for i := 1 to numinsts(p) do
for each q e callset(p,i) do

Bind.Pairs(p,i,q,N,E)
od

od
od

until E = oldE
repeat

oldE := E
for each e e E do

for each f e E (f * e) do
if e@2 = f@l & e@l * f@2 then

E u= {e@l-^f@2}
fi

od
od

until E = oldE
end I I Build_Binding_Graph

procedure Bind_Pairs(p,i,q,N,E)
p, q: in Procedure
i: in integer
N: inout set of Var
E: inout set of (Var x Var)

begin
e, f: Var x Var
for each u e ExtFormals(q) do

for each v e ExtFormals(p) do
if passedCp,i,q,v,u) then

N u= {u,v}
E u= {v-^u}

fi
od

od
end I I Bind_Pairs

FIG. 19.26 Algorithm to construct the binding graph B for a program P.

646 Interprocedural Analysis and Optimization

FIG. 19.27 The (a) call and (b) binding graphs for the program in Figure 19.25.

4. ExtForm als(p) is the set of all formal parameters visible within p, including those
of procedures that p is nested in that are not shadowed by intervening definitions.

5. Top.Sort (N , E) returns a sequence of edges drawn from E that represents a topo
logical sort of the graph with nodes N and edges E with the back edges removed.
(Note that there may be more than one root.)

If we define Envt(p) to be the sequence of procedures that procedure p is nested
in, with p as the last member of the sequence, and V ars(p) to be the set of formal
parameters and local variables of procedure p, then ExtForm als(p) can be defined
by the recurrence

ExtForm als(Envt(p) 11) = Form als(Envt(p)11)

ExtFormals(Envt (pHz‘) = Formals (Envt (p)l/)
u (ExtFormals (Envt (p) 4 (/—1)) - Vars(Envt (p)l/))

for *1 < i < |Envt(p)|

For our example program, N onlocal_A liases() first initializes the function
A() to 0, then iterates over the calls accumulating nonlocal variables that are aliased
to the formal parameters, and finally propagates alias information forward in the
binding graph, resulting in the values shown in Table 19.11(a).

Now the set of formal parameters that are aliased to each nonlocal variable
can be computed by inverting the function A(). This is done by the procedure
Invert_N onlocal_A liases() shown in Figure 19.29, which simply sets A LIA S()

Section 19.4 Interprocedural Alias Analysis 647

procedure Nonlocal_Aliases(P,N,E,A)
P: in set of Procedure
N: in set of Var
E: in set of (Var x Var)
A: out Var — > set of Var

begin
v: Var
e: Var x Var
p, q: Procedure
i, j: integer
oldA: Var — > set of Var
T: sequence of (Var x Var)
A := 0
for each p e p do

for i := 1 to numinsts(p) do
for each q e callset(p,i) do

for each v e (Nonlocals(q)
u (ExtFormals(q) - Formals(q))) do
for j := 1 to nparams(q) (v = arg(p,i,j)) do

I| accumulate nonlocal variables and nonlocal formal
I | parameters that may be aliases of q(V s jth parameter
A(param(q,j)) u= {v}

od
od

od
od

od
T := Top_Sort(N,E)
repeat

oldA := A
for i := 1 to |T| do

I| accumulate nonlocals along edges in binding graph
A(Tli@2) u= A(Tli@l) n Shallower(Tli@l)

od
until oldA = A

end I I Nonlocal.Aliases
FIG. 19.28 Algorithm for efficiently computing aliases of nonlocal variables using the binding

graph B.

to the empty function and then accumulates values from the A() sets. For our
example, it results in the values shown in Table 19.11(b).

Formal parameters may become aliased in several ways. For example, two pa
rameters are aliases of each other if the same actual argument is bound to both
of them. Also, if a nonlocal variable is passed to a formal parameter of a rou
tine and a variable aliased to the nonlocal variable is passed to another formal
parameter, the two formal parameters are aliases of each other. In addition, formal-
parameter aliases can be passed through chains of calls, creating more aliased
formal parameters.

648 In terprocedu ral A nalysis and O ptim ization

TABLE 19*11 (a)T h eA () sets computed by N o n lo ca l_ A lia se s()
and (b) the ALIAS () sets computed by
In v e rt_ N o n lo ca l_ A lia se s() for our
example program in Figure 19.25.

A(j) = {a,z}
A(m) = {bi ,c,w}
A(u) = {a,b2, j}
A(x) = 0

A(k) = {a,bi ,w}
A(r) = {a,b2,j,z}
A(v) = {a,k}
A(y) = {bi>

A(i) = {a,z}
A(l) = {bi ,w}
A(s) = {bi,c,b2}
A(w) = {bi>
A(z) = {a}
(a)

ALIAS(a,e) = 0
ALIAS(a.f) = 0
ALIAS(a,g) = {z}
ALIAS(a,h) = {i,j,k}
ALIAS(a,n) = {z}
ALIAS(a,p) = {r}
ALIAS(a,t) = {i,j,k,u,v}

ALIAS(c,e) = 0
ALIAS(c.f) = 0
ALIAS(c,g) = 0
ALIAS(c,h) = 0
ALIAS(c,n) = {m}
ALIASCc,p) = 0
ALIAS(c.t) = 0
(b)

ALIAS(bi.e) = 0
ALIAS(bi,f) = {y}
ALIAS(bi.g) = {w}
ALIAS(bi.h) = {k,l>
ALIAS(bi,n) = {m,w}
ALIAS(bi,p) = 0
ALIAS(bi.t) = {s,k,l>
ALIAS(b2,e) = 0
ALIAS(b2,f) = 0
ALIAS(b2,g) = 0
ALIAS(b2,h) = 0
ALIAS(b2,n) = 0
ALIAS(b2,p) = 0
ALIAS(b2,t) = {u}

Nonlocals, ExtFormals: Procedure — > set of Var

procedure Invert_Nonlocal_Aliases(P,A,ALIAS)
P: in set of Procedure
A: in Var — > set of Var
ALIAS: out (Var x Procedure) — > set of Var

begin
p: Procedure
x , v : Var
ALIAS := 0
for each p e P do

for each v e ExtFormals(p) do
for each x e A(v) n Nonlocals(p) do

ALIAS(x,p) u= {v}
od

od
od

end I I Invert_Nonlocal_Aliases
FIG. 19.29 Algorithm to invert the nonlocal alias function, thus computing the set of formal

parameters aliased to each nonlocal variable.

Section 19.4 Interprocedural Alias Analysis 649

procedure Build_Pair_Graph(P,N,E)
P: in set of Procedure
N: out set of (Var x Var)
E: out set of ((Var x Var) x (Var x Var))

begin
p, q, r: Procedure
и, v, w, x, y: Var
к, s: integer
N := 0
E := 0
for each p e P do

for each u,v e ExtFormals(p) do
N u= {<u,v>}

od
od
for each p e P do

for k := 1 to numinsts(p) do
for each q e callset(p,k) do

for each u,v e ExtFormals(q) do
for each w,x e ExtFormals(p) do

if match(p,q,k,w,u,x,v) then
E u= {<w,x>-*<u,v>}

elif 3r e P 3s € integer 3w e Var
(pair_match(p,u,v,q,s,r,w,x,y)) then
E u= {<u,v)-><x,y>}

fi
od

od
od

od
od

end I I Build_Pair_Graph
FIG. 19.30 Algorithm to build a program’s pair binding graph n.

To model this situation, we use a pairwise analogue of the binding graph called
the pair binding graph n = (Nn, En) in which each node is a pair of extended formal
parameters of the same procedure and each edge models the binding of one pair to
another by a call. Code to build the pair binding graph for a program is shown in
Figure 19.30.

The function match(p ,q ,k ,w ,u ,x ,v) returns tru e if instruction k in proce
dure p calls procedure q and passes p ’s extended formal parameters w and x to q's
extended formal parameters u and v, respectively, and f a l s e otherwise.

The function p air_m atch (p ,w ,i/,^ ,s ,r,w /,x ,y) returns tru e if there are ex
tended formal parameters u and v of p and a call site s in procedure q nested inside
q such that, for some procedure r, (g, s) calls procedure r and binds u and w to
r’s extended formal parameters x and y, respectively, and v e A(u/); and f a l s e
otherwise. If there exist procedures, integers, variables, and call sites satisfying
pair_mat ch (p , u , v , q , s , r , w , x , y), we add an edge from (m, v) to (x, y), as shown
in Figure 19.31.

650 Interprocedural Analysis and Optimization

P

V G A(w)
FIG. 19.31 Schema for adding arcs that satisfy pair_match() to the pair binding graph. Given that

procedure p has extended formal parameters u and v, procedure q nested inside p has at
call site <g,s> a call to procedure r that passes u to formal parameter x of r and w to y,
and v e A(w), we put the edge <m, y> into the pair binding graph n.

The pair binding graph for our example is shown in Figure 19.32.
To find the pairs of formal parameters that may be aliases of each other, we

mark the program’s pair binding graph as follows: If a variable is passed to two
distinct formal parameters of a routine, then the two formal parameters are aliases
of each other, and so the corresponding node in the pair binding graph is marked.
Also, if (1) a nonlocal variable is passed to a formal parameter of procedure q, (2)
a formal parameter of q’s caller is passed to another formal parameter of g, and (3)
the caller’s formal parameter is an alias of the nonlocal variable, then the two formal
parameters of q may be aliases, so that pair is marked. The algorithm is shown in
Figure 19.33.

For our example, this results in marking (k ,l), (l ,k), (i , j) , (j , i) , (r ,s) , (j ,k),
(j , l) , (i ,1), (u,v), (s ,r) , (k ,j) , (l , j) , (l , i) , and (v,u). The marking is denoted
by the shaded circles in Figure 19.32. Note that (r ,s) and (s ,r) are the only nodes
marked by the if statement that is identified with an asterisk in Figure 19.33.

Next, the routine Prop_Marks() in Figure 19.34 is used to propagate the marks
forward through the pair binding graph to make sure that aliasing of a routine’s
formal parameters is properly passed along to formal parameters of routines it calls.
This is done by maintaining a worklist of nodes in the pair binding graph that are
marked. As each node is removed from the worklist, edges are followed from that
node and the nodes that are reached are marked and placed on the worklist if they
were previously unmarked. For our example, this results in marking no additional
pairs.

Next, we compute formal-parameter aliases by combining A() and ALIAS()
sets and Mark() information. Formal.Aliases (), the routine that does so, is
straightforward and is shown in Figure 19.35. It uses the procedure Outside_In(P),
whose value is a sequence that is a topological sort of the nesting order of the
procedures that make up P, with the outermost procedure(s) given first. For our
example, this results in the alias sets shown in Table 19.12.

Section 19.4 Interprocedural Alias Analysis

<k,l> ® <l ,k> ® < i» j>

<x,y> O

<y»x> o

<y»y> O

<w,w> o

<m,m> O

< i , i > o

<i,k > O

<i,k > O

<j >j> o

<k ,i> O

<k,k> O

< 1 , 1 > o

<v»v> O <r,r> O <s,s> O <u,u> Q

FIG. 19.32 Pair binding graph n for our example program. The nodes and edges are produced by
Build_Pair_Graph(). The shaded nodes are marked by Mark_Alias_Pairs(). No
additional nodes are marked by Prop_Marks ().

The time bound for this approach to alias computation is 0 (n 2 + n - e), where n
and e are the numbers of nodes and edges, respectively, in the program’s call graph.

To combine aliasing information with the alias-free version of a side-effect
computation, we use the algorithm shown in Figure 19.36, where MOD is used as an
example. In essence, we initialize MOD to DM OD and then add formal-parameter
and nonlocal-variable aliases to it.

6 5 2 Interprocedural Analysis and O ptim ization

procedure Mark_Alias_Pairs(P,Mark,ALIAS)
P: in set of Procedure
Mark: out (Var x Var) — > boolean
ALIAS: in (Var x Procedure) — > set of Var

begin
p, q: Procedure
i, j, k, 1: integer
u, v, w, x, y: Var
Mark := 0
for each p e P do

for i := 1 to numinsts(p) do
for each q e callset(p,i) do

for each u,v e ExtFormals(q) (u * v) do
if 3w,x e ExtFormals(p)

(match(p,q,i,w,u,x,v)) then
Mark(u,v) := Mark(v,u) := true

fi
od

* if 3y e ExtFormals(p) 3k e integer
(y = arg(p,i,k)) then
for each w e Nonlocals(p) do

if 31 e integer (w = arg(p,i,l)
& y e ALIAS(w,p)) then
Mark(param(q,k),param(q,l)) := true
Mark(param(q,l),param(q,k)) := true

fi
od

fi
od

od
od

end |I Mark_Alias_Pairs
FIG. 19.33 Algorithm to mark parameter pairs in a program’s pair binding graph.

procedure Prop_Marks(N,E,Mark)
N: in set of (Var x Var)
E: in set of ((Var x Var) x (Var x Var))
Mark: inout (Var x Var) — > boolean

begin
n: Var x Var
f: (Var x Var) x (Var x Var)
WL := 0: set of (Var x Var)
for each n e N do

if Mark(n@l,n@2) then
WL u= {n}

fi
od

FIG. 19.34 Algorithm to propagate marking of parameter pairs in a program’s pair binding graph.

Section 19.4 Interprocedural Alias Analysis 653

while WL * 0 do
n := ♦WL; WL -= {n}
for each f e E (f@l = n) do

if !Mark(f@2@l,f@2@2) then
Mark(f@2@l,f@2@2) := true
WL u= {f@2}

fi
od

procedure Formal_Aliases(P,Mark,A,ALIAS)
P: in set of Procedure
Mark: in (Var x Var) — > boolean
A: in Var — > set of Var
ALIAS: inout (Var x Procedure) — > set of Var

begin
01: sequence of Procedure
p: Procedure
i: integer
v: Var
01 := Outside_In(P)
for i := 1 to 1011 do

p := Olli
for j := 1 to nparams(p) do

ALIAS(param(p,j),p) := A(param(p,j))
for each v e ExtFormals(p) do

if param(p,j) * v & Mark(param(p,j),v) then
ALIAS(param(p,j),p) u= {v}
ALIAS(v,p) u= {param(p,j)}

fi

FIG. 19.35 Algorithm to compute formal-parameter alias information from Mark() , A() , and

TABLE 19.12 Alias sets for formal parameters computed by F orm al_ A liase s()
for our example program in Figure 19.25.

od
end || Prop_Marks

FIG. 19.34 (continued)

od
od

od
end |I Formal.Aliases

ALIAS ().

ALIAS(x,f) = 0
ALIAS(z,g) = {a}
ALIAS(i,h) = {a,j,k,1}
ALIAS(k,h) = {a,bi, i , j ,1}
ALIAS(m,n) = {bi,c}
ALIAS(v,t) = {a,u}
ALIAS(s,p) = {bi,c,r}

ALIAS(y,f) = {bi>
ALIAS(w,g) = {bi>
ALIASCj,h) = {a,i,k,l>
ALIASCl.h) = {bi,i,j,k}
ALIAS(u,t) = {a,b2,v}
ALIAS(r,p) = {a,b2,s}

654 Interprocedural Analysis and Optimization

p ro c e d u r e M O D _ w it h _ A lia s e s (P , A L IA S , DMOD, MOD)
P : i n s e t o f P r o c e d u r e
A L IA S : i n (V a r x P r o c e d u r e) — > s e t o f V a r
DMOD: i n (P ro c e d u r e x in t e g e r) — > s e t o f V a r
MOD: o u t (P ro c e d u r e x in t e g e r) — > s e t o f V a r

b e g in
p , q : P r o c e d u r e
i : in t e g e r
v : V a r
f o r e a c h p e P do

f o r i := 1 t o n u m in s t s (p) do
I I i n i t i a l i z e MOD w it h d i r e c t MOD

M 0 D (p ,i) := DMOD(p, i)
I | add f o r m a l-p a r a m e t e r a l i a s e s
f o r e a c h v e F o r m a ls (p) do

i f v e D M 0 D (p ,i) t h e n
M 0 D (p ,i) U— A L IA S (v ,p)

f i
od
I | add n o n l o c a l - v a r i a b l e a l i a s e s

f o r e a c h v e N o n lo c a ls (p) n D M 0 D (p ,i) do
M 0 D (p ,i) u= A L IA S (v ,p)

od
od

od
end I I M O D _ w ith _ A lia s e s

FIG. 19.36 Algorithm to combine aliasing information with alias-free side-effect information.

19.4.2 Interprocedural Alias Analysis for Languages
with Call by Value and Pointers

To do interprocedural alias analysis for a language such as C with call by value
and pointers, we expand on the intraprocedural approach discussed in Sections 10.2
and 10.3. In particular, we initialize the Ovr() and Ptr() functions on entry to
a procedure from its call sites and set them on return to the call sites from the
information at the return point of the called procedure. We can either do the analysis
individually for each call site or we can do it for all calls to a particular routine at
once.

First, assume that we are doing one call site at a time. Let P and P' be the
program points immediately preceding and following a call site, respectively, and let
entry+ and return - be the program points following the entry point of a routine
and preceding the return, respectively, as shown in Figure 19.37. Then we initialize
the functions as follows for a nonlocal variable x:

Ovr(e ntry+, x) = Ovr(P, x)

Ptr(e ntry+, x) = Ptr(P, x)

Section 19.4 Interprocedural Alias Analysis 655

P'

c a l l f (. . .)

P

[e n t r y j

e n t r y *

r e t u r n -

f e x i t j

FIG. 19.37 Call site, entry, and return of a C routine.

i n t * p , * q ;
i n t * f (i n t *q)

<■ p = q;
r e t u r n p ;

>

i n t m a in ()
{ i n t a , * r ;

r = f (& a) ;

}

FIG. 19.38 An example C program for interprocedural alias analysis.

and as follows for an actual argument y that is passed to formal parameter x:

Ovr(e ntry+, x) = Ovr{ P ', y)

Ptr(e ntry+, x) = Ptr{ P ', y)

For the return, we do the reverse for a nonlocal variable x , namely,

Ovr(P ', x) = Ovr(return -, x)

Ptr(P ', x) = P^r(return-, x)

For example, consider the C code in Figure 19.38. Computation of the Ptr()
function results in

Ptr(P, p) = star{ a)

Ptr(P, q) = star(a)

Ptr(P, r) = star(a)

where P denotes the program point in main() immediately following the return
from f ().

656 Interprocedural Analysis and Optimization

To do all call sites , . . . , for a particular routine at once, we set

k
Oi/r(entry+, x) = |^J Ovr(Pj , x)

i= 1

k
Ptr(entry+, x) = Ptr(Pi , x)

i= 1

for a nonlocal variable x and the corresponding adaptations of the equations above
for parameter passing and for nonlocal variables at return points.

19.5 Interprocedural Optimizations
Given the tools for interprocedural control-flow, data-flow, and alias analysis dis
cussed in the preceding sections, several kinds of optimization become possible, as
follows:

1. We can use the information gathered by interprocedural analysis to drive procedure
integration.

2. We can use the information provided by site-independent constant-propagation ana
lysis to optimize the bodies of procedures that are found to be always called with the
same one or more constant parameters.

3. We can use the information provided by site-specific constant-propagation analysis
to clone copies of a procedure body and to optimize them for specific call sites.

4. We can use the side-effect information to tailor the calling conventions for a specific
call site to optimize caller versus callee register saving.

5. We can optimize call-by-value parameter passing of large arguments that are not
modified to be passed by reference.

6. Finally, and frequently most important, we can use interprocedural data-flow infor
mation to improve intraprocedural data-flow information for procedure entries and
exits and for calls and returns.

Interprocedural analysis can provide much of the information needed to guide
procedure integration, such as the number of call sites and information about
constant-valued parameters. See Section 15.2 for the details.

How to optimize based on constant parameters should be obvious. In the
intermediate-code form of the procedure’s body, we replace the constant-valued
parameters with their values and we perform global optimization, as discussed in
Chapters 12 through 18, on the result. We also tailor the calling and entry code
for the procedure to not pass or receive the constant parameters. We do the re
placement in the intermediate code, rather than in the source code, because a future

Section 19.5 Interprocedural Optimizations 657

modification to the source program may invalidate the information on which the
optimization is based.

Optimizing based on parameters being constant at one or more call sites (called
procedure specialization or cloning) is almost as easy. For each set of call sites that
call the same procedure and that pass the same constant values to one or more of its
parameters, we clone a copy of the intermediate code of the body of the procedure
and then perform the same optimizations as described in the preceding paragraph
on the clone and its call sites.

One optimization that is frequently enabled by these two cases is the elimination
of unnecessary bounds checking within procedures. Many routines are written, for
example, to manipulate arrays of arbitrary size, but are used in particular programs
only on arrays whose sizes are determined in the main program. Propagating that
information to the general-case routines allows them to be tailored to the particular
application and may result in nontrivial speedup or make it easier to perform other
optimizations. For example, propagating the fact that in Figure 15.5 saxpy() is
called only with incx = incy = 1 allows it to be reduced to the code shown in
Figure 19.39. Note that it also makes integrating the body of saxpy () into sg e f a ()
easier.

subroutine sgefa(a,lda,n,ipvt,info)
integer Ida,n,ipvt(1),info
real a(lda,l)
real t
integer isamax,j,k,kpl,l,nml

do 30 i = kpl, n
t = a(l,j)
if (1 .eq. k) go to 20

a(l,j) = a(k,j)
a(k,j) = t

20 continue
call saxpy_ll(n-k,t,a(k+l,k),a(k+l,j))

30 continue

subroutine saxpy.ll(n,da,dx,dy)
real dx(1),dy(1),da
integer i,ix,iy,m,mpl,n
if (n .le. 0) return
if (da .eq. ZERO) return
do 30 i = l,n

dy(i) = dy(i) + da*dx(i)
30 continue

return
end

.FIG* 19.39 The Unpack routine saxpy () and its calling context in sgef a () after determining that
incx = incy = 1 and propagating that information into the body of saxpy ().

658 Interprocedural Analysis and Optimization

Note also that such constants are sometimes conveyed to procedures by global
variables rather than by parameters and that this case is worth analyzing and using
as well.

Optimizing call-by-value parameter passing to call by reference for large objects,
such as arrays and records, depends on determining for such a parameter a of a pro
cedure p whether a e M OD(p). If it is not, then p and its descendants in the call
graph do not modify a, so it is safe to modify the way it is passed to call by ref
erence. Doing so involves changing the code that accesses the actual argument and
formal parameter to use its address instead of its value. Also, if there is a point in
the call graph at which we know that the argument is not modified (perhaps from
an interface specification), but we don’t have the code available to change the pa
rameter passing, we must convert the parameter passing back to call by value at that
point.

Finally, many of the intraprocedural optimizations discussed in Chapters 12
through 18 can be improved by the use of precise, conservative interprocedural
data-flow information. It can both improve optimization around call sites by using
information about the called procedure and improve optimization within proce
dures by using information about parameters and global variables. For example,
loop-invariant code motion (see Section 13.2) can be improved when applied to
a loop that contains a call if it can be determined that the call has no side ef
fects on expressions that are determined to be loop-invariant by intraprocedural
means.

To apply interprocedural data-flow information to global (intraprocedural)
data-flow analysis, we do the interprocedural analysis first and then use its results
to initialize the global data-flow information for procedure entries and exits and to
turn calls from opaque objects into operations for which the effects on the data-flow
information are understood. In some cases, significant benefit can be obtained from
iterating the computation of interprocedural followed by intraprocedural data-flow
information, but this is usually not worth the large increase in compilation time that
it costs, unless it can be hidden from the user by being done as a background activity
while the programmer is occupied with other tasks.

For example, global constant propagation (see Section 12.6) can be made to
take account of interprocedural constant propagation by initializing the constant
information for a procedure’s entry point with the information provided by inter
procedural analysis.

Another overall approach to optimization that has been explored by Srivastava
and Wall [SriW93] is one that, as an early step in the linking process, takes as its
input and produces as its output a series of object modules. In its prototype ver
sion, it transforms each object module into a register-transfer-language (RTL) rep
resentation, does interprocedural control-flow and live variables analyses, and then
does interprocedural dead-code elimination and global and interprocedural loop-
invariant code motion. Finally, it does global copy propagation, global common-
subexpression elimination, and interprocedural dead-store elimination, followed by
turning the RTL back into object modules to be linked. This approach provides
surprisingly good results, especially considering that it depends on no informa-

Section 19.6 Interprocedural Register Allocation 659

tion produced by earlier phases of compilation except, of course, the object code
itself.

19.6 Interprocedural Register Allocation
Another interprocedural optimization that can be a source of significant perfor
mance improvement is interprocedural register allocation. In this section, we de
scribe one approach, developed by Wall [Wall86], in detail and outline three others.
The approaches differ in that Wall’s is done at link time, while the others are done
during compilation.

19.6.1 Interprocedural Register Allocation at Link Time
Wall devised an approach to doing interprocedural register allocation at link time
that combines two observations that enable the interprocedural allocation and the
optional use of graph coloring for allocation within procedure bodies. We provide
here an overview of the approach and indications of some refinements that make it
practical.

The first of the two motivating observations is that if the generated code is
complete, in the sense that it does not require register allocation to run correctly,
then annotations to drive optional register allocation at link time can be encoded
like relocation information in an object module and can either be used to drive the
modification of the code, or be ignored.

The second observation is that if two paths in a program’s call graph do not
intersect, then the same registers can be freely allocated in the procedures in each
path. The latter observation can be illustrated by considering the call graph in
Figure 19.40, where each box represents a procedure and the arrows represent calls.

s
FIG. 19.40 An example call graph for interprocedural register allocation.

660 Interprocedural Analysis and Optimization

r l <- y
r2 <- z
r3 <- r l + r2
x <- r3
(a)

rmv.y
rmv.z
opl.y op2.z re s .x
rmv.x

r2 z
r l4 r6 + r2

(b)
F IG . 19 .41 (a) E xam ple lir code sequence an d asso cia ted an n o tation s, and (b) the result o f

a llocatin g x and y to registers.

r l <- a lod. a
r2 <- r l + 1 re s . a
a <- r2 sto . a
r3 <- b rmv.b
r4 <- r2 + r3 op2.b
y r4 sto .x
x <- r4 rmv.x

F IG . 1 9 .4 2 A n notated lir code for the C statem ent x = y = a++ - b.

Neither of procedures c and d calls the other, so they can use the same registers
without interfering with each other. Similarly, the chain that consists of e, f , and
g does not interfere with the subtree consisting of b, c, and d, so the same registers
may be used in the chain and in the tree without causing any conflicts. The approach
to register allocation described here is based on this second observation combined
with some (independently chosen) method of intraprocedural register allocation.

The annotations that guide register allocation consist of pairs, each of whose
first element is one of six operators, namely, rmv, opl, op2, re s, lod, and sto , and
whose second element is a reference to one of the operands of the instruction with
which it is associated.

As a first example of the annotations, consider the lir code in Figure 19.41(a),
where x, y, and z represent storage locations. The meaning of rmv.i/ is that if
variable v is allocated to a register at link time, then this instruction should be
removed. The meaning of opl.i/, op2.i/, and r e s .i ; is that if v is allocated to a
register, then the corresponding position in the instruction should be replaced by
the number of the register to which it is allocated. Thus, if we were to succeed in
allocating x and y to registers r6 and r l4 , respectively, the code sequence would
become the one shown in Figure 19.41(b). The lod operator is used for a variable
that is loaded and that will be modified in this basic block before the loaded value is
last used, and the sto operator is used for values that will be used after the current
use. Thus, for example, the C statement

x = y = a++ - b

would result in the annotated code shown in Figure 19.42. If we allocate a to a
register, we need to replace the first instruction with a register-to-register copy; if we
allocate y to a register, we need to replace the store to y with another copy.

Section 19.6 Interprocedural Register Allocation 661

Of course, if we remove instructions, we also need to fix addresses and offsets
that refer to the instruction sequence, but the necessary information to do this is
already available in the instructions themselves and their relocation information.

Wall’s approach to generating the annotations is to produce triples as the inter
mediate code (see Section 4.9.1) and then, in a backward pass over each basic block,
to mark

1. the operands v that may be used again after their associated variables are stored to
(i.e., those that require lod.i/, rather than rmv.i/),

2. the operands that are stored to and that may be used again (those that require s t o . v,
rather than rmv.t/), and

3. the remaining operands, which can be annotated with opl.i/, op2.i/, re s.i/, or
rmv. v.

He then generates the object module and records a list of the procedures in the mod
ule, and for each procedure, a list of its local variables, the variables it references,
and the procedures it calls, along with estimates (or profiling data) of the number of
times each variable is referenced and the number of calls to each procedure.

The interprocedural register allocator is invoked near the beginning of the link
ing process, once it has been determined which modules need to be linked. It builds
a call graph with a single node for each procedure and collects the usage information
for procedures and variables. The call graph is required to be a DAG; this is one of
the areas where special handling is required, because it may not represent the pro
gram accurately. In particular, recursive calls and indirect calls through procedure
valued variables cannot be handled in the same way as other calls. Recursive calls
would make the call graph not be a DAG if they were represented accurately, and
they would reuse the same registers as already active calls to the same routine if they
had registers allocated in the same manner as other routines. Similarly, calls through
a procedure-valued variable might be to any of several possible targets, which may
not even be knowable accurately at link time.

After estimating the total number of calls to each routine, the allocator traverses
the DAG in reverse depth-first order, forming groups of variables that will each be
assigned to a register, if possible. It groups global variables into singletons and forms
groups of local variables that cannot be simultaneously live, associating a reference
frequency with each. The allocator then sorts the groups by frequency and, assuming
that there are R registers available for allocation, it assigns the top R groups to
registers (or, alternatively, it can use a graph-coloring allocator within a procedure
body). Finally, it rewrites the object code, taking the allocation information and
annotations into account.

Several issues require special handling or can be improved by specific techniques,
as follows: 1

1. Initialized globals that are allocated to registers need to have load instructions
inserted in the code to set their values.

662 Interprocedural Analysis and Optimization

2. Recursive and indirect calls could either use a standard calling sequence or, for
recursive calls, could use a special calling sequence that saves and restores exactly
those registers that need to be.

3. Passing arguments in registers instead of in the memory stack can be accommodated
by adding annotations of the form p a r .proc.v to the instructions that store the
parameters’ values in the run-time stack, to indicate the procedure proc being called
and the variable v being passed.

4. Profiling can be used to replace the estimated reference frequencies with numbers
that more directly reflect the actual execution characteristics of the program, and
thus can improve the register allocation.

5. Graph coloring can be used to improve the liveness information that is used in
allotting variables to groups. This allows some local variables to be combined into
allocation groups more effectively.

19.6.2 Compile-Time Interprocedural Register Allocation
Three approaches to interprocedural register allocation at compile time have been
discussed in the literature and incorporated into compilers.

One, developed by Santhanam and Odnert [SanO90], extends register alloca
tion by graph coloring (see Section 16.3) by doing an interprocedural live variables
computation to determine webs for global variables. It partitions the call graph into
webs, one for each global variable, and allocates the ones with high usage frequen
cies to registers, leaving the remaining registers for intraprocedural allocation.

Another method, developed by Chow [Chow88], has been implemented as an
extension to register allocation by priority-based graph coloring (see Section 16.4).
Its primary goal is to minimize the overhead of register saving and restoring for
procedure calls and it does so by a combination of shrink wrapping (described in
Section 15.4.2) and a postorder traversal of the call graph that takes register usage
by called procedures into account at call sites. Since the caller and callee are both
visible for most calls, this method can pass a parameter in any register. It assumes
that all registers are caller-saved and delays register saving and restoring to as far up
the call graph as possible.

The third approach, developed by Steenkiste and Hennessy [SteH89], allocates
registers by a method similar to Wall’s but at compile time. It is designed for lan
guages like lisp in which programs typically consist of many small procedures,
making interprocedural register allocation particularly important. It does a depth-
first traversal of the call graph, insofar as it is known, and allocates registers from
the bottom up using the principle that procedures in different subtrees of the call
graph can share the same registers, and using at each call site the available infor
mation about the register usage of the callee. This approach is likely to run out of
registers at some point in the process, so the allocator simply switches to a standard
intraprocedural allocator with saves on entry and restores on exit; the same method
is used for recursive calls.

Section 19.8 Other Issues in Interprocedural Program Management 663

19.7 Aggregation o f Global References
Another interprocedural optimization that can be applied during linking is aggre
gation of global references. Since Rise architectures lack a way to specify a 32-bit
address in a single instruction, it often takes two instructions to reference a datum
at an arbitrary address, e.g., a global variable.8 Aggregation o f global references can
provide a way to significantly reduce this overhead by amortizing it over multiple
references. For ciscs, this allows shorter offsets to be used and so reduces the size of
the object code.

The technique is simple—it essentially requires collecting the global data into
an area that can be referenced by short offsets from a value stored in a register.
To perform the aggregation, we must reserve a register (or possibly more than
one) during compilation that is generally referred to as the global pointer or gp
(see Section 5.7). We scan the complete object module, looking for the pattern of
instructions that represents an access to a global variable. For a 32-bit Rise system,
this involves a lu i for m ips, a se th i for sparc, and so on, followed by an instruction
that does a load or store using the register set by the lu i , se th i, etc. We collect the
data items that are loaded or stored (possibly with initializations) and we modify
the addresses that are used in the loads and stores to refer to offsets from the
global pointer. In the process, we eliminate the additional instructions that compute
the high-order parts of the addresses and we rewrite the remaining instructions as
necessary to fix up branch offsets and any other things that may have been changed
by the instruction removal. The process for ciscs is similar.

One refinement to global-reference aggregation is to sort the collected global
data by size, smallest first, so as to maximize the number of items that can be
referenced from the global pointer(s).

19.8 Other Issues in Interprocedural Program
Management
Compilation in a programming environment that manages interprocedural relation
ships (often called “programming in the large”) leads to a series of issues in opti
mization, as discussed above, as well as in other areas. While none of the latter are
particularly difficult, they do require attention. Some of them have been discussed
in the literature, while others have only been addressed in experimental or practical
programming environments. Some of the more important ones are as follows:

1. name scoping: determining which modules are affected by changing the name of a
global variable and what effects the change has on them, such as requiring recompi
lation;

8. The problem is more severe for 64-bit Rise architectures, for which four or five instructions may
be required for the same task.

664 Interprocedural Analysis and Optimization

2 . recompilation: determining when a change to a module requires recompilation and
the minimal set of modules that need to be recompiled (see [C0 0 K8 6]); and

3. linkage between routines in the same module (or library) and linkage with shared
objects: determining when a shared object has been recompiled and what effects it
has on modules that use it; we discuss some aspects of this issue in Section 5.7.

Hall provides an exploration of some of these topics and others in her Ph.D. thesis
[Hall91].

19.9 Wrap-Up
In this chapter, we have discussed interprocedural control-flow, data-flow, and alias
analyses and applications of interprocedural information to both global and inter
procedural optimization. We began with the studies by Richardson and Ganapathi
that suggest that interprocedural analysis may not be worth the effort, and then we
concentrated on the needed analytic tools and on areas where it generally is worth
while.

We have seen that constructing the call graph of a program is an easy exercise if a
whole program in a relatively unsophisticated language (e.g., Fortran) is presented at
once, somewhat harder with separate compilation, and PSPACE-hard for programs
with both procedure-valued variables and recursion, such as PL/I or C.

We have distinguished may and must information, and flow-sensitive and flow-
insensitive information, and have seen that the flow-sensitive and must information
may be very expensive to compute precisely, being generally NP- or co-NP-complete.
Thus, we have concentrated on flow-insensitive may data-flow problems, such as
M OD , and some of the less expensive flow-insensitive must problems, such as
interprocedural constant propagation, that are useful in tailoring procedures to take
account of constant-valued parameters and guiding procedure integration.

We have also discussed several varieties of interprocedural optimization, concen
trating on interprocedural register allocation and aggregation of global references,
both of which are performed at link time. Srivastava and Wall’s work has shown
that it is quite possible that many of the standard optimizations may be performed
at link time as well.

Among the interprocedural optimizations, for most programs, interprocedural
register allocation and constant propagation are the more important and aggregation
of global references is less so. However, much of the benefit of interprocedural ana
lysis is its contribution to improving the quality of the intraprocedural optimizations
by narrowing the scope of possible effects of called procedures.

Finally, we have suggested that interprocedural optimization is most appropriate
in a programming environment that manages “programming in the large” issues—
such as scoping, recompilation, and shared-object linkage—automatically.

We place the interprocedural optimizations in the order for performing opti
mizations as shown in Figure 19.43. We add interprocedural constant propagation

Section 19.9 Wrap-Up 665

FIG. 19.43 Order o f optimizations, with interprocedural optimizations shown in bold type.
(continued)

(preceded by an in traprocedural p ass o f the sam e optim ization) and procedure spe
cialization and cloning to block B. Clearly, we do the subsequent p ass o f sparse
conditional constant propagation only if interprocedural constant p ropagation has
produced useful results.

We place interprocedural register allocation and global-reference aggregation in
block E. They are best done on the load m odule, when the code o f all (statically
available) procedures is present to be w orked on.

666 Interprocedural Analysis and Optim ization

FIG. 19.43 (continued)

19.10 Further Reading
Richardson and Ganapathi’s studies of the effectiveness of interprocedural optimiza
tion are in [RicG89a], [RicG89b], and [Rich91]. The evidence that interprocedural
optimization may be more useful for parallelizing compilers is found in [A11C86]
and [Call8 8].

WeihPs proof that constructing the call graph of a recursive program with
procedure variables is PSPACE-hard is found in [Weih80]. Some of the harder
issues in computing procedural side effects are discussed in [Weih80], while others
are addressed only in implemented systems, such as ParaFrase [Kuck74] and Para-
Scope [CooH93].

Cooper and Kennedy’s original approach to computing flow-insensitive side
effects is [CooK84]. However, that approach had a significant flaw, as noted in
[CooK8 8 a], in that it asserted that the global-variable and formal-parameter sub
problems could be solved independently. In fact, the formal-parameter problem must

Section 19.11 Exercises 667

be solved before dealing with nonlocal variables, an approach that is presented
in [CooK8 8 b]. Myers’s approach to computing flow-sensitive side effects is described
in [Myer81] and Callahan’s approach is in [Call8 8].

Callahan, Cooper, Kennedy, and Torczon’s method for performing interproce
dural constant propagation is in [CalC8 6]. Grove and Torczon’s discussion of jump
and return-jump functions, their computational costs, and the information they pro
vide is in [GroT93].

Cooper and Kennedy’s approach to interprocedural alias analysis is found
in [CooK89]. A more powerful approach is described in [Deut94].

Wall’s approach to interprocedural register allocation at link time is described
in [Wall8 6]. The approaches described for doing interprocedural register alloca
tion during compilation were developed by Santhanam and Odnert [SanO90],
Chow [Chow8 8], and Steenkiste and Hennessy [SteH89].

Aggregation of global references is discussed in [HimC87], [Hime91], and
[SriW94]. [SriW94] discusses, among other things, the extension of this technique
to 64-bit Rise architectures.

Srivastava and Wall’s work on link-time optimization is presented in [SriW93].
Some of the issues in interprocedural program management or “ programming

in the large” are discussed in the literature, e.g., Cooper, Kennedy, and Torczon’s
paper [C0 0 K8 6] and Hall’s [Hall91], while others are addressed only in implemented
systems, such as ParaFrase and ParaScope.

19.11 Exercises
19.1 (a) Write a program that includes at least five distinct procedures with calls among

them and that includes at least one recursive call, (b) Show the steps of executing the
procedure Build_Call_Graph() in Figure 19.3 for your example.

RSCH 19.2 The complexity of computing GMOD by the procedures Compute_GMOD() and
GMOD_Search() in Figure 19.18 can be reduced by a factor of d (the depth of
procedure nesting in the program) by applying the observation that LowLink(p) for
iteration i is less than or equal to LowLink(p) for iteration 1 + 1. Write the resulting
code for the two procedures.

19.3 (a) Adapt the approach to computing DMOD given in Section 19.2.1 to computing
DREF and (b) apply it to the program in Figure 19.10.

19.4 (a) Formulate an i c a n algorithm to do call-site-specific interprocedural constant-
propagation analysis using both jump and return-jump functions and (b) apply it
to the program in Figure 19.44 with h a lt () defined as a routine that terminates
execution of the program.

19.5 (a) Construct a C program with at least three routines and at least one global variable
and (b) perform site-specific alias analysis on it as described in Section 19.4.2.

668 Interprocedural Analysis and O ptim ization

procedure main()
main begin
1 read(t)
2 call f(t)
3 call f(2)

end
procedure f(b)

f begin
1 print(g(b,l))

end
procedure g(x,y)

g begin
1 if y > 0 then
2 call h(x,y,l)
3 x : — 2
4 else
5 call h(3,y,1)
6 halt()
7 fi

end
procedure h(u,v,w)

h begin
1 if u > w then
2 call g(v,-l)
3 else
4 return w + 1
5 fi

end
FIG. 19.44 Example program on which to run site-specific interprocedural constant propagation.

19.6 Write an ican routine that takes a lir procedure body and annotates its instructions
with register-allocation annotations of the sort discussed in Section 19.6.1.

CHAPTER 20

Optimization for the
Memory Hierarchy

T his chapter concerns code optimization techniques that can be used to take
best advantage of the memory hierarchy, particularly data and instruction
caches, and includes a way to improve register allocation for array elements.
From the very beginning of the design of computers, almost all systems have

distinguished between main memory and registers. Main memory has been larger
and slower to fetch from and store to than the register set and, in many systems,
operations other than loads and stores have required at least one operand, if not all,
to be in a register. In Rise systems, of course, this approach has been taken to its
extreme, requiring that all operations other than loads and stores be performed on
operands in registers (or immediates) and that they place their results in registers.

Over time, the difference between the basic processor cycle and the time needed
to access main memory has increased to the point where it would now be a source
of significant performance degradation if all loads and stores were required to run
at the speed of main memory. And the disparity is getting worse: main memory
speeds are increasing at 10% to 20% a year, while processor speeds are achieving
increases of as much as 50% a year. To remedy this, cache memories, or simply
caches, have been designed to fit between the registers and main memory to reduce
the speed mismatch. They duplicate selected portions of main memory, usually on
demand, in a way determined by the hardware or a combination of hardware and
software. A load, store, or instruction fetch directed to an address represented in
a cache is satisfied by the cache rather than by main memory (or, in the case of
a store, possibly in parallel with memory) and with a result latency that is ideally
not more than two processor cycles. For systems with exposed or partially exposed
pipelines (e.g., Rises and advanced implementations of the Intel 386 architecture
family), loads and branches often require two cycles to complete, but the second
cycle is usually available to execute another instruction (in the case of a load, the
instruction needs to be one that does not use the quantity being loaded).

669

670 Optimization for the Memory Hierarchy

Caches depend on the spatial and temporal locality properties of programs for
their effectiveness. If a program executes a loop repeatedly, then, ideally, the first
iteration brings the code for it into the cache and subsequent iterations execute it
from the cache, rather than requiring it to be reloaded from memory each time.
Thus, the first iteration may incur overhead for fetching the instructions into the
cache, but subsequent iterations generally need not. Similarly, if a block of data is
used repeatedly, it is ideally fetched into the cache and accessed from there, again
incurring the overhead of reading it from main memory only on its first use. On
the other hand, if the code and data interfere in the cache, i.e., if they occupy some
of the same cache locations, or if the data interferes with itself by having sections
mapped to the same cache blocks, significant performance degradation may result.
At the worst, loads, stores, and instruction fetches are no faster than accessing main
memory.

A system may have separate data and instruction caches (also called D-caches
and I-caches, respectively) or it may have a combined or unified cache that holds
both data and instructions. Also, systems with paging invariably include another
kind of cache, namely, a translation-lookaside buffer; or TLB, that is used to cache
information about the translation of virtual memory addresses to physical addresses
and vice versa.

This chapter begins with a section of anecdotes that graphically describe the
impact and possibilities of cache usage and optimization. This is followed by a se
ries of sections that describe instruction prefetching and intra- and interprocedural
approaches to instruction-cache optimization. Next comes a section on taking ad
vantage of register allocation for array elements, followed by a series of sections
that give an introduction to and overview of data-cache optimization. Finally, we
discuss the interaction of scalar and memory-oriented optimizations and the integra
tion of memory-related optimizations into the structure of an aggressive optimizing
compiler.

20.1 Impact o f Data and Instruction Caches
Bell reports on the effect of tuning numerically intensive Fortran and C programs
by hand to take better advantage of the IBM RS/6000’s pipelines and caches. He
examines how performance varies with the stride or sequential difference in indexes
with which arrays are accessed. With 64-byte blocks in the D-cache, eight double
precision floating-point values fit into a block, so D-cache performance is directly
tied to the strides used. In particular, his data show that performance decreases as
the logarithm of the increase of the stride for stride values < 32. For strides larger
than 32, TLB misses begin to dominate the performance degradation—when the
stride is 4,096 or greater, there is a TLB miss for every memory reference, resulting
in a performance of less than 3% of the maximum possible.

Thus, arranging arrays in memory so that they can be accessed with the smallest
possible strides is generally key to achieving high data-cache performance. One way
to achieve this for code that will use an array several times is to copy the items
that will be used to consecutive locations in another array, so that the data can be

Section 20.1 Impact of Data and Instruction Caches 671

do i = 1,N
do j = 1,N
do k = 1,N
C(i,j) = C(i,j)

+ A(i,k) * B(k,j)
enddo

enddo
enddo

do i = 1,N
do j = 1,N
do k = 1,N
C(i,j) = C(i,j)

+ A(k,i) * B(k,j)
enddo

enddo
enddo

(a) MM (b) MMT

do j = l,N,t
do k = l,N,t
do i = 1,N

do jj = j,min(j+t-l,N)
do kk = k,min(k+t-l,N)

C(i»jj) = C(i,jj)
+ A(i,kk) * B(kk,jj)

enddo
enddo

enddo
enddo

enddo

do j = l,N,t
do k = l,N,t
do i = 1,N
do jj = j,min(j+t-l,N)
do kk = k,min(k+t-l,N)

C(i»jj) - C(i,jj)
+ A(kk,i) * B(kk,jj)

enddo
enddo

enddo
enddo
enddo

(c) MMB (d) MMBT

FIG. 20.1 Four versions of matrix multiplication in Fortran: (a) MM, the usual form; (b) MMT,
with A transposed; (c) MMB, with the j and k loops tiled; and (d) MMBT, with both
transposing and tiling.

accessed with stride one, and then to copy the data back if the entries have been
changed in the process.

As an example of the potential impact of D-cache optimization, consider the
four versions of double-precision matrix multiplication in Fortran described by Bell.
The four versions (shown in Figure 20.1) are as follows:

1. MM: the standard textbook triply nested loop to multiply A by B;

2. MMT: MM with A transposed in memory;

3. MMB: the result of tiling (see Section 20.4.3) all three loops with tiles of size t ; and

4. MMBT: the result of combining tiling and transposition of A.

Bell reports measured performance numbers for each of these versions with N = 50
on an IBM RS/6000 Model 530. The performance of the original version varies with
the organization and size of the matrices by a factor of over 14, while tiling and
transposing produce performance that is nearly maximal and that is even across the
entire range of sizes. The intermediate versions perform nearly as well.

672 Optimization for the Memory Hierarchy

As examples of the potential effect of I-caches on performance, we offer two
anecdotes. The first concerns compiling Linpack for a system with 32-byte cache
blocks and a processor capable of fetching four 4-byte instructions per cycle and
issuing three. The first instruction of the saxpy loop that is the heart of the program
turns out to fall at the end of a cache block, so the instruction buffer1 can fetch only
that one useful instruction, and only it is executed in the first cycle of the loop body’s
execution; this pattern, of course, continues to be the case in every iteration of the
loop.

The second concerns the spec gcc benchmark, which frequently encounters a
relatively high percentage of stall cycles (about 10%) due to I-cache misses, if it is
not optimized for I-cache usage. The primary issue is cache capacity—gcc has a large
working set—but this can be improved by using the methods discussed below that
separate frequently executed code from rarely executed code within each procedure
body.

20.2 Instruction-Cache Optimization
The following sections describe several approaches to improving instruction-cache
hit rates. Two of the approaches are interprocedural, one is intraprocedural, and the
other three have both intra- and interprocedural aspects. All attempt to rearrange
code so as to reduce the size of the working set and reduce conflicts.

20.2.1 Using Hardware Assists: Instruction Prefetching
In many implementations of a variety of architectures, the hardware provides se
quential prefetching of code and, in some cases, the possibility of fetching from the
branch-taken path in addition to the fall-through path.

Some of the newer 64-bit Rises, such as sparc-V9 and Alpha, provide software
support for instruction prefetching. This allows the programmer or compiler the
opportunity to provide prefetching hints to a system’s I-cache and instruction-fetch
unit, by indicating that a block or group of blocks is likely to be needed soon, so
it should be fetched into the cache when there are free bus cycles. For example, for
sparc-V9, one issues the pseudo-instruction

ip re fe tch address

to prefetch the code block containing the given address.
Software prefetching is useful mostly for code blocks that are about to be fetched

for the first time, or for blocks that are used repeatedly and are determined by pro
filing to be likely not to be in the I-cache when they are needed. In the first case, the
usefulness of prefetch instructions depends on the absence of hardware support for
sequential and branch prefetching. Upon determining that a block is likely to benefit
from software prefetching, one then places the appropriate instruction Tpref cycles

1. An instruction buffer is a hardware queue of instructions in transit from the cache to the
execution unit.

Section 20.2 Instruction-Cache Optimization 673

backward in the code from the point at which the block would begin executing,
where Tpref is the time needed to satisfy the prefetch. If whether a block is needed or
not depends on a condition determined t cycles before the block would begin exe
cuting, then one places the prefetch min(Tpref, t) cycles back in the code on the path
that needs it.

Optimization of branch prediction, which can enhance the effectiveness of in
struction prefetching, is discussed in Section 18.11.

20.2.2 Procedure Sorting
The easiest I-cache optimization technique to apply and one that can have definite
benefit is to sort the statically linked routines that make up an object module at
link time according to their calling relationships and frequency of use. The goal of
the sorting is to place routines near their callers in virtual memory so as to reduce
paging traffic and to place frequently used and related routines so they are less likely
to collide with each other in the I-cache. This approach is based on the premise
that routines and their callers are likely to be temporally close to each other and
hence should be placed so that they do not interfere spatially. If profiling feedback
is available, it should be taken into account in this process; if not, it can be guided
by heuristics that place routines that call each other frequently closer to each other
(e.g., calls from inside loops should be weighted more heavily than calls that are not
embedded in loops).

To implement this idea, we begin with an undirected static call graph, with each
arc labeled with the number of times that each of the two procedures at either end
of it calls the other one. We use an undirected call graph because there may be calls
in both directions between two procedures and because each call is matched by the
corresponding return. Then we collapse the graph in stages, at each stage selecting
an arc with the highest weight and merging the nodes it connects into a single one,
coalescing their corresponding arcs and adding the weights of the coalesced arcs to
compute the label for the coalesced arc. Nodes that are merged are placed next to
each other in the final ordering of the procedures, with the weights of the connections
in the original graph used to determine their relative order.

The ican algorithm for this process is the routine P roc_P osition() given
in Figure 20.2. We assume that the call graph is connected; if not, i.e., if some
procedures are unused, we apply the algorithm only to the (at most one) connected
component that contains the root node.

A two-element member of ProcSeq, such as represents a binary
tree with an unlabeled root. We also use longer elements of ProcSeq, such as
[tfi,. . . ,<z«], to represent sequences of n elements. If there is no arc connecting
nodes p i and p2, we define w eight([p i ,p 2]) = 0. The functions le f t (£) and
r igh t (t) return the left and right subtrees, respectively, of tree t . The functions
leftm ost (t) and rightm ost (£) return, respectively, the leftmost and rightmost
leaves of the tree t. The function maxi (s) returns the index i of the first element
of the sequence s with maximal value, and the function reverse (s) reverses the
sequence s and all its subsequences. For example, maxi([3 ,7 ,4 ,5 ,7]) = 2 and
re v e rse ([1 ,[2 ,3]]) = [[3 ,2] , !] .

674 Optimization for the Memory Hierarchy

ProcSeq = Procedure u sequence of ProcSeq

procedure Proc_Position(E,weight) returns sequence of Procedure
E: in set of (Procedure x Procedure)
weight: in (Procedure x Procedure) — > integer

begin
T, A := 0: set of ProcSeq
e: Procedure x Procedure
a, emax: ProcSeq
psweight: ProcSeq — > integer
max: integer
for each e e E do

T := A u= { [e @ l,e@ 2]}

p s w e ig h t ([e @ l,e@ 2]) w e ig h t(e @ l,e @ 2)
od
repeat

max := 0
for each a e A do

if psweight(a) > max then
emax := a
max := psweight(a)

fi
od
Coalesce.Nodes(T,A,weight,psweight,emaxll,emax!2)

until A = 0
return Flatten(VT)

end || Proc_Position
FIG. 20.2 Procedure-sorting algorithm.

The function Coalesce_Nodes(T,i4 ,weight,psweight,pl yp2) given in Figure
20.3 coalesces the nodes p i and p2 into a single node, adjusting the values of T, A,
and psweight in the process. Since we are using two-element sequences to represent
unordered pairs whose elements may themselves be unordered pairs, we need several
routines to perform functions that would be trivial when applied to ordered pairs.
These functions are as follows: 1

1. Same (p i , p i) returns tru e if p i and p i are identical sequences up to order, and
f a l s e otherwise; for example, Sam e([l, [2 ,3]] , [[3,2] , 1]) returns true, while
Same ([1, [2,3]] , [[1 ,2] , 3]) does not.

2. Member (A , [p l ,p 2]) returns tru e if Ipl ,p21 is a member of the set A modulo
order, and f a l s e otherwise.

3. Remove {A , s) , given in Figure 20.4, removes from A any of its members that Same ()
does not distinguish from s, and returns the result.

Section 20.2 Instruction-Cache Optimization 6 7 5

procedure Coalesce_Nodes(T,A,origwt,psweight,pi,p2)
f, A: inout set of ProcSeq
origwt: in ProcSeq — > integer
psweight: inout ProcSeq — > integer
pi, p2: in ProcSeq

begin
lpl, rpl, lp2, rp2: Procedure
p, padd: ProcSeq
i: integer
I I select ProcSeqs to make adjacent and reverse one if
I| necessary to get best order
lpl leftmost(pi)
rpl := rightmost(pi)
lp2 := leftmost(p2)
rp2 := rightmost(p2)
i := maxi([origwt(rpl,lp2),origwt(rp2,lpl),

origwt(lpl,lp2),origwt(rpl,rp2)])
I I form new ProcSeq and adjust weights
case i of

1: padd := [pi ,p2]
2: padd := [p2,pl]
3: padd := [pi,reverse(p2)]
4: padd := [reverse(pi),p2]

esac
T := (T u {padd}) - {pl,p2>
A := Remove(A, [pi,p2])
for each p e T (p * padd) do

psweight([p,padd]) := 0
if Member(A, [p,pi]) then

A := Remove(A, [p,pi])
psweight([p,padd]) +- psweight([p,pi])

if Member(A,[p,p2]) then
A := Remove(A, [p,p2])
psweight([p,padd]) += psweight([p,p2])

fi
A u= {[p ,padd]}

od
end || Coalesce_Nodes

FIG. 20.3 Node-coalescing procedure used in Figure 20.2.

4. F la t te n (T) , given in Figure 20.4, traverses the binary tree represented by the
sequence T from left to right, and flattens it, i.e., it constructs the sequence of its
leaf nodes, which it returns.

As an example of the procedure-sorting algorithm, assume that we begin with
the weighted undirected call graph in Figure 20.5(a). In the first step, we coalesce P2

676 Optimization for the Memory Hierarchy

procedure Flatten(t) returns sequence of Procedure
t: in ProcSeq

begin
if leaf(t) then

return [t]
else

return Flatten(left(t)) ® Flatten(right(t))
fi

end I I Flatten

procedure Remove(A,s) returns Procseq
A: in set of ProcSeq
s: in ProcSeq

begin
t: ProcSeq
for each t e T do

if Same(s,t) then
A -= {s}
return A

fi
od
return A

end I I Remove
FIG. 20.4 Auxiliary procedures used in the procedure-sorting algorithm.

and P4 to form [P2,P4] and we get the graph shown in Figure 20.5(b). In the next
step, we coalesce P3 and P6 to form [P3,P6], and then P5 and [P2,P4] to form
[P5, [P2,P4]], resulting in the graphs shown in Figure 20.5(c) and (d), respectively.
The contents of the single node resulting from the coalescing process is

[[PI, [P 3 , P 6] , [P 5 , [P 2 , P 4]]] , [P 7 , P 8]]

so we arrange the procedures in memory in the order PI, P3, P6, P5, P2, P4, P7, P8.
Note that P2 and P4 have been placed next to each other, as have P3 and P6, and P5
and P2.

20.2.3 Procedure and Block Placement
Another approach to I-cache optimization that can be combined with the one de
scribed above requires modifying the system linker to put each routine on an I-cache
block boundary, allowing the later phases of the compilation process to position fre
quently executed code segments, such as loops, so as to occupy the smallest possible
number of cache blocks and to place them at or near the beginnings of blocks, thus
helping to minimize I-cache misses and making it more likely that superscalar CPUs
can fetch whole instruction groups that can be executed simultaneously. If most ba
sic blocks are short (say, four to eight instructions), this helps to keep the beginnings
of basic blocks away from the ends of cache blocks. A compiler can be instrumented

Section 20.2 Instruction-Cache Optimization 677

FIG. 20.5 (a) An example flowgraph for procedure sorting, and (b) through (d) the first three
transformations of the flowgraph.

to collect statistics on this without much difficulty, and profiling feedback could be
used to determine for what basic blocks such placement is important vs. those for
which it simply wastes code space and results in extra branches.

20.2.4 Intraprocedural Code Positioning
Pettis and Hansen [PetH90] developed and evaluated a bottom-up approach to in
traprocedural code positioning, which we describe. The objective is to move infre
quently executed code (such as error handling) out of the main body of the code and
to straighten the code (i.e., to remove unconditional branches and make as many
conditional branches as possible take the fall-through path) so that, in general, a
higher fraction of the instructions fetched into the I-cache are actually executed.

678 Optimization for the Memory Hierarchy

Unlike procedure sorting, this process can be done during compilation of each pro
cedure. To do this, we assume that the edges in a procedure’s flowgraph have been
annotated with their execution frequencies, either by profiling or by estimating the
frequencies. The algorithm performs a bottom-up search of the flowgraph, build
ing chains of basic blocks that should be placed as straight-line code because the
edges between them are executed frequently.2 Initially, each basic block is a chain
unto itself. Then, in successive steps, the two chains whose respective tail and head
are connected by the edge with the highest execution frequency are merged; if the
highest frequency occurs on an edge that does not connect the tail of a chain to the
head of another, the chains cannot be merged. Nevertheless, such edges are used in
code placement: we assume that a forward branch is taken;3 this information is pre
served so that the target basic block can, if possible, be placed at some point after
the source block. Finally, basic-block placement is done by first selecting the entry
chain and then by proceeding through the other chains according to the weights
of their connections, ican code for the procedure B lock _P osition (£ ,E ,r,/reg),
where B is the set of nodes (i.e., basic blocks), E the set of edges, r the entry node,
and freq{) the function that maps edges to their execution frequencies, and the pro
cedure Edge_Count() that it uses is given in Figure 20.6.

As an example of the algorithm, consider the flowgraph in Figure 20.7. The edge
with the highest execution frequency is from B1 to B2, so the first sequence formed
is [B1 ,B 2]. The edge from B2 to B4 has the next highest frequency, so the existing
sequence is extended to [B1,B2,B4]; similarly, entry and B8 are added in the next
two steps, resulting in [entry,B1 ,B2,B 4,B8]. The next highest frequency edge is
from B9 to e x it , so a new sequence, [B 9 ,ex it] , is started. In subsequent steps,
the sequence [B 9 ,ex it] is extended to [B 6 ,B 9 ,e x it] , and two other sequences are
constructed, [B3,B7] and [B5]. Next we compute the ed ges() function, as follows:

edges([entry,B1,B2, B4,B8]) = 2
edges([B3,B7]) = 1
edges([B5]) = 1
edges([B6,B9,exit]) =0

Next, we order the sequences so that the one containing the entry node comes first,
followed by the other three in an order given by the edges () function, and we
return the result. The resulting arrangement in memory is shown in Figure 20.8.

Finally, we fix up the code by inserting and deleting branches as necessary to
make the flowgraph equivalent in effect to the original one. This is done by using a
combination of the original block entries, the labels that begin the blocks, and the
branches that end them. Notice that in our example we have succeeded in making
all the branches forward, except the two loop-closing ones, and we have arranged
the blocks so that six of the nine forward edges are fall-throughs.

2. The chains are somewhat reminiscent of traces in trace scheduling (Section 17.5), except that no
fix-up code is required.
3. This aspect of the algorithm can, of course, be modified to correspond to other assumptions
about conditional branches.

Section 20.2 Instruction-Cache Optimization 679

procedure Block_Position(B,E,r,freq)
returns sequence of Node
B: in set of Node
E: in set of (Node x Node)
r: in Node
freq: in (Node x Node) — > integer

begin
C := 0: set of sequence of Node
CR: sequence of Node
c, cl, c2, clast, cfirst, cnew: sequence of Node
nch, oldnch, max, fr: integer
edges: (set of sequence of Node) — > integer
e: Node x Node
for each b e B do

C u- {[b]}
od
nch := |CI
repeat

oldnch := nch
I I select two sequences of nodes that have the
I| highest execution frequency on the edge that
I I connects the tail of one to the head of the
I| other
max := 0
for each cl e C do

for each c2 e C do
if cl * c2 & (cU-l)->(c2U) e E then

fr := freq(cll-l,c211)
if fr > max then

max := fr
clast := cl
cfirst := c2

fi
fi

od
od
I| combine selected pair of sequences
if max > 0 then

cnew := clast ® cfirst
C := (C - {clast,cfirst}) u {cnew}
nch -= 1

fi
until nch = oldnch

(continued)

FIG. 20.6 Bottom-up basic-block positioning algorithm.

6 8 0 Optimization for the Memory Hierarchy

while C * 0 do
I| find sequence beginning with entry node and
I I concatenate sequences so as to make as many
I I branches forward as possible
CR := ♦C
if r = CR11 then

C -= {CR}
for each cl e C do

edges(cl) := 0
for each c2 e C do

if cl * c2 then
edges(cl) += Edge_Count(cl,c2,E)

fi
od

od
repeat

max := 0
for each cl e C do

if edges(cl) £ max then
max := edges(cl)
c : = cl

fi
od
CR ®= c
C — {c}

until C = 0
return CR

fi
od

end I I Block_Position

procedure Edge_Count(cl,c2,E) returns integer
cl, c2: in sequence of Node
E: in Node x Node

begin
ct := 0, i, j: integer
for i := 1 to I cl I do

for j := 1 to |c2| do
if (clli)->(c21j) e E then

ct += 1
fi

od
od
return ct

end I I Edge_Count

FIG. 20.6 (continued)

Section 20.2 Instruction-Cache Optimization 681

FIG. 20.7 An example flowgraph for intraprocedural code positioning.

FIG. 20.8 The example flowgraph in Figure 20.7 after intraprocedural code positioning.

20.2.5 Procedure Splitting
A technique that enhances the effectiveness of both the procedure-sorting and the
intraprocedural code-positioning algorithms is procedure splitting, which divides
each procedure into a primary and a secondary component, the former containing
the frequently executed basic blocks and the latter containing the rarely executed
ones, such as exception-handling code. One then collects the secondary components
of a series of procedures into a separate secondary section, thus packing the primary
components more tightly together. Of course, procedure splitting requires adjusting
the branches between the components. Experimentation should be the basis for
deciding the execution-frequency boundary between the primary and secondary
components.

A schematic example of procedure splitting is given in Figure 20.9. The regions
labeled “p ” and “ s” represent primary and secondary code, respectively.

682 Optimization for the Memory Hierarchy

PI P2 P3 P4

p !i s
i

P
i
! si

i
p ! si p ii s

(a)

PI P2 P3 P4 PI P2 P3 P4

P P P P

Primary

(b)
Secondary

FIG. 20.9 (a) A group of procedure bodies, each split into primary (p) and secondary (s)
components, and (b) the result of collecting each type of component.

20.2.6 Combining Intra- and Interprocedural Methods
An approach to I-cache optimization that combines intra- and interprocedural meth
ods is exemplified by the work of McFarling, who focuses on optimization of entire
programs for direct-mapped I-caches (see Section 20.7 for references). His method
works on object modules and depends on rearranging instructions in memory and
segregating some instructions to not be cached at all. As for the approaches discussed
above, profiling feedback improves the effectiveness of his algorithm.

McFarling has also investigated the impact of procedure integration or inlining
on I-caches. Clearly, inlining can affect I-cache miss rates both positively and nega
tively. If too many procedures are inlined, code size may increase exponentially and
the I-cache hit rate may suffer as a result; on the other hand, inlining can also in
crease locality, thus decreasing the miss rate. He gives a model for determining the
effect of inlining a single call and criteria for deciding which procedures to inline.

20.3 Scalar Replacement of Array Elements
One concern in generating good object code for loops that manipulate subscripted
variables is that very few compilers even try to allocate such variables to registers,
despite the fact that register allocation is often done very effectively for scalars.
Before we launch into the details of a method for doing such allocation, we present
two examples that show how important it can be.

Our first example is the matrix multiplication code given in Figure 20.1(a). If we
replace the accesses to C (i, j) by a variable ct, as shown in Figure 20.10, and ct is
allocated to a register, we reduce the number of memory accesses by 2 • (N3 - N2) or
nearly a factor of two.

Our second example is the code in Figure 20.11(a). The references to b [] can be
replaced by two temporaries, resulting in the code in Figure 20.11(b), reducing the

Section 20.3 Scalar Replacement of Array Elements 683

do i = 1,N
do j = 1,N

ct = C (i, j)
do k = 1,N

ct = ct + A(i,k) * B (k,j)
enddo
C (i , j) = ct

enddo
enddo

FIG. 20.10 Fortran matrix multiply from Figure 20.1(a) with a scalar temporary in place of C (i, j) .

for i <- 1 to n do
b[i+l] <- b[i] +
a[i] <- 2 * b[i]

endfor

(a)

1.0
+ c[i]

i f n >= 1 then
tO <- b[l]
tl <- tO + 1.0
b [2] <- tl
a[l] <- 2 * tO + c[l]

endif
tO <- t l
for i <- 2 to n do

t l <- tO + 1.0
b[i+ l] <- t l
a [i] <- 2 * tO + c[i]
tO <- t l

endfor
(b)

FIG. 20.11 (a) A simple hir recurrence, and (b) the result of using scalar temporaries in it.

number of memory accesses by about 40%. Of course, if n is known to be greater
than or equal to one, the i f can be deleted.

The approach to replacing subscripted variables by scalars, and hence making
them available for register allocation, is called scalar replacement, also known as
register pipelining. In essence, this method finds opportunities to reuse array ele
ments and replaces the reuses with references to scalar temporaries. As we have seen
in the examples, it can produce dramatic improvements in speed for some real-life
programs. Another benefit is that it can decrease the need for D-cache optimization.

Scalar replacement is simplest to explain for loop nests that contain no condi
tionals. To describe it, we need to define the period of a loop-carried dependence
edge e in the dependence graph, denoted p(e), as the constant number of loop iter
ations between the references to the subscripted variable representing the tail of the
edge and its head; if the number of iterations is not constant, the variable is not a
candidate for scalar replacement and the period is undefined.

Next, we build a partial dependence graph for the loop nest, including only flow
and input dependences that have a defined period and are either loop-independent
or carried by the innermost loop; we exclude edges that represent transitive depen
dences. Alternatively, we can begin with the full dependence graph, if we have it,

684 Optimization for the Memory Hierarchy

for i <- 1 to n do
for j <- 1 to n do

a[i,j] <- b[i] + 0.5
a[i+l,j] <- b[i] - 0.5

endfor
endfor
(a)

for j <- 1 to n do
for i <- 1 to n do

a[i,j] <- b[i] + 0.5
a[i+l,j] <- b[i] - 0.5

endfor
endfor
(b)

FIG. 20.12 (a) A doubly nested hir loop, and (b) the result of interchanging the loops.

and prune it. Each flow or input dependence in the resulting graph represents an
opportunity for scalar replacement.

As our examples suggest, we need p(e) + 1 temporaries in general to hold the
values generated by p(e) + 1 iterations before the last one can be recycled. So we
introduce temporaries to through tP(e) and replace references to the array element
by uses of the temporaries. In particular, the generating reference that fetches the
array element A [/] from memory is replaced by to <r- A [/], and other references to
A [/+ /*s], where s is the stride of sequential accesses to A [], are replaced by either
t j <- A [/+/*s] or A [/+/*s] £/, depending on whether the reference is a use or a
definition, respectively. We also place a sequence of assignments tP(e) <- tP(e)-U ♦ • • >
t\ <r- to at the end of the innermost loop body. Finally, we must initialize the ti
correctly by peeling4 p{e) iterations of the body from the beginning of the loop
and replacing the first fetch of the array element in iteration i by the assignment
t0 <- elem, and other fetches and stores by the corresponding assignments. Now
each t{ is a candidate for allocation to a register and, further, if the dependence is
loop-independent, it is a candidate for code motion out of the loop.

Our second example of scalar replacement (Figure 20.11) is done according to
the method described above.

Transformations, such as loop interchange and loop fusion (see Section 20.4.2),
may make scalar replacement applicable to or more effective for a given loop nest.
Loop interchange may increase opportunities for scalar replacement by making loop-
carried dependences be carried by the innermost loop. See Figure 20.12 for an
example.

Loop fusion can create opportunities for scalar replacement by bringing together
in one loop multiple uses of a single array element (or more than one). An example is
shown in Figure 20.13. After fusing the two loops, scalar replacement can be applied
to a [i] .

Scalar replacement can handle loops that have ifs in their bodies, such as the C
code in Figure 20.14. For this example, we use three temporaries and assign t2 in
place of a [i - 2] , t l in place of a [i - l] , and tO in place of a [i] .

Further, scalar replacement can be applied to nested loops with significant
benefit. For example, given the loop in Figure 20.15(a), we first perform scalar

4. Peeling k iterations from the beginning of a loop means replacing the first k iterations by k
copies of the body plus the increment and test code for the loop index variable and placing them
immediately ahead of the loop.

Section 20.3 Scalar Replacement of Array Elements 685

fo r i <- 1 to n do
b [i] <- a [i] + 1.0

endfor
fo r j <- 1 to n do

c [j] <- a [j] / 2 . 0
endfor

fo r i <- 1 to n do
b [i] <- a [i] + 1.0
c [i] <- a [i] / 2 . 0

endfor

(a) (b)
FIG. 20.13 (a) A p a ir o f h i r l o o p s , a n d (b) th e r e s u l t o f f u s in g th e m .

fo r (i = 2; i <= 20; i++)
{ b [i] = (a [i] + b [i]) / 2 . 0 ;

t2 = a[0] ;
t l = a [l] ;
tO = a [2] ;
b [2] = (tO + b [2]) / 2 . 0 ;
tO = t2 + 1 .0 ;
a [2] = tO;
t2 = t l ;
t l = tO;
tO = a [3] ;
b[3] = (tO + b [3]) / 2 . 0 ;
tO = t l - 1 .0 ;
a [3] = tO;
t2 = t l ;
t l = tO;
fo r (i = 4; i <= 20; i++)
{ tO = a [i] ;

b [i] = (tO + b [i]) / 2 . 0 ;
i f ((i #/. 2) == 0)

a [i] = a [i - 2] + 1 .0 ;
i f ((i % 2) == 0)
{ tO = t2 + 1 .0 ;

a [i] = tO;
>

e l s e e l s e
{

a [i] = a [i - l] - 1 .0 ; tO = t l - 1 .0 ;
a [i] = tO;

>

>

t2 = t l ;
t l = tO;

>
(a) (b)

FIG. 20.14 (a) A C loop with a control-flow construct in its body, and (b) the result of applying
scalar replacement to a [] .

686 Optimization for the Memory Hierarchy

fo r i <- 1 to n do
x [i] <- 0
fo r j <- 1 to n do

x [i] x [i] + a [i , j] * y [j]
endfor

endfor

(a)

fo r i <- 1 to n do
to <r- 0
fo r j 1 to n do

tO <— tO + a [i , j] * y [j]
endfor
x [i] <- tO

endfor

(b)
FIG. 20.15 (a) A doubly nested hir loop, and (b) the loop with scalar replacement performed on

x [i] in the inner loop.

fo r i <r~ 1 by 3 to n do
tO 0
11 <— 0
t2 0
fo r j <- 1 to n do

tO <- tO + a [i , j] * y [j]
t l <- t l + a [i + l , j] * y [j]
t2 <- t2 + a [i + 2 , j] * y [j]

endfor
x [i] tO
x [i+ l] t l
x [i+ 2] <- t2

endfor
fo r i i to n do

tO 0
fo r j 1 to n do

tO <- tO + a [i , j] * y [j]
endfor
x [i] <- tO

endfor

FIG. 20.16 The loop in Figure 20.15(b) with the inner loop unrolled by a factor of three.

replacement on x [i] in the inner loop, which results in the code in Figure 20.15(b).
Next, we unroll the inner loop by an (arbitrarily chosen) factor of three, which re
sults in the code in Figure 20.16; then we scalar replace the y [j] values also, which
yields the code in Figure 20.17.

Section 20.4 Data-Cache Optimization 687

fo r i <- 1 by 3 to n do
tO 0
t l <- 0
t2 <- 0
fo r j <- 1 to n do

t4 y[j]
tO tO + a [i , j] * t4
t l <- t l + a [i + l , j] * t4
t2 <r- t2 + a [i + 2 , j] * t4

endfor
x [i] <- tO
x [i+ l] <- t l
x [i+ 2] t2

endfor
fo r i <- i to n do

tO <- 0
fo r j 1 to n do

tO tO + a [i , j] * y [j]
endfor
x [i] <- tO

endfor

FIG. 20.17 The loop in Figure 20.16 with y [j] scalar replaced in the inner loop.

20.4 Data-Cache Optimization
Almost all of the remainder of this chapter is devoted to an introduction to and
overview of the optimization of the cache usage of numerical (or scientific) code. By
numerical code, we mean programs that manipulate large arrays of data, usually,
but not always, of floating-point values and in Fortran. Most such programs have
patterns of data usage that are regular in structure and that include opportunities
for reuse of data before it is flushed from the cache.

We begin with a brief discussion of global arrangement of data, which assumes
that we have an entire program available to analyze and transform, so information
collected about all parts of the program can be used by the compiler to arrange all
the arrays used in the program in the load image so as to minimize their interference
with each other in the D-cache. Next, we give an overview of D-cache optimization
for individual procedures, which is designed, as much as is feasible, to eliminate the
latency due to fetching data from memory into the D-cache and storing results from
the registers into it.

As noted above, the code for which this type of optimization has had the
greatest success so far is so-called numerical or scientific code that spends most
of its time executing nested loops that manipulate matrices of numerical values.
The optimizations work by first elucidating patterns of data reuse in the loop nests
and then transforming them to turn the reuse into patterns that exhibit locality of
reference, i.e., the uses of the same data locations or cache blocks are made close

688 Optimization for the Memory Hierarchy

enough in time that they execute without causing the data to be flushed from the
cache before they are reused.

The primary technique for determining reuse patterns is dependence analysis,
and the approach to bringing data uses closer together in time is transformation
of the loop nests. We have given an overview of dependence analysis for array
references in nested loops in Chapter 9, and we introduce the relevant loop trans
formations in Section 20.4.2. We then give an overview of an approach developed
by Lam, Rothberg, and Wolf (see Section 20.7 for references) that is designed to
eliminate as much as possible of the latency due to accessing the cache in a less than
optimal manner.

Next, we present data prefetching, a way to hide (rather than eliminate) some
of the latency of fetching data, and thus a technique that should be applied after the
loop transformations discussed above.

Finally, we discuss briefly the interaction of scalar and memory-oriented op
timizations, the possibility of D-cache optimization for pointers and dynamically
allocated data objects, and where in the compilation process to integrate the I-cache
and D-cache optimizations.

Before we discuss data-cache optimization, note that it is most frequently ap
plied to loops that contain floating-point computation and, as discussed in Sec
tion 12.3.2, that is exactly the area in which we must be most careful not to alter
the effect of a computation by rearranging it. In Section 12.3.2, we pointed out that
if MF denotes the maximal finite floating-point value in a given precision, then

1.0 + (MF — MF) = 1.0

while

(1.0 + MF) — MF = 0.0

This generalizes to loops as follows. Let the values stored in the array A[1 • -3*n] be

A[3*i+l] =1.0
A[3*i+2] = MF
A[3*i+3] = -MF

for i = 0 to i = n-1. Then the hir loops in Figure 20.18(a) and (b) both assign the
value 0 .0 to s, while the loop in (c) assigns it the value 1.0 and that in (d) assigns it
the value n.

Section 11.10 of the Fortran 77 standard restricts the order of evaluation of
loops to be “ as written,” and thus disallows the transformations above.

However, the loop transformations used in Figure 20.18, namely, reversal and
tiling, are most frequently implemented in optimizers that are applied to Fortran
programs. Thus, it is the responsibility of the compiler to inform the user about the
transformations it makes and it is the responsibility of the user to verify that the
transformations do not alter the result of a computation. This also suggests strongly
that it is essential for the user to be able to control the transformations that are
applied to specific loops.

Section 20.4 Data-Cache Optimization 689

s <- 0.0
for i <- 1 to 3*n do

s <- s + A [i]

endfor
(a)

s <- 0.0
for i <- 3 to 3*n do

t <- 0.0
for j <- i-2 to i do
t <- t + A [j]

endfor
s <- s + t

endfor
(b)

s <- 0.0
for i 3*n by -1 to 1 do

s <- s + A[i]

endfor
(c)

s <- 0.0
for i <- 3*n by -3 to 3 do

t <- 0.0
for j <- i by -1 to i-2 do
t <- t + A[j]

endfor
s <- s + t

endfor
(d)

FIG, 20.18 hir loops that sum the same sequence of floating-point values but that produce different
results. The loops in (a) and (b) produce the result 0.0, while the one in (c) produces
1.0 and the one in (d) produces n.

20.4.1 Interprocedural Arrangement o f Data

An interprocedural approach to improving D-cache usage is to arrange large data ob
jects in memory so as to decrease the likelihood of their interfering with each other
in the D-cache. This requires information about the patterns of usage of the data
objects and requires the availability of all the data objects (i.e., their static initializa
tions, if any, and the code that addresses them) at the same time for rearrangement.
This, in turn, requires interprocedural dependence analysis and having the entire
load image available to operate on, and so is unlikely to be undertaken in real com
pilers any time soon. Should this approach become a realistic possibility, the work of
Gupta [Gupt90] provides proofs that optimal arrangement of data is NP-complete
and gives polynomial-time algorithms that provide good approximations in practice.

20.4.2 Loop Transformations

We consider uses of subscripted variables in perfectly nested loops in hir that
are expressed in canonical or normalized form,5 i.e., each loop’s index runs from
1 to some value n by Is and only the innermost loop has statements other than

5. Although all our loops are originally in canonical form, some of the transformations described
below (e.g., tiling) produce loops with increments other than 1. While such loops could be put in
canonical form, there is no point in doing so, since they represent the final stage after transforma
tions have been applied.

690 Optimization for the Memory Hierarchy

fo r statements within it. This simplifies the presentation somewhat but is not essen
tial. Let

fo r i <- a by b to c do
statements

endfor

be a loop with arbitrary bounds and increment. Then

fo r i i <- 1 by 1 to n do
i <r- a + (i i - 1) * b

statements
endfor

where n = |_(c — a + b)/b_|, is a corresponding loop in canonical form.
Loop transformations do things like interchanging two nested loops, reversing

the order in which a loop’s iterations are performed, fusing two loop bodies together
into one, and so on. If chosen properly, they provide opportunities to execute a
loop nest so that the semantics of the program containing it are preserved and its
performance is improved. The performance improvement may come from better
use of the memory hierarchy, from making a loop’s iterations executable in parallel
by several processors, from making a loop’s iterations vectorizable, or from some
combination of these factors. Our use of loop transformations concentrates on
optimizing the use of registers, data caches, and other levels of the memory hierarchy.
We leave parallelization and vectorization to other texts, as discussed in Section 1.5.

There are three general types of loop transformations that we deal with, namely,

1. unimodular transformations,

2. loop fusion and distribution, and

3. tiling.

Wolf and Lam ([WolL91] and [Wolf92]) provide a convenient characterization
of a large class of loop transformations. They define the class of unimodular loop
transformations as those whose effect can be represented by the product of a uni
modular matrix with a (column) distance vector.6 A unimodular matrix is a square
matrix with all integral components and with a determinant of 1 or —1. As we shall
see, loop interchange, more general permutations of nested loop control, loop skew
ing, loop reversal, and a series of other useful transformations are all unimodular.

Define a distance vector Q\ , 1*2 , . . . , in} to be lexicographically positive if it has
at least one nonzero element and the first nonzero element in it is positive. The
definition extends in the natural way to the other ordering relations. Wolf proves
that a unimodular transformation represented by the matrix U is legal when applied
to a loop nest with a set of lexicographically non-negative distance vectors D if and

6. Recall the definition of distance vector from Section 9.3.

Section 20.4 Data-Cache Optimization 691

for i <- 1 to n do
for j <- 1 to n do

a[i,j] <- (a[i-l,j] + a[i+l,j])/2.0
endfor

endfor
FIG. 20.19 The assignment in this h ir loop nest has the distance vector (1, 0).

for j <- 1 to n do
for i <r- 1 to n do

a[i,j] <- (a[i-l,j] + a[i+l,j])/2.0
endfor

endfor
FIG. 20.20 The code in Figure 20.19 with the loops interchanged.

only if, for each d e D y Ud >z 0, i.e., if and only if it transforms the lexicographically
positive distance vectors to lexicographically positive distance vectors.7

We next consider some examples of unimodular transformations, the corre
sponding matrices, and their effects on loop nests.

Loop interchange is the transformation that reverses the order of two adjacent
loops in a loop nest. It is characterized by a matrix that is the identity except that two
adjacent Is on the diagonal have their rows and columns switched. As an example,
consider the code in Figure 20.19, which has the distance vector (1,0). The loop-
interchange matrix is

r° n
1 o j

and the product of the interchange matrix with the distance vector is

and the result of applying the transformation is shown in Figure 20.20; note that the
resulting distance vector is lexicographically positive, so the transformation is legal.

Loop permutation generalizes loop interchange by allowing more than two
loops to be moved at once and by not requiring them to be adjacent. For example,
the unimodular matrix

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

represents interchanging the first of four nested loops with the third and the second
with the fourth.

7. Note that a unimodular matrix must transform the zero vector (and only it) to the zero vector.

6 92 Optim ization for the Memory Hierarchy

for i <- 1 to n do
for j <- 1 to n do

a[i] <- a[i+j] + 1.0
endfor

endfor

for i 4- l to n do
for j i+1 to i+n do

a[i] <- a[j] + 1.0
endfor

endfor
(a)

FIG. 20.21 (a) A

(b)

h i r lo o p n e s t , a n d (b) th e r e su lt o f s k e w in g th e in n e r lo o p .

(T:0-<>,:KD

o — o
(a)

1 0- * 0- * 0;*0

2 < $ - o - o : * o

3 (S - o - o - * o

4 c5-o —0---0
(b)

FIG. 20.22 Transformation of (a) the iteration-space traversal of the loop nest shown in
Figure 20.21(a) by skewing (b).

Loop reversal reverses the order in which a particular loop’s iterations are
performed. The appropriate matrix is the identity with a —1 in place of the 1 that
corresponds to the loop to be reversed. For example, the matrix

"1 0 0 "

0 - 1 0
0 0 1

corresponds to reversing the direction of the middle of three loops. If we were to
apply loop reversal to the outer loop in the code in Figure 20.19, it would correspond
to the matrix-vector multiplication

- 1
0

- 1
0

The resulting distance vector (—1,0) is lexicographically negative, so the transfor
mation is not applicable.

Loop skewing changes the shape of a loop’s iteration space. For example, it
might transform the loop in Figure 20.21(a) to that in (b), which corresponds to
changing the iteration-space traversal from the one shown in Figure 20.22(a) to that

Section 20.4 Data-Cache Optimization 693

for i <- 1 to n do
a[i] <- a[i] + 1.0

endfor
for j <- 1 to n do

b[j] <- a[j] * 0.618
endfor
(a)

for i 1 to n do
a[i] a[i] + 1.0
b[i] a[i] * 0.618

endfor

(b)
FIG, 20.23 (a) A pair of hir loops, and (b) the result of fusing them.

for i <- 1 to n do
SI a[i] <- b[i]

endfor
for i <- 1 to n do

S2 b[i-l] c[i] + 1.5
endfor
(a)

for i <- 1 to n do
a[i] <- b[i]

endfor
for i <- 1 to n do

b[i+l] <- c[i] + 1.5
endfor
(b)

for i <- 1 to n do
51 a[i] <- b[i]
52 b[i-l] <- c[i] + 1.5

endfor
(c)

for i <- 1 to n do
a[i] <- b[i]
b[i+l] <- c[i] + 1.5

endfor
(d)

FIG. 20.24 Two pairs of hir loops, (a) and (b), and the results of fusing them in (c) and (d),
respectively. In the fused loop (c), there is one dependence, S2 (1) SI, while in loop (d),
the dependence is SI (1) S2, so loop fusion is legal for the example in (a) but not for the
one in (b).

in (b). The matrix corresponding to this transformation is

[1 !]
which is unimodular.

Loop fusion, distribution, and tiling are three important transformations that
are not unimodular.

Loop fusion takes two adjacent loops that have the same iteration-space
traversal and combines their bodies into a single loop, as shown, for example, in
Figure 20.23. Loop fusion is legal as long as the loops have the same bounds and as
long as there are no flow, anti-, or output dependences in the fused loop for which
instructions from the first loop depend on instructions from the second loop (outer
loops do not affect the legality of the transformation). As an example, applying fu
sion to the loops in Figure 20.24(a) results in the loop in (c). The only dependence
is S2 (1) SI, so the transformation is legal. On the other hand, for the loops in

694 O p tim ization for the M em ory H ierarchy

for i <- 1 to n do
b[i] a[i]/b[i]
a[i+l] <- a[i] + 1.0

endfor

(a)

for i <- 1 by 2 to n do
for j <- i to min(i+l,n) do

b[i] a[i]/b[i]
a[i+l] <- a[i] + 1.0

endfor
endfor
(b)

FIG. 20.25 (a) A h i r loop, and (b) the result of tiling it with a tile size of 2.

(b), fusing them results in (d) with the only dependence being SI (1) S2, so fusion
is not legal.

L o o p d istribu tion does the opposite of loop fusion. It takes a loop that contains
multiple statements and splits it into two loops with the same iteration-space traver
sal, such that the first loop contains some of the statements inside the original loop
and the second contains the others. Figure 20.23 provides an example of loop dis
tribution also, with (b) before and (a) after. Loop distribution is legal if it does not
result in breaking any cycles in the dependence graph of the original loop (again,
outer loops do not affect the transformation).

T iling is a loop transformation that increases the depth of a loop nest. Given an
n-deep nest, tiling may make it anywhere from (n + l)-deep to 2«-deep, depending
on how many of the loops are tiled. Tiling a single loop replaces it by a pair of loops,
with the inner one (called the tile loop) having an increment equal to that of the
original loop8 and the outer one having an increment equal to ub — lb + 1, where
lb and ub are the lower and upper bounds of the inner loop, respectively; tiling
interchanges loops from the tiled one inward to make the tile loop the innermost
loop in the nest. The number of iterations of the tile loop is called the tile size .
For example, in Figure 20.25, the loop in (a) has been tiled with a tile of size 2
in (b).

Tiling one or more of a nest of loops rearranges its iteration-space traversal
so that it consists of a series of small polyhedra executed one after the other.9
Figure 20.26 shows the result of tiling both loops in the code in Figure 20.21(a) with
tile sizes of 2. Figure 20.27 shows the resulting iteration-space traversal, assuming
that n = 6.

8. However, as shown in Figure 20.25(b), there may be a min operator to guarantee that the tiled
version executes the proper number of iterations the last time through the outer loop.
9. Tiling is also known by three other names in the literature. It has been called “ blocking,” but we
choose not to use that name because it has at least two other meanings in computer science already.
Wolfe calls it “ strip mine and interchange” because creation of a tile loop divides a given loop into a
series of loops that execute “ strips” of the original ones. Callahan, Carr, and Kennedy call tiling an
innermost loop “ unroll and jam” because it can be thought of as unrolling some number of copies
and then “ jamming” them together into a loop.

Section 20.4 Data-Cache Optimization 695

FIG. 20.26

FIG. 20.27

20.4.3

for i <r- 1 by 2 to n do
for j <r- l by 2 to n do

for il <- i to min(i+l,n) do
for jl <- j to min(j+l,n) do

a[il] <- a[il+jl] + i.o
endfor

endfor
endfor

endfor
The result of tiling both loops in the h ir loop nest shown in Figure 20.21(a) with a tile
size of 2.

3

1 2 3 4 5 6

o —+p
c t—+d

/ „ o - - o / P--+P

........., o - * o
c t—+d C d :::+o_ —- - "\ 1 t) P~-yo
c t —+d cP—*o

Iteration-space traversal of the tiled loop nest in Figure 20.26, with n = 6.

Tiling a loop nest is legal exactly when the tile loops can be interchanged with
the other loops to make the tile loops innermost. In particular, tiling the innermost
loop is always legal.

Locality and Tiling
The most important technique for maximizing data-cache effectiveness for loop nests
is to exploit locality of reference in areas of arrays that are larger than single elements
or cache blocks. While there may be no exploitable reuse at all in a given loop nest,

696 Optimization for the Memory Hierarchy

its pattern of cache usage may still be improvable by focusing its work on segments
of the arrays.

Consider the matrix-multiplication example in Figure 20.1(a) and what we have
found out about it above, namely, that any order of the loops is legal. We can apply
tiling to it to cause it to operate on subarrays of any desired size. If the tile sizes
are chosen optimally, each fragment of the work may be computable without any
cache misses other than compulsory ones; further, if we select the best arrangement
of the tiles with respect to each other in the looping structure, we may be able to
reduce even the number of compulsory misses for a tile by taking advantage of
reuse between consecutive tiles. Creating a tile loop for each loop results in the
code in Figure 20.28(a). Now, since the original loops can be arbitrarily reordered,
we can move all the tile loops to make them the innermost loops, as shown in
Figure 20.28(b). The result is a loop nest that works on T x T sections of the arrays,
with a traversal pattern analogous to that shown in Figure 20.27; also, of course,
scalar replacement of array elements can be applied to C (i i , j j) . If T is chosen
judiciously, tiling reduces cache conflicts by causing fewer elements of each array
to need to be present in the data cache at once to perform the given computation.

While tiling is often very valuable in reducing cache interference and hence for
increasing performance, we are left with three questions:

1. What happens if a loop nest is not fully tilable?

2. How does cache organization impact the effectiveness of tiling?

3. How do we select the tile sizes for a given loop nest and loop bounds to be most
effective?

Whether a loop nest is fully tilable may or may not affect its performance—it
depends on where tiling is needed. Consider the h i r loop nest in Figure 20.29. The
inner loop clearly will not benefit from tiling, while the outer one will if the rows of
the array a [] may interfere with each other in the cache. Permuting the two loops
in Figure 20.29 provides an example that will benefit from tiling only the inner loop.
On the other hand, we may have a loop nest with an iteration space that is large in
several dimensions but for which some loops are not permutable, and hence are not
tilable. One may, at least, tile the loops that are permutable to be the innermost ones
and there are usually performance gains to be derived from doing so.

The organization of the data cache can make a dramatic difference in the overall
effectiveness of tiling and on the effectiveness of a particular tile size for a given loop
size. Suppose we have a direct-mapped cache and some particular loop nest. While
the cache may be large enough to hold most of the data being processed, it may not
be able to do so without collisions between the contents of different arrays, or even
between two parts of the same array. Even if we fully tile the loop nest, we may
need to make the tile sizes surprisingly small compared to the size of the cache to
avoid collisions. Having a set-associative cache obviously reduces the frequency of
such collisions, but the more arrays we are processing in a single loop nest, the less
effectively it does so.

Section 20.4 Data-Cache Optimization 697

do i = 1,N,T
do ii - i,min(i+T-l,N)
do j = 1,N,T
do jj = j,min(j+T-l,N)
do k = 1,N,T
do kk = k,min(k+T-l,N)

= C(ii,jj) + A(ii,kk) * B(kk,jj)
enddo

enddo
enddo

enddo
enddo

enddo

(a)

do i = 1,N,T
do j = 1,N,T
do k = 1,N,T
do ii = i,min(i+T-l,N)
do jj = j,min(j+T-l,N)
do kk » k,min(k+T-l,N)
C(ii,jj) = C(ii, j j) + A(ii ,kk) * B(kk,jj)

enddo
enddo

enddo
enddo

enddo
enddo

(b)

FIG. 20.28 (a) Fortran matrix multiplication from Figure 20.1(a) with a tile loop for each index,
and (b) the result of tiling all the loops.

for i <- 1 to N do
for j <- 1 to 3 do

a[i,j] <r- (a[i-l, j-1] + a[i,j] + a[N+l-i, j+1])/j
endfor

endfor
FIG. 20.29 A hir example for which tiling may benefit at most one of the two loops.

Choosing a fixed tile size independent of the loop bounds can prove disastrous,
again especially for direct-mapped caches. A particular combination of loop bounds
and tile size can be very effective for reducing collision misses, while changing the
loop bounds by as little as 1% or 2% and keeping the tile size fixed can dramatically

698 Optimization for the Memory Hierarchy

increase collisions and reduce performance by a large factor. Thus, it is essential
that tile sizes be allowed to change with the loop bounds and that one have either
experience with their interaction to base choices on, a theory that explains their
interaction, or preferably both.

Wolf ([WolL91] and [Wolf92]) provides an excellent treatment of both the
theoretical and practical sides of choosing tile sizes; he also gives examples of the
phenomena discussed in the preceding paragraph.

20.4.4 Using Hardware Assists: Data Prefetching
Some of the newer 64-bit Rises—such as Alpha, PowerPC, and sparc-V9—include
data prefetching instructions that provide a hint to the data cache that the block
containing a specified address is needed soon. For example, in sparc-V9, the data
prefetch instruction can specify prefetching of a block for one or several reads or
writes. The meanings of the four types are as follows:

1. Several reads: fetch the data into the D-cache nearest to the processor.

2. One read: fetch the data into a data prefetch buffer and don’t disturb the cache, since
the data are used only once; if the data are already in the D-cache, leave them as is.

3. Several writes: fetch the data into the D-cache nearest the processor, in preparation
for writing part(s) of its contents.

4. One write: fetch the data for writing, but, if possible, do it in such a way as not to
affect the D-cache.

Alpha’s (fetch and fetch_m) and PowerPC’s (debt and debtst) data prefetching
instructions hint that the block containing the given byte address should be fetched
into the D-cache for reading or writing, respectively. For Alpha, the block fetched,
if any, is at least 512 bytes in size, which may be too large for some applications, as
discussed in the preceding section.

Note that prefetching does not reduce the latency of fetching data from memory
to the cache—rather it hides it by overlapping it with other operations. Thus, the
two operations are, to a degree, complementary, but we should still prefer to reduce
latency by exploiting data reuse first and only then use prefetching.

Prefetching is most useful in loops that access large arrays sequentially. For loops
that contain a single basic block, the generation of prefetch instructions can be driven
by detecting the sequential access patterns, and the address to prefetch from can be
a constant offset from an induction variable. To determine at what point a prefetch
should be issued, we proceed as follows. Define the following four quantities:

1. T(00p is the number of cycles taken by one iteration of the loop without doing
prefetching, assuming that the needed data are in the cache.

2. tuse is the number of cycles from the beginning of an iteration to the data’s first use
in the loop.

3. tpref is the issue latency of the data prefetch instruction.

Section 20.4 Data-Cache Optimization 699

Tpref is the result latency of the data prefetch instruction; i.e., tpref + Tpref cycles
after the prefetch instruction is issued, the data are available in the cache.

The first use of the zth block occurs at cycle tuse + i * T/00p for i = 0 ,1 ,2 , . . . without
prefetching and at tuse + i * (T\oop + tpref) for i = 0, 1, 2, . . . with prefetching. To
have the data available at time tuse + i * (Tioop + tpref)-> they must be prefetched
tpref + Tpref cycles earlier, or

Tpref
Tloop tpref

iterations back and Tpref mod(T/00p + tpref) cycles earlier than that.
For example, suppose a loop takes 20 cycles to complete an iteration and that

its first use of the cached data occurs at cycle 5 within the loop. Let the prefetch
instruction have a 1-cycle issue latency and a 25-cycle result latency. Then the
prefetch for a given iteration should be placed [25/(20 + 1)J = 1 iteration earlier
and 25 (mod 20 + 1) = 4 cycles before the first use point, or at cycle 1 of the iteration
preceding the one that uses the prefetched data, and the prefetch instruction should
specify the address of the data used in the next iteration. If the first use of the data
occurs at cycle 2 of each iteration, the prefetch should be placed 1 iteration and 4
cycles earlier, i.e., 2 iterations earlier and at cycle 19 of that iteration.

Note that, unlike other D-cache-oriented optimizations discussed in this chapter,
this one requires that we know the number of cycles that a loop iteration takes, so it
needs to be performed on low-level code. On the other hand, this optimization also
needs to know what address to use for each prefetch—information that can best be
determined as a base address plus a subscript value from high-level code and then
passed along to the low-level code.

One complication that may occur is that the size of the block fetched may be too
large for prefetching to be useful in every iteration. Loop unrolling can help in this
case—unrolling by a factor of n allows us to issue one prefetch per n iterations—
but even this may not be enough; in such a case, the prefetch needs to be protected
by a conditional that checks the value of the induction variable modulo the size of a
cache block.

Another complication is that there may be more than one array that benefits
from prefetching. If the arrays and prefetches are not carefully arranged, they may
increase collisions in the cache. The linker and compilers can cooperatively improve
the effectiveness of sequential prefetching by proper placement of large arrays rela
tive to cache-block boundaries.

Mowry, Lam, and Gupta ([MowL92] and [Mowr94]) describe a somewhat
more sophisticated approach to data prefetching than the one given above. Their
evaluation of an algorithm like the one above suggests that if all data are prefetched,
approximately 60% of the prefetches are wasted effort. Since prefetches occupy the
CPU, the D-cache, and the bus between the D-cache and memory, reducing them to
the minimum needed is desirable.

700 Optimization for the Memory Hierarchy

Their approach centers on determining the leading reference to a cache line (i.e.,
the reference that would cause it to be loaded into the cache) and a prefetch predicate
that determines whether the data need to be prefetched for each particular loop
iteration i. They use the predicate to transform the loop—if the predicate is i = 0,
they peel the first iteration of the loop, while if it is / = 0 (mod «), then they unroll
the loop by a factor of n. Next they place the prefetch instructions essentially as
we describe above, but only for the iterations that their analysis has shown to need
them. If the loop transformation would result in the code becoming so large that it
impacts I-cache performance, they either suppress the transformation or insert code
that uses the prefetch predicate to control prefetching.

20.5 Scalar vs. Memory-Oriented Optimizations
Whitfield and Soffa [WhiS90] and Wolfe [Wolf90] have studied the interactions
between traditional scalar optimizations and the newer parallelism- and D-cache-
oriented optimizations. They show that some scalar optimizations can disable paral
lel optimizations; that the ordering of the optimizations is very important and needs
to be varied from one program to another to achieve maximal performance; and
that, in some cases, performing the inverses of some scalar optimizations is essential
to enabling some D-cache optimizations.

For example, Whitfield and Soffa show that loop-invariant code motion can
make loop interchange and loop fusion inapplicable, and Wolfe shows that common-
subexpression elimination can inhibit loop distribution. Clearly, it follows from
these results that inverting the inhibiting transformations may make the others
applicable in some instances where they were not originally.

20.6 Wrap-Up
This chapter has discussed optimization techniques that take advantage of the mem
ory hierarchy, particularly of data and instruction caches and CPU registers.

Even the earliest computer designs distinguished between main memory and
registers. Main memories have been larger and slower than registers and, in many
systems, operations other than loads and stores have required at least one operand
(and in some cases all) to be in registers; Rise systems, of course, are in the last
category.

The difference between the processor’s cycle time and the memory-access time
has increased to the point where it is now necessary in most systems to have caches
between memory and the registers. A memory access directed to an address repre
sented in a cache is satisfied by it rather than by main memory (or, in the case of a
store, possibly in parallel with memory). Caches depend on the spatial and temporal
locality properties of programs for their effectiveness. Where they can be depended
on, programs run at a speed determined by the CPU and the cache(s). If they cannot
be relied on, loads, stores, and instruction fetches run at main memory speeds.

Section 20.6 Wrap-Up 701

To deal with the disparity in speeds, we have first discussed techniques for
dealing with instruction caches; then we have considered how to improve register
allocation for array elements and techniques for dealing with data caches.

The instruction-cache-related techniques include instruction prefetching, proce
dure sorting, procedure and block placement, procedure splitting, and combining the
intra- and interprocedural methods. Prefetching allows one to provide a hint to the
memory that a particular block of code is likely to be needed soon, indicating that
it should be fetched into the cache when spare memory and cache cycles are avail
able. Procedure sorting provides a way to place procedure bodies in a load module
in such a way as to increase their locality of reference and to decrease their interfer
ence with each other. Intraprocedural code positioning, or block sorting, attempts to
determine an order of the basic blocks in a procedure that minimizes branching by
making as many of the branches as possible take the fall-through path, and secon
darily by making branches forward wherever possible. In fact, loop unrolling can be
thought of as a variation on block sorting, since if we unroll a loop—for simplicity’s
sake, a one-block loop—by a factor of «, then there is one backward branch in place
of each n of them previously. Procedure splitting seeks to improve locality further
by separating procedures into frequently and infrequently executed segments and by
collecting segments of each type together in the load module. Finally, we briefly men
tioned an approach to combining intra- and interprocedural techniques to achieve
as great a gain as possible.

The most important of the I-cache-related optimizations are usually procedure
sorting and procedure and block placement, with instruction prefetching next, and
procedure splitting last.

Next, we focused on improving register allocation for array elements, data-
cache-related techniques, and data prefetching. Scalar replacement of array elements
is designed to take advantage of sequential multiple accesses to array elements by
making them candidates for register allocation, as well as all the other optimiza
tions that are typically applied to scalars. The most important of the data-related
optimizations are usually the data-cache-related ones, especially tiling, with scalar
replacement of array elements next, and finally data prefetching.

We gave an introduction to and overview of data-cache optimization. This is an
area where there are, as yet, no clear winners among the approaches to use, although
there are methods that deal effectively with various classes of problems. As a result,
we have steered clear of describing any one approach in detail, providing instead a
basic understanding of the problem, how it relates to the data dependence material
in Chapter 9, and suggesting some candidates for effective approaches to dealing
with data-cache optimization.

Finally, we discussed briefly the interaction between scalar and memory-oriented
optimizations.

Most data-related optimizations for the memory hierarchy are best done on
high- or medium-level code that includes representations for loops and subscript
lists. Thus, they are placed in block A in the order of optimizations diagram in
Figure 20.30. In contrast, data prefetching needs to be inserted into low-level code,
but uses information gathered from analyzing high-level code; we put it in block D.

702 O ptim ization for the M em ory Hierarchy

FIG. 20.30 Order of optimizations, with optimizations for the memory hierarchy shown in bold
type.

Instruction-cache optimizations and instruction prefetching, on the other hand,
benefit from being done very late in the compilation process, when the final form of
the code is better comprehended. Thus, we add intraprocedural I-cache optimization
and instruction prefetching to block D and the interprocedural form of the optimiza
tion to block E.

This area, and particularly data-oriented optimization, will bear careful watch
ing over the next decade or two. There are sure to be major improvements made in
the approaches to the problem, but it is difficult to say precisely where they will come

Section 20.7 Further Reading 703

FIG. 20.30 (continued)

from. Clearly, mathematical analysis, modeling of performance data, and brute force
experimentation will all play a part, but whether any or all of them or some other
insight or insights will be the sources of essential contributions is simply not clear.

20.7 Further Reading
Bell’s work on the effect of tuning numerically intensive programs by hand to take
better advantage of the IBM RS/6000’s pipelines and caches is reported in [Bell90].

The I-cache optimization methods discussed in detail here are based on the
work of Pettis and Hansen [PetH90]. McFarling’s work is described in [McFa89],
[McFa91a], and [McFa91b].

Scalar replacement, or register pipelining, was developed by Callahan, Carr, and
Kennedy [CalC90].

Wolfe [Wolf89a] calls tiling “ strip mine and interchange” ; Callahan, Carr, and
Kennedy [CalC90] call it “ unroll and jam .”

Lam, Rothberg, and Wolf’s approach to D-cache optimization is described in
[LamR91], [Wolf92], and [WolL91].

704 Optimization for the Memory Hierarchy

Gupta [Gupt90] discusses global approaches to the arrangement of data to take
good advantage of D-caches.

The characterization of a large class of loop transformations as corresponding
to unimodular transformations of a vector space is found in [W61L91] and [Wolf92].

Mowry, Lam, and Gupta’s data prefetching algorithm is discussed in [MowL92]
and further elaborated in [Mowr94].

Whitfield and Soffa’s and Wolfe’s studies of the interactions between scalar
optimizations and parallelism- and D-cache-oriented optimizations are in [WhiS90]
and [Wolf90], respectively.

See Section 9.8 for references to work on characterizing the memory use patterns
of recursive data structures and pointers.

20.8 Exercises
20.1 Which of the optimizations discussed in preceding chapters are likely to enhance the

effect of procedure sorting (Section 20.2.2), and why?

20.2 Which of the optimizations discussed in preceding chapters are likely to enhance the
effect of intraprocedural code positioning (Section 20.2.4), and why?

20.3 Write an ican algorithm to perform scalar replacement of array references in a (non
nested) loop that contains only a single basic block.

20.4 Extend the algorithm in Exercise 20.3 to deal with nonlooping control-flow con
structs inside the loop.

20.5 Give an example of a loop to which loop distribution applies and an optimization
that makes loop distribution inapplicable.

20.6 Give an example of a doubly nested loop for which scalar replacement of array
references applies to the inner loop. What happens if you unroll the inner loop by a
factor of 4?

CHAPTER 21

Case Studies of Compilers
and Future Trends

In this chapter, we discuss a series of commercial compiling systems and give a
short list of expected trends in the future development of compilers. The compil
ers cover several source languages and four architectures. They represent a wide
spectrum of implementation strategies, intermediate-code structures, approaches to

code generation and optimization, and so on. For each compiler family, we first
give a thumbnail sketch of the machine architecture or architectures for which it is
targeted.

Some systems, such as the IBM XL compilers for p o w e r and PowerPC, do
almost all traditional optimizations on a very low-level intermediate code. Other
systems, such as the DEC GEM compilers for Alpha, use a medium-level interme
diate code, while still others, such as Sun’s s p a r c compilers and Intel’s 386 family
compilers, split the work of optimization between a medium-level and a low-level
intermediate code. Yet even the IBM compilers include a higher-level intermediate
form on which to do storage-hierarchy optimizations.

In the sections that follow, we use two example programs to illustrate the ef
fects of the various compilers. The first is the C routine in Figure 21.1. Note that
in the i f statement inside the loop, the value of kind is the constant RECTANGLE,
so the second branch of the conditional and the test itself are dead code. The
value of length * width is loop-invariant and, as a result, the accumulation of
area (= 10 * length * width) can be done by a single multiplication. We should
expect the compilers to unroll the loop by some factor and, of course, to do register
allocation and instruction scheduling. If all the local variables are allocated to regis
ters, there may be no need to allocate a stack frame for the routine. Also, the call to
process () is a tail call.

The second example is the Fortran 77 routine shown in Figure 21.2. The main
program simply initializes the elements of the array a () and calls s l (). The sec
ond and third array references in s l () are to the same element, so computation of
its address should be subject to common-subexpression elimination. The innermost

705

706 C ase Stu d ies o f C o m p ile rs and Future T ren ds

FIG. 21.1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

A C

int length, width, radius;
enum figure {RECTANGLE, CIRCLE};
main()
{ int area = 0, volume = 0, height;

enum figure kind = RECTANGLE;
for (height = 0; height < 10; height++)
{ if (kind == RECTANGLE)

{ area += length * width;
volume += length * width * height;

>
else if (kind == CIRCLE)
{ area += 3.14 * radius * radius;

volume + - 3.14 * radius * radius * height;
>

>
process(area,volume);

>

procedure that is used as an example in this chapter.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

integer a(500,500), k, 1
do 20 k = 1,500

do 20 1 = 1,500
a(k,l) = k + 1

20 continue
call si(a,500)
end

subroutine sl(a,n)
integer a(500,500),n
do 100 i = l,n

do 100 j = i+l,n
do 100 k = l,n

1 = a(k,i)
m = a(k,j)
a(k,j) * 1 + m

100 continue
end

FIG . 21.2 A Fortran 77 program that is used as an example in this chapter.

loop in s i () should be reduced to a sequence o f at m ost eight instructions that load
the tw o values, add them, store the result, update both addresses, test for term ina
tion, and branch (the term ination condition should be m odified by linear-function
test replacem ent to be based on one o f the array element addresses). The sequence
should be shorter for those architectures that have storage-to-storage instructions,
loads and stores with address update, and/or com pare and branch instructions. Some

Section 21.1 The Sun Compilers for SPARC 707

of the compilers should be expected to software pipeline the innermost loop and un
roll it by some factor.

We should also expect at least some of the compilers to integrate the procedure
s l () into the main program. In fact, there are four options for how to deal with
this, as follows:

1. compile the main program and s l () separately (i.e., do no procedure integration),

2. integrate s i () into the main program and compile a separate copy of it as well,

3. integrate s l () into the main program and compile it to a trivial procedure that just
does a return, or

4. integrate s l () into the main program and remove s l () entirely.

The latter two possibilities are reasonable alternatives because the entire call graph
of the program is evident—the main program calls s i () and neither calls any other
routines, so there can’t be another use of s l () in the program in a separately
compiled module. As we shall see, the second alternative is used by the Sun and
Intel compilers, but the third and fourth are not used by any of these compilers. If
the procedure is not inlined, interprocedural constant propagation could be used to
determine that n has the value 500 in s i ().

21.1 The Sun Compilers for SPARC
21.1.1 The SPARC Architecture

sparc has two major versions of the architecture, Versions 8 and 9. sparc Version
8 is a relatively bare-bones 32-bit Rise system. A processor consists of an integer
unit, a floating-point unit, and an optional (never implemented) coprocessor. The
integer unit contains a set of 32-bit general registers and executes load, store, arith
metic, logical, shift, branch, call, and system-control instructions. It also computes
addresses (register + register or register + displacement) for integer and floating
point load and store instructions. The integer registers comprise eight global registers
(with register rO always delivering a zero value and discarding results written to it)
and several overlapping windows of 24 registers each, consisting of eight ms, eight
locals, and eight outs. Spilling register windows to memory and refilling them is
handled by the operating system in response to traps.

The integer unit implements several specialized instructions, such as tagged adds
and subtracts to support dynamically typed languages; store barrier to control the
order of memory operations in multiprocessors; and save and restore, which switch
register windows independently of the call and return instructions. The integer unit
has condition codes that are optionally set by integer operations and by floating
point comparisons and that are used by branches to determine whether to jump
or not.

Architecturally, sparc is designed to be pipelined, with some features of the
pipeline exposed to the programmer. Branch and call instructions include a following

708 Case Studies of Compilers and Future Trends

delay slot that is executed before the jump is completed,1 and the load instructions
cause an interlock if the next instruction uses the value loaded.

The floating-point unit has 32 32-bit floating-point data registers and imple
ments the ansi/ieee floating-point standard, although the architectural specification
allows some of the minor features to be implemented by operating-system software.
The registers may be paired to hold double-precision quantities or grouped in fours
to hold quad-precision values. There are no moves between the integer and floating
point register sets. The floating-point unit performs loads and stores, arithmetic
instructions, square root, converts to and from integers, and compares.

sparc instructions typically have three operands—two sources and one result.
The first source and the result are almost always registers, and the second source
may be a register or a small constant. In the assembly language, the operand order
is first source, second source, and then result. See Appendix A.l for more details of
the sparc assembly-language syntax.

sparc Version 9 is a newer architecture that is fully upward-compatible with
Version 8. It extends the integer registers to 64 bits but provides condition codes for
both 32- and 64-bit results of operations. A bit in the privileged Program Status
Word indicates whether virtual address translation should produce 32- or 64-bit
addresses. The integer instructions have been extended to include some that are 64-
bit-specific (such as a load to a 64-bit register, in addition to the Version 8 64-bit
load that sets a register pair), new branches that branch according to the 64-bit
condition codes or the value in a register, and conditional register-move instructions.
The privileged part of the architecture has been significantly redesigned to allow up
to four trap levels and to make register-window spilling and refilling much faster.

The floating-point architecture is largely unchanged, but a new register-naming
scheme has been introduced that doubles the number of double- and quad-precision
registers.

Implementations of sparc have ranged from the first, a two-chip gate array with
the integer and floating-point units on separate chips (actually the slightly different
Version 7 architecture), to highly integrated single-chip designs with superscalar
execution.

21.1.2 The Sun SPARC Compilers
Sun provides sparc compilers for C, C++, Fortran 77, and Pascal. The C language
supported is full ansi C, C++ conforms to AT&T’s specification of the language, the
Fortran 77 has DEC and Cray compatibility features, and the Pascal conforms to
the ansi standard with Apollo compatibility extensions. The compilers originated
from the Berkeley 4.2 BSD unix software distribution and have been developed
at Sun since 1982. The original back end was for the Motorola 68010 and was
migrated successively to later members of the M68000 family and then to sparc.
Work on global optimization began in 1984 and on interprocedural optimization
and parallelization in 1989. The organization of the optimizer follows the mixed

1. The annul bit in the branches provides for the delay instruction to be executed or not according
to whether the instruction branches or not.

Section 21.1 The Sun Compilers for SPARC 709

FIG. 21.3 Sun s p a r c compiler structure.

ENTRY "sl_" { IS_EXT_ENTRY,ENTRY.IS.GLOBAL >
GOTO LAB_32;

LAB.32: LTEMP.l = (.n { ACCESS V41»;
i = 1;
CBRANCH (i <= LTEMP.l, 1:LAB_36, 0:LAB_35);

LAB.36: LTEMP.2 = (.n { ACCESS V41»;
j = i + i ;
CBRANCH (j <= LTEMP.2, 1:LAB_41, 0:LAB_40);

LAB_41: LTEMP.3 = (.n { ACCESS V41»;
k = 1;
CBRANCH (k <- LTEMP.3, 1:LAB_46, 0:LAB_45);

LAB_46: 1 = (.a[k,i] { ACCESS V20»;
m = (. a [k, j] { ACCESS V20» ;
*(a[k,j]) = 1 + m { ACCESS V20, INT >;

LAB_34: k = k + 1;
CBRANCH (k > LTEMP.3, 1:LAB_45, 0:LAB_46);

LAB_45: j = j + 1;
CBRANCH (j > LTEMP.2, 1:LAB_40, 0:LAB_41);

LAB_40: i = i + 1;
CBRANCH (i > LTEMP.l, 1:LAB_35, 0:LAB_36);

LAB_35:
FIG. 21.4 Sun IR code for lines 9 through 17 in the Fortran 77 routine in Figure 21.2.

model, with two optimizers, one used before code generation and the other after.
The four compilers share their back-end components, namely, the global optimizer
and code generator including the postpass optimizer, as shown in Figure 21.3.

The target of the front ends is an intermediate language called Sun IR that
represents a program as a linked list of triples representing executable operations and
several tables representing declarative information. Figure 21.4 gives an example of
Sun IR in the form produced by the front ends; it corresponds to lines 9 through
17 of the code in Figure 21.2. The operators should mostly be self-explanatory; the

710 Case Studies of Compilers and Future Trends

CBRANCH operator tests the first expression following it, producing a 1 or 0 result,
and selecting the second or third operand, respectively, as a target label.

If optimization is not enabled, the yabe (“ Yet Another Back End”) code gener
ator is invoked to process the Sun IR code produced by the front end. It is designed
for speed in code generation, does no optimization, and produces a relocatable ob
ject module. If optimization is enabled, the Sun IR is passed to the iro p t global
optimizer and the code generator for processing.

The compilers support four levels of optimization (in addition to no optimiza
tion), as follows:

01 This level invokes only certain optimization components of the code generator.

02 This and higher levels invoke both the global optimizer and the optimizer compo
nents of the code generator. At level 02, expressions that involve global or equiva-
lenced variables, aliased local variables, or volatile variables are not candidates for
optimization; automatic inlining, software pipelining, loop unrolling, and the early
phase of instruction scheduling are not done.

03 This level optimizes expressions that involve global variables but makes worst-case
assumptions about potential aliases caused by pointers and omits early instruction
scheduling and automatic inlining.

04 This level aggressively tracks what pointers may point to, making worst-case as
sumptions only where necessary; it depends on the language-specific front ends to
identify potentially aliased variables, pointer variables, and a worst-case set of po
tential aliases; it also does automatic inlining and early instruction scheduling.

If global optimization is selected, the optimizer driver reads the Sun IR for
a procedure, identifies basic blocks, and builds lists of successor and predecessor
blocks for each block. If the highest level of optimization (04) is selected, the auto
matic inliner then replaces some calls to routines within the same compilation unit
with inline copies of the called routines’ bodies, as described in Section 15.2. Next,
tail-recursion elimination is performed and other tail calls are marked for the code
generator to optimize. The resulting Sun IR is then processed by the a l ia s e r , which
uses information that is provided by the language-specific front ends to determine
which sets of variables may, at some point in the procedure, map to the same mem
ory location. How aggressive the a l ia s e r is at minimizing the sizes of sets of aliased
variables depends on the level of optimization selected, as discussed above. Aliasing
information is attached to each triple that requires it, for use by the global optimizer.

Control-flow analysis is done by identifying dominators and back edges, except
that the parallelizer does structural analysis for its own purposes. All data-flow
analysis is done iteratively.

The global optimizer iro p t then processes each procedure body, first comput
ing additional control-flow information; in particular, loops are identified at this
point, including both explicit loops (e.g., do loops in Fortran 77) and implicit ones
constructed from i f s and gotos. Then a series of data-flow analyses and transfor
mations is applied to the procedure. Each transformation phase first computes (or
recomputes) data-flow information if needed. The result of the transformations is a

Section 21.1 The Sun Compilers for SPARC 711

modified version of the Sun IR code for the procedure. The global optimizer does
the following transformations, in this order:

1. scalar replacement of aggregates and expansion of Fortran arithmetic operations on
complex numbers to sequences of real-arithmetic operations

2. dependence-based analysis and transformation (levels 03 and 04 only), as described
below

3. linearization of array addresses

4. algebraic simplification and reassociation of address expressions

5. loop-invariant code motion

6. strength reduction and induction-variable removal

7. global common-subexpression elimination

8. global copy and constant propagation

9. dead-code elimination

The dependence-based analysis and transformation phase is designed to support
parallelization and data-cache optimization and may be done (under control of a sep
arate option) when the optimization level selected is 03 or 04. The steps comprising
it (in order) are as follows:

1. constant propagation

2. dead-code elimination

3. structural control-flow analysis

4. loop discovery (including determining the index variable, lower and upper bounds,
and increment)

5. segregation of loops that have calls and early exits in their bodies

6. dependence analysis using the GCD and Banerjee-Wolfe tests, producing direction
vectors and loop-carried scalar du- and ud-chains

7. loop distribution

8. loop interchange

9. loop fusion

10. scalar replacement of array elements

11. recognition of reductions

12. data-cache tiling

13. profitability analysis for parallel code generation

After global optimization has been completed, the code generator first trans
lates the Sun IR code input to it to a representation called asm+ that consists of

712 Case Studies of Compilers and Future Trends

BLOCK: la b e l = s l_
loop le v e l * 0
expected execution frequency = 1
number of c a l l s within = 0
a t tr ib u te s : cc_alu _possib le
predecessors
su ccessors

ENTRY ! 2 incoming r e g is te r s
or #/0gO,#/,iO,#/,iO
or #/,gO,#/ , i l , #/ ,il

BLOCK: la b e l = .L77000081

BLOCK:

BLOCK:

or ’/.gO.'/.il ,*/,rll8
or y.go,y,io,y,rii9
add y.rll9,-2004,y.rl30
ba .L77000088
nop
la b e l = .L77000076
add y.rl25,500,y.rl25
add y,rl24,l,y,rl24
cmp y.rl24,y,rl32
bg .L77000078
nop
ba .L77000085
nop
la b e l = .L77000078
add y,rl31,500,y,rl31
add •/.rl33,l,y.rl33
cmp y.rl33,y.rl34
*>g .L77000080
nop
ba .L77000087
nop

FIG. 21.5 asm+ code corresponding to lines 9 through 12 of the Fortran 77 program in Figure 21.2.

assem bly-language instructions plus structures that represent control-flow and data-
dependence inform ation. Figure 21.5 shows the asm+ code, as produced by the ex
pander phase at the beginning o f code generation, corresponding to lines 9 through
12 o f the Fortran 77 code in Figure 21.2 . We have elided the annotations that would
follow all but the first BLOCK entry. The instructions are all ordinary s p a r c instruc
tions except ENTRY, which is a higher-level operator that represents the entry-point
code. N ote that register numbers o f the form °/0r nnn denote symbolic registers.

The code generator then perform s a series o f phases, in the following order:

1. instruction selection

2. inlining o f assem bly-language tem plates whose com putational impact is understood
(02 and above)

3. local optim izations, including dead-code elimination, straightening, branch chain
ing, moving s e t h i s out o f loops, replacement o f branching code sequences by

Section 21.1 The Sun Compilers for SPARC 713

branchless machine idioms, and commoning of condition-code setting (02 and
above)

4. macro expansion, phase 1 (expanding of switches and a few other constructs)

5. data-flow analysis of live values (02 and above)

6. software pipelining and loop unrolling (03 and above)

7. early instruction scheduling (04 only)

8. register allocation by graph coloring (02 and above)

9. stack frame layout

10. macro expansion, phase 2 (expanding of memory-to-memory moves, max, min,
comparison for value, entry, exit, etc.); entry expansion includes accommodating
leaf routines and generation of position-independent code

11. delay-slot filling

12. late instruction scheduling

13. inlining of assembly-language templates whose computational impact is not under
stood (02 and above)

14. macro expansion, phase 3 (to simplify code emission)

15. emission of the relocatable object code

For 01 optimization, register allocation is done by a local cost-based method like the
one described in Section 16.2.

The Sun compiling system provides for both static (pre-execution) and dynamic
(run-time) linking. Selection of static or dynamic linking, or some of each, is done
by a link-time option.

The sparc assembly code shown in Figure 21.6 is the listing that results from
compiling the C routine in Figure 21.1 with 04 optimization. Note that the constant
value of kind has been propagated into the conditional and the dead code has been
eliminated (except for loading the value 3.14 stored at .L_const_seg_900000101
and storing it at °/0f p-8), the loop invariant length * width has been removed from
the loop, the loop has been unrolled by a factor of four, the multiplication by height
has been strength-reduced to additions, the local variables have been allocated to
registers, instruction scheduling has been performed, and the tail call to p rocess ()
has been optimized. On the other hand, some of the instructions preceding the first
loop are unnecessary, and the accumulation of area could have been turned into
a single multiplication. Also, it is somewhat strange that the loop-unrolling criteria
result in the first eight iterations’ being unrolled, but not the last two.

The sparc assembly code shown in Figure 21.7 is the listing of the assembly
code produced by the Sun Fortran 77 compiler for the main routine in the program
in Figure 21.2 with 04 optimization (we have elided the code produced for the
initialization loops and left only the code produced for the call to s l (), which has
been inlined automatically). Since s i () has been inlined, the compiler can make use
of the information that the value of n is 500, which it does in unrolling the innermost

714 Case Studies of Compilers and Future Trends

.L900000111:

.L900000112:

.L77000015:

.L77000021:

sethi ’/.hi (length) ,’/.o0
sethi ’/.hi (width) ,’/.ol
sethi ’/.hi (. L_const_seg_900000101) , ’/.o2
Id [7,o0+’/,lo(length)] ,*/,o0
Id [*/,ol+’/.lo (width)] ,’/.ol
or */.g0,0,7,il
ldd [*/.o2+7,lo(.L_const_seg_900000101)] ,'/,f0
smul 7.oO,7.ol,7,oO
std ’/ .fO . [’/ . f p - 8]
or 7.g0,0,7,10
or '/.gO, 0,7,11
add 7.il,7.11,7.il
add 7.10,1,7.10
or 7.g0,0,’/.i0
add •/.ll,7.oO,7.ol
add 7.o 1 ,7 .o0 , ’/.o2
add ’/.i l,7.ol,7.ol
add 7.o 1 ,7 .o2 , ’/.o 1
add ’/.o2,’/.oO, 7.o2
add */.iO,7.oO,7.o3
add 7.o2 ,7 .o0 ,7 .1 1
add 7.ol,7.o2,7.ol
add •/.o3,’/.oO,’/.o3
cmp 7.10,3
add •/.ol,7.11,7.il
add 7.o3, */.o0, */.o3
add 7.10,4,7.10
bl •L900000111
add 7.03,’/.oO,’/.iO
add 7.11,7.00,7.11
cmp 7.10,10
bge •L77000021
add 7.iO,’/.oO,7.iO
add 7.il,7.1l,*/.il
add 7.10,1,7.10
add 7.11,7.00,7.11
cmp 7.10,10
bl •L77000015
add 7.iO,’/.oO,7.iO
call process,2 ! (tail call)
restore 7.gO,7.gO,’/.gO

FIG. 21.6 sparc assembly code corresponding to the machine code produced by the Sun C compiler
with 04 optimization for the program in Figure 21.1.

loop by a factor o f four and producing no rolled copy. The unrolled loop, which
extends from label .L900000112 to . L900000113, includes eight loads, four stores,
seven adds, a com pare, and a branch, which is minimal for that unrolling factor,
except that linear-function test replacement could have eliminated one of the adds.
The local variables have been allocated to registers and the loop has been software

Section 21.1 The Sun Compilers for SPARC 715

MAIN_: save •/.sp,-120//.sp

.L77000057: sethi "/.hi (GPB. MAIN. a) //.ol
add %o 1,’/.lo(GPB. MAIN. a) //.ol
or •/.g0,-2004//.o2
add y,o2,y,oi,’/,gi
or y.go,i,y.o5
or y.go,5oo,y.o7

.L77000043: add y.o5,i,yai
cmp y.i i,5oo
bg .L77000047
sll y.n,5,y.oi
sub y.oi,y.n,y.oi
sll %oi)2,y.oi
add •/.n,y.oi,y.oi
sll y.oi,2,y.io

.L77000044: add y.o7,i,y.o2
add •/.io,i,y,oi
sll y.o2,2,y.o2
add y.gi,y.o2 ,y.i2
sll y,oi,2,y.oi
or y.go,i,y.i3
Id [*/.12] //.o2
add y.i2,4,y.i2
add y.gi,y.oi,y.oo
add y.i3,i,y.i3

.L900000112:Id [•/.o0] //.ol
cmp y.13,493
add y.o2//.ol//.ol
St y.oi,[y.oo]
add y.oO,16//.oO
Id rei2], y,02
Id [•/.O0-12] , y,o3
add y.l2 ,16//,12
add •/.02//.03//.02
St y.02 , [y.oo-12]
Id [y.12-12] //.ol
add y.l3,4//.13
Id 1—1 o 0 1 00 o

add y.ol//.o4//.ol
St •/.Ol, [y.oO-8]
Id [5.12—8] , y.o2
Id [•/.O0-4] , y,o3
add •/.o2//.o3//.o2
St •/.o2, [y.oO-4]
ble .L900000112
Id [5.12-4] //.o2

(continued)

FIG . 21.7 sparc assem bly code corresponding to the machine code produced by the Sun Fortran
77 compiler with 04 optim ization for the main program in Figure 21 .2 .

716 Case Studies of Com pilers and Future Trends

L900000113: Id [7.o0] ,7,ol
emp */.13,500
add V.o2,y.o l//.ol
St */.oi, [y.oo]
bg .L77000046
add 7o0,4,%o0

L77000056: Id [’/.12] ,7,ol
add 7.13,1,7,13
Id CNooo

emp 7.13,500
add 7.o 1 ,7 .o2 ,7 .o1
St 7.ol, [7.o0]
add 7.12,4,7.12
b le •L77000056
add y.o0,4,7.o0

L77000046: add 7.11,1,7.11
emp 7.11,500
b le .L77000044
add 7.10,500,7.10

L77000047: add 7.o5,l,7.o5
emp 7.05,500
b le •L77000043
add 7.o7,500,7.07

L77000049: r e t
r e s t o r e y.go,y.go,y.go

FIG. 21.7 (continued)

pipelined (note the load just above the starting label of the loop). The temporaries
have been allocated in the loop in such a way as to maximize the freedom available
to scheduling. However, the compiler produces code for s i () as well as for the main
routine, although this is unnecessary—the main routine manifestly calls only s l (),
which, in turn, calls no other routines.

21.2 The IBM XL Compilers for the POWER
and PowerPC Architectures

21.2.1 The POWER and PowerPC Architectures
The power architecture is an enhanced 32-bit Rise machine that consists of branch,
fixed-point, floating-point, and storage-control processors. Individual implementa
tions may have multiple processors of each sort, except that the registers are shared
among them and there may be only one branch processor in a system.

The branch processor includes the condition, link, and count registers and exe
cutes conditional and unconditional branches and calls, system calls, and condition-
register move and logical operations. The condition register consists of eight 4-bit
condition fields, one of which is set by selected fixed-point instructions and another
by floating-point instructions. The other condition fields can be used to save multiple

Section 21.2 The IBM XL Compilers for the POWER and PowerPC Architectures 717

conditions, and all may be used to control branching. The link register is used pri
marily to hold the return address for calls and the count register to control looping,
and both may be copied to and from integer registers.

The fixed-point processor contains 32 32-bit integer registers, with register grO
delivering the value zero when used as an operand in an address computation, in
cluding in the load address instruction. The fixed-point unit has two basic addressing
modes, register + register and register + displacement, plus the capability to update
the base register with the computed address. It implements loads and stores (includ
ing forms that operate on halfwords with byte reversal, on multiple words, and on
strings), arithmetic, logical, compare, shift, rotate, and trap instructions; and system-
control instructions.

The floating-point processor has 32 64-bit data registers and implements the
ansi/ieee floating-point standard for double-precision values only. It includes loads
and stores, arithmetic instructions, convert to and from integer and single precision,
compare, and some specialized operations that do a multiply followed by an add or
a subtract without intermediate rounding.

The storage-control processor provides for segmented main storage, interfaces
with caches and the translation-lookaside buffer, and does virtual address transla
tion.

The PowerPC architecture is a nearly upward-compatible extension of power
that allows for 32- and 64-bit implementations. A 64-bit implementation always al
lows both 64-bit and 32-bit modes of operation that differ in how effective addresses
are computed and in the presence of a series of instructions. A PowerPC processor
consists of branch, fixed-point, and floating-point processors and, as in power, a
system may have one or several fixed-point and floating-point processors, but only
one branch processor.

The branch processor has a 32-bit condition register and 64-bit link and count
registers and provides essentially the same facilities as in power.

The fixed-point processor has 32 64-bit integer registers, with grO functioning as
in power. It includes the same addressing modes as power. It implements the same
categories of instructions as the power fixed-point unit, plus the storage-control
instructions, except that some troublesome corner cases (such as using the base
register as the target of a load with update, or doing a load multiple that includes
the base register as a target) have been made invalid. A few instructions have been
eliminated because they are difficult to implement, such as difference or zero (useful
in computing maximum and minimum) and rotate left then mask insert, and others
because of the change to 64-bit operation. Some new instructions have been added,
many of them to deal with caches and translation-lookaside buffers.

The PowerPC floating-point processor has 32 64-bit data registers and imple
ments the ansi/ieee standard for both single- and double-precision values. Aside
from new instructions to deal with the 32-bit format, the instruction set is virtually
identical to power’s.

power and PowerPC instructions typically have three operands—two sources
and one result. The first source and result are almost always registers, and the second
source may be a register or a small constant. In the assembly language, the operand
order is result, first source, and then second source. See Appendix A.2 for further
description of the assembly language.

718 Case Studies of Com pilers and Future Trends

FIG. 21.8 IBM XL compiler structure.

21.2.2 The XL Compilers
IBM ’s compilers for the p o w e r and PowerPC architectures are known as the XL
family and include compilers for PL.8, C, Fortran 77, Pascal, and C++, all but the
first of which are available to customers. They originated from a project started in
1983 to provide compilers for an IBM Rise architecture that was an intermediate
stage between the IBM 801 and p o w e r , but that was never released as a product.
However, the first compilers based on the X L technology were, in fact, an optimizing
Fortran compiler for the PC RT that was released to a selected few customers and a C
compiler for the PC RT used only for internal IBM development. The compilers were
written with interchangeable back ends, so as to target the IBM 370 architecture,
the unreleased architecture mentioned above, the PC RT, p o w e r , the Intel 386
architecture, s p a r c , and, more recently, PowerPC.

The structure of the X L compilers, which follows the low-level model of opti
mization, is shown in Figure 21.8. Each compiler consists of a front end called a
translator, a global optimizer, an instruction scheduler, a register allocator, an in
struction selector, and a phase called final assembly that produces the relocatable
image and assembly-language listings. In addition, there is a module called root ser
vices that interacts with all the phases and serves to make the compilers compatible
with multiple operating systems by, e.g., compartmentalizing information about how
to produce listings and error messages. A disassembler is provided separately to en-

Section 21.2 The IBM XL Compilers for the POWER and PowerPC Architectures 719

able production of assembly language from relocatables. The compilers are written
in PL.8.

A translator converts the source language to an intermediate form called XIL by
calling XIL library routines. The XIL generation routines do not merely generate in
structions; they may, for example, generate a constant in place of an instruction that
would compute the constant. A translator may consist of a front end that translates a
source language to a different intermediate language, followed by a translator from
the other intermediate form to XIL. The C translator for the System/370 does this,
as do the C++ translators for the 370, p o w e r , and PowerPC, all of which translate
to the 370 intermediate language first.

The compiler back end (all the phases except the source-to-XIL translator) is
named t o b e y , an acronym for TOronto Back End with Yorktown, indicating the
heritage of the back end as derived from the PL.8 compiler for the 801 and prerelease
p o w e r systems development, although almost every module has since been changed
significantly or replaced.

The XIL for a compilation unit consists of a procedure descriptor table that
consists of information about each procedure, such as the size of its stack frame and
information about global variables it affects, and a pointer to the representation
of its code. The code representation consists of a procedure list that comprises
pointers to the XIL structures that represent instructions, which are quite low level
and source-language-independent. Each instruction is represented by an entry in
the com putation table or CT, which is an array of variable-length records that
represent preorder traversals of the intermediate code for the instructions. Identical
instructions in a procedure share the same CT entry. Each CT entry consists of an
opcode followed by a variable number of operands, which may be integers in the
range 0 through 216 — 1, indexes into tables of large and negative integers, floating
point numbers, register numbers, labels, symbol-table references, etc. The opcode
may be a Rise-style operation, a load or store, a synthetic operator (such as MAX
or MIN), an administrative operator (e.g., procedure header or block begin), or a
control-flow operator, including unconditional, conditional, and multiway forms
(the last comprising a selector and a label list). Variables and intermediate results are
represented by symbolic registers, each of which comprises an entry in the sym bolic
register table ; each such entry points to the CT entry that defines it. Figure 21.9
shows the relationship among the procedure list, CT, and symbolic register table.

Figure 21.10 gives an example of the external representation of the XIL code
produced by the C translator for the first part of the code in Figure 21.1. Note
that the external representation leaves much of the structure of the code implicit
or unrepresented. The meanings of the opcodes are as follows:

1. PROC - procedure entry point

2. ST4A - store word instruction

3. L4A - load word instruction

4. C4 - compare word instruction

5. BF - branch on false instruction

720 Case Studies of Compilers and Future Trends

Symbolic
Procedure list Computation table (CT) register table

FIG. 21.9 Structure of the XIL for a procedure.

6. M - multiply instruction

7. A - add instruction

8. B - unconditional branch instruction

An operand of the form . variable represents the address of variable , g rn represents
symbolic register w, and c m represents symbolic condition register n.

Loads and stores in XIL have fully elaborated addresses. For example, a general
load word instruction has a form that can be thought of as

L4A regmame (rbase, rdisp , rindex, . . .)

To generate 370 code from this, the rb ase , rd isp , and rindex components would
all be used, as long as 0 < rdisp < 212; if the inequality is not satisfied, additional
instructions would be generated to put rdisp + rindex or rbase + rdisp into a reg
ister first. To generate power code, either rbase + rdisp (if 0 < rdisp < 216) or
rbase + rindex would be used, if the other component is zero, or additional instruc
tions would be generated to combine components first. The optimizer is responsible
for making sure that the instruction selector can generate legal instructions for the
selected target architecture.

In addition to MAX and MIN, XIL includes a byte concatenate operator that takes
an arbitrary number of operands, a multiplication operator, a division operator, etc.
The optimizer turns MAX and MIN operators into a form from which the power-
targeted instruction selector can generate corresponding two-instruction branchless
sequences. The multiplication operator generates either a sequence of shifts, adds,
and subtracts or a hardware multiply instruction, whichever is more efficient for the
given operands and target. Divisions by 1, 3, 5, 7, 9, 25, 125, and products of these
integers with powers of two generate a long multiply and a doubleword shift; other
divisors produce a divide operation.

Section 21.2 The IBM XL Compilers for the POWER and PowerPC Architectures 721

CL. 1:

PROC
ST4A area(grauto,0)=0
ST4A volume(grauto,0)=0
ST4A kind(grauto,0)=0
ST4A height(grauto,0)=0
L4 A gr 315=he ight (gr aut o, 0)
C4 cr316=gr315,10
BF CL.2,cr316,Oxl/lt
L4A gr317=kind(grauto,0)
C4 cr318=gr317,0
BF CL.3,cr318,0x4/eq
L4A gr319=area(grauto,0)
L4A gr314=.length(gr2,0)
L4A gr320=length(gr314,0)
L4A gr313-.width(gr2,0)
L4A gr321=width(gr313,0)
M gr322=gr320,gr321
A gr323=gr319,gr322
ST4A area(grauto,0)=gr323
L4A gr324=volume(grauto,0)
L4A gr320=length(gr314,0)
L4A gr321=width(gr313,0)
M gr322=gr320,gr321
L4A gr315=height(grauto,0)
M gr325=gr315,gr322
A gr326=gr324,gr325
ST4A volume(grauto,0)=gr326
B CL.4

FIG. 21.10 XIL code for lines 1 through 10 of the C program in Figure 21.1.

The compiler back end uses a second intermediate language, called YIL, for
storage-related optimization and may use it for parallelization in the future. The
YIL for a procedure is generated by t o b e y from its XIL and includes, in addition to
the structures in XIL, representations for looping constructs, assignment statements,
subscripting operations, and conditional control flow at the level of if statements. It
also represents the code in SSA form. The goal, of course, is to produce code that is
appropriate for dependence analysis and loop transformations. After such analysis
and transformations have been performed, the YIL is translated back to XIL.

Alias information is provided by the language-specific translators to the opti
mizer by calls from the optimizer to front-end routines. No further analysis is done
beyond what each language definition provides.

Control-flow analysis is straightforward. It identifies basic-block boundaries
within a procedure, builds the flowgraph, constructs a depth-first search tree of the
flowgraph, and divides it into intervals. The basic-block structure is recorded in a
table indexed by the basic-block number that includes, for each block, pointers to
the first and last entries in the procedure list for the block and lists of the block
numbers of this block’s predecessors and successors.

722 Case Studies of Compilers and Future Trends

Data-flow analysis is done by interval analysis, with iteration used for irre
ducible intervals, and the data-flow information is recorded in bit vectors. For some
optimizations, such as reassociation and strength reduction, the bit vectors are con
verted into du- and ud-chains. The live registers and du- and ud-chains are updated
as needed during these phases.

The optimizer does a series of transformations, as follows (in the order they are
performed):

1. transforming multiway branches into sequences of compares and conditional
branches or branches through a table of branches, according to the density of the
labels

2. mapping local stack-allocated variables to register + offset addresses

3. inlining routines from the current compilation module, if requested and if warranted
by several heuristic criteria

4. a very aggressive version of value numbering (more advanced than any published
form)

5. global common-subexpression elimination

6. loop-invariant code motion

7. downward store motion

8. dead-store elimination

9. reassociation (see Section 12.3.1), strength reduction, and generation of update
forms of the load and store instructions for power and PowerPC

10. global constant propagation

11. dead-code elimination

12. some architecture-specific optimizations known informally as “ wand waving,” such
as converting MAX and MIN into branchless sequences

13. expansion of macro operators, i.e., lowering all opcodes and addressing expressions
to ones supported by the target machine, turning calls into instruction sequences to
address the parameters and to perform the call, turning large integer constants into
sequences of instructions that generate their values, etc.

14. value numbering

15. global common-subexpression elimination

16. dead-code elimination

17. elimination of dead induction variables, including floating-point variables

Floating-point divisions are turned into three-instruction sequences that include a
multiply and an add. If bounds checking is turned on in a Fortran 77 compilation,
trap-motion analysis and code motion are done immediately after the reassociation
and strength-reduction pass.

Section 21.2 The IBM XL Compilers for the POWER and PowerPC Architectures 723

s rx=ry,2 s. rx=ry,2

ci cc0=ry,2 bt label
bt label
(a) (b)

FIG. 21.11 An example of coalescing condition-code setting with an arithmetic operation in p o w e r .
The ci in (a) has been absorbed into the s . in (b) by setting its record bit.

t o b e y includes two register allocators, a “quick and dirty” local one, used when
optimization is not requested, and a graph-coloring global one based on Chaitin’s,
but with spilling done in the style of Briggs’s work (see Section 16.3). A phase
just before register allocation elaborates procedure prologues and epilogues and
performs tail-call simplification and leaf-routine optimization. The graph-coloring
register allocator also does “sc a v e n g in g i.e., a version of value numbering that
moves loads and stores of spilled temporaries out of loops. The allocator tries
all three of the spill-code choice heuristics discussed in Section 16.3.12 for each
procedure and uses the best of them for it.

The instruction scheduler is described in several papers (see Section 21.7). In
addition to basic-block and branch scheduling, it does a type of global scheduling
that works on acyclic flowgraphs and that uses program dependence graphs (see Sec
tion 9.5) to describe the constraints on scheduling. During optimizing compilations,
it is run before register allocation (with symbolic registers) and, if any spill code has
been generated, the local form is run again after register allocation.

The final assembly phase does two passes over the XIL, one pass to do a few
peephole optimizations, such as coalescing condition-code setting done by com
pares with corresponding arithmetic operations and removing the compares (see
Figure 21.11 for an example), and the other pass to output the relocatable image
and listings. Final assembly calls routines in the language-specific translator to ob
tain debugging information to include in the relocatable.

Figure 21.12 shows the power assembly code produced by the XL disassembler
from the object code resulting from compiling the program in Figure 21.1 with
the XL C compiler with 03 optimization. The constant value of kind has been
propagated into the conditional and the dead code eliminated; the loop invariant
length * width has been removed from the loop; the loop has been unrolled by a
factor of two; the local variables have been allocated to registers; and instruction
scheduling has been performed. On the other hand, the tail call to p rocess () has
not been optimized, and the accumulation of area has not been turned into a single
multiplication.

Figure 21.13 shows the power assembly code produced by the XL disassembler
from the object code resulting from compiling the routine s i () in Figure 21.2 with
the XL Fortran compiler with 03 optimization. The routine s l () has not been
inlined. The inner loop has been unrolled by a factor of two (from la b e l_Lfc
through the next be instruction). The unrolled loop includes four loads (two with
update), two stores with update, two adds, and a branch, which is minimal for
the power architecture. The local variables have been allocated to registers and
instruction scheduling has been performed.

724 Case Studies of Compilers and Future Trends

.main: mfspr
1
stu
1
St
1
1
cal
muls
cal
mtspr
cal
cal

_L34: ai
a
muls
a
muls
a
a
ai
be
bl
cror
1
ai
mtspr

rO,LR
r5,T.22.width(RTOC)
SP,-64(SP)
r4,T.26.length(RTOC)
rO,72(SP)
r0,0(r4)
r5,0(r5)
r4,5(r0)
r0,r0,r5
r3,0(r0)
CTR,r4
r4,0(r3)
r5,0(r3)
r6,r5,1
r3,r3,r0
r5,r5,r0
r4,r4,r5
r5,r6,r0
r4,r4,r5
r3,r3,r0
r5,r6,1
BO.dCTR.NZERO,CRO.LT,__L34
.processPR
CR3.S0,CR3.S0,CR3.S0
rl2,72(SP)
SP,SP,64
LR,rl2

bcr B0_ALWAYS,CRO.LT
FIG. 2 1 .1 2 pow er assembly code produced by the X L disassembler from the object code resulting

from compiling the program in Figure 21.1 with the X L C compiler with 03 optimization.

.si: 1
St
cal
cmpi
be
ai
cal
cmpi
ai
ai
cal
be
rlinm
rlinm.

rl0,0(r4)
r31,-4(SP)
r8,0(rl0)
1,r8,0
B0.IF.N0T,CR1.FEX,__Lla4
r6,rl0,-l
rl2,0(r6)
0,rl2,0
r7,r3,1996
r9,r3,-4
rll,2(r0)
BO.IF.NOT,CRO.GT,__L154
r3,rl0,31,l,31
r4,rl0,0,31,31

cmpi l , r 3 ,0

FIG. 21.13 pow er assembly code produced by the X L disassembler from the object code resulting
from compiling the routine s l () in Figure 21.2 with the X L Fortran compiler with 03
optimization.

Section 21.2 The IBM XL Compilers for the POWER and PowerPC Architectures 7 2 5

cal r31,0(r7)
mtspr CTR,r3

_Lee: ai rl2,rl2,-l
cal r5,0(r31)
cal r4,0(r9)

_Lf8: be B0_IF,CR1_VX,_L124
_Lfc: lu r3,4(r4)

1 rO,4(r5)
a r3,r3,r0
stu r3,4(r5)
lu r3,4(r4)
1 rO,4(r5)
a r3,r3,r0
stu r3,4(r5)
be B0_dCTR_NZER0,CRO.LT,__Lf c
be B0_IF,CR0_EQ,_L134

_L124: lu r3,4(r4)
1 r4,4(r5)
a r3,r3,r4
stu r3,4(r5)

_L134: empi 0,rl2,0
ai r31,r31,2000
be B0.IF.N0T,CRO.GT,__L154
rlinm r3,rl0,31,1,31
rlinm. r4,rl0,0,31,31
empi 1,r3,0
mtspr CTR,r3
b _Lee

_L154: ai. r8,r8,-l
ai r9,r9,2000
ai r7,r7,2000
ai rll,rll,1
ai r6,r6,-l
be B0_IF_N0T,CRO.GT,__L19c
cal rl2,0(r6)
empi 0,rl2,0
be BO.IF.NOT,CRO.GT,__L154
rlinm r3,rl0,31,1,31
rlinm. r4,rl0,0,31,31
cal r31,0(r7)
empi 1,r3,0
mtspr CTR,r3
ai rl2,rl2,-l
cal r5,0(r31)
cal r4,0(r9)
b _Lf 8

_L19c: 1 r31,-4(SP)
ber BO.ALWAYS,CRO.LT

_Lla4: ber BO.ALWAYS,CRO.LT
EIG . 21.13 (continued)

726 Case Studies of Compilers and Future Trends

21.3 Digital Equipment’s Compilers for Alpha
21.3.1 The Alpha Architecture

Alpha is a totally new architecture that was designed by Digital Equipment to be
the successor to its VAX and Mips-based systems. It is a very streamlined 64-bit Rise
design. It has 32 64-bit integer registers (with r31 delivering a zero when used as
a source and discarding results written to it) and 32 64-bit floating-point registers
(with f 31 functioning like r31). It has only a single addressing mode, namely, register
+ displacement, and no condition codes.

The integer instructions include loads and stores; unconditional branches; con
ditional branches based on comparing the value in a register against zero; jumps
that branch to and return from a subroutine and that branch between coroutines;
arithmetic instructions (including adds and subtracts that scale one operand by four
or eight); signed and unsigned compares that set a bit in a specified register; log
ical, shift, and conditional move instructions; and a rich set of byte-manipulation
instructions to facilitate string handling.

The floating-point design implements the a n s i /i e e e standard but requires a lot of
assistance from operating-system software for the corner cases. It implements both
VAX and a n s i /i e e e single- and double-precision formats and provides instructions
that include loads and stores, branches, conditional move, both VAX and a n s i /i e e e

arithmetic operations, and conversions among integer and the VAX formats on one
hand and the a n s i /i e e e formats on the other.

The system-control instructions provide prefetching hints, implement memory
and trap barriers for the weak system storage model, and implement the so-called
Privileged Architecture Library. The last of these is designed to provide facilities for
an operating system that may vary from one system implementation to another.

Alpha instructions typically have three operands—two sources and one result.
The first source and result are almost always registers, and the second source may
be a register or a small constant. In the assembly language, the operand order is
result, first source, and then second source. See Appendix A.3 for further details of
the assembly language.

21.3.2 The GEM Compilers for Alpha
Digital Equipment’s effort to produce compilers for Alpha is known as the GEM
Project.2 The name is not an acronym, despite being spelled uppercase, and is
a carryover from the project that built the compilers for Prism, a previous DEC
Rise effort that was never incorporated into a product. The GEM Project began
about 1985 in parallel with several internal Rise developments. The need to provide
compilers for several targets resulted in the GEM Project’s producing compilers that
are easily retargeted and that already have been retargeted several times. Prism was
tentatively selected to be DEC’S entry into the Rise market in 1987, and a GEM-
based Fortran 77 compiler for it was available at that time. However, DEC soon

2. The GEM Project also produces compilers for Digital’s VAX and Mips-based systems.

Section 21.3 Digital Equipment’s Compilers for Alpha 727

GEM shell

F IG . 2 1 .1 4 D E C A lpha com piler structure.

switched to using the m ip s platform in its DECstation series, and work on retargeting
GEM-based compilers for it began in summer 1988, with a GEM-based Fortran 77
compiler being first shipped for Mips-based DECstations in March 1991.

Work on retargeting the GEM Fortran 77 compiler to Alpha began in November
1989. By summer 1990, the b l is s compiler was complete.

The compilers available for Alpha at introduction included Fortran 77 with
VAX VMS and Un ix extensions, Fortran 90, a n si C (with other dialect options),
C++, Ada, c o b o l , Pascal, PL/I, and b l i s s . The compilers are structured as shown in
Figure 21.14. A set of facilities called the GEM shell provides a common operating-
system interface that is compatible with VMS, Ultrix, o s f /i , and Windows NT; it
includes text input/output, diagnostic facilities, a language-sensitive editor, virtual
memory management, debugging tools, and a common look and feel for all the
compilers and environments.3 Each compiler has its own front end, but all other
components are shared. All compiler components are written in b l i s s , except the
C front end, which is written in C. b l is s macros are used to generate operator-
signature tables for intermediate-language tuples and several other back-end tables.

In each compiler, the front end processes a file at a time, doing lexical, syn
tactic, and static-semantic analyses and producing an intermediate form called CIL
(Compact Intermediate Language). All phases beyond the front end operate on a
procedure-by-procedure basis.

Both CIL and EIL (Expanded Intermediate Language) represent a compilation
unit as a doubly linked list of nodes. In CIL, the list corresponds to a compilation
unit and the nodes have a fixed size. Each node is a record with fields that represent

3. Actually, there are several versions of the GEM shell in existence, one for each of several pairs of
host operating systems and architectures, all providing the same facilities.

728 Case Studies of Compilers and Future Trends

$1: f e t c h (i) $1: sym ref(; symbol=i)
$2: fe tc h ($ l)

$2: s u b s c r ($ l , [4] , [0] ; posn =l) $3: l i t r e f (; l i t e r a l= [4])
$4: m u l($ l,$3)

$3: a re f(x ,$ 2) $5: sym ref(; symbol=x)
$6: ap lu s($ 5 ,$ 4)

$4: fe tch ($ 3) $7: fe tch ($ 6)
$8: sym ref(; symbol=a)

$5: s t o r e (a ,$4) $9: s t o r e ($8,$7)

(a) (b)

F IG . 2 1 .1 5 (a) E xam ple o f C IL code for the C statem ent a = x [i] , and (b) its expan sion to EIL
code.

the node’s kind and subkind, flags, forward and backward links, attributes, and
pointers to its operand nodes. Several types of operators have comparatively high-
level representations; for example, fetching a variable’s value references the variable
by name, and subscript lists are represented by lists that contain the subscript
expressions and strides. Figure 21.15(a) shows the CIL form for the C statement
a = x [i] , with the minor subfields elided.

The compiler uses the mixed model of optimization, with code selection occur
ring between the global optimizer and register allocation and instruction scheduling.
The first phase of the back end, the expander, translates CIL into the lower-level form
EIL. In EIL, the list of nodes corresponds to a procedure and the sizes of nodes are
variable. The nodes are tuples that represent operations with “moderately strong”
machine typing. Each tuple consists of the operator, the operand and result types,
its operands, an attribute list, and forward and backward links to other tuples. In
comparison to CIL, the fetching of a variable’s value is expanded in EIL to a symbol
reference and a fetch through the symbol reference, and a subscript list is represented
by a series of tuples that evaluate the subscript’s linear form. Another example of the
expansion in going from CIL to EIL is for procedure calls: in CIL, they are repre
sented by elaborate tuples that describe the argument list and how each argument is
to be passed and the result to be received, while in EIL, the argument list is expanded
to a series of tuples that actually evaluate the arguments. EIL also includes nodes de
signed specifically for the optimizer, such as c se re f nodes, which represent uses of
common subexpressions. Figure 21.15(b) shows the EIL code that is produced by the
expander for the CIL code shown in Figure 21.15(a), again with the minor subfields
elided.

The compilers provide six optimization levels, as follows:

00 This level does only peephole optimization and assigns each local variable to a
distinct stack location.

01 This level produces code that is intended to be debuggable; it does local common-
subexpression elimination and lifetime analysis that results in variables sharing stack
locations and registers.

02 This level adds classic global optimizations that don’t significantly increase code size.

Section 21.3 Digital Equipment’s Compilers for Alpha 729

03 This level adds loop unrolling and code replication to remove branches (the inverse
of tail merging).

04 This level adds inlining of routines from within the same compilation unit.

05 This level adds dependence analysis and software pipelining.

Starting with level 01, the expander does interprocedural analysis to determine the
call graph insofar as it can and does inlining of procedures within the same compila
tion unit. The procedures that make up the compilation unit are then optimized and
have code generated for them a procedure at a time, from the leaves of the call tree
toward its root.

The optimizer first constructs the flowgraph of the routine and its dominator
tree, eliminating empty blocks, unreachable code, and unnecessary branches in the
process. The list of basic blocks is sorted into “ loop order,” which resembles the
depth-first search tree but keeps the blocks in the body of each loop contiguous
to improve code locality. An empty preheader is inserted before each loop and a
corresponding block after each loop. Also, while loops are turned into repeat
loops, since the invariant-code motion phase is not designed to move code out of
while loops. Data-flow analysis is done using the symbolic evaluation method of
Reif and Lewis ([ReiL77] and [ReiL86]) but without constructing their global value
graph. Alias analysis is done in two phases. The first phase, done before data-flow
analysis, annotates data-access nodes with symbol access information and possible
aliases. The second phase, done during data-flow analysis, traverses the dominator
tree up and down to compute bit vectors that represent the potential side effects of
assignments.

A series of peephole optimizations is done at three points in the optimization
process: before control-flow analysis, after data-flow analysis, and at the end of
optimization. These include algebraic simplifications, expanding multiplications and
divisions by constants, expanding bit- and byte-field accesses to word fetches and
extracts and the corresponding expansions for bit- and byte-field stores, and several
others.

The global optimizations performed include the following:

1. induction-variable strength reduction

2. linear-function test replacement

3. loop unrolling

4. global common-subexpression elimination, including determination of those that are
better recomputed than performed in common

5. loop-invariant code motion

6. global copy and constant propagation

7. dead-store elimination

8. base binding, i.e., determining address expressions that differ by a constant small
enough to fit in the displacement field of a load or store

9. software pipelining

730 Case Studies of Compilers and Future Trends

The code generator’s design was inspired by the work of Wulf et al. [WulJ75] in
the Production-Quality Compiler Compiler (PQCC) and the PDP-11 b l i s s compiler.
It consists of six phases, as follows:

1. Context 1 tiles the EIL tree for a procedure with code patterns, each with a cost per
node. There may be several patterns for a particular part of a procedure’s EIL tree—
in practice, there are about five or six applicable patterns per node. Then Context 1
selects the set of patterns with minimal cost for the whole tree.

2. IL Scheduling next interleaves the selected code patterns for a basic block with
each other sufficiently to produce high-quality register allocation. It also uses Sethi-
Ullman numbers to compute the minimum number of registers that are required by
each expression.

3. Next, Context 2 creates temporaries for the quantities that need them and computes
their lifetimes.

4. Then Register History tracks the reloading of each temporary that has been allocated
a memory location, annotating temporaries that have multiple uses so that they can
be allocated to the same register.

5. TN Pack does bin packing of temporary names (as described in Section 16.2) to
allocate registers, as determined by the actions contained in the patterns selected by
Context 1.

6. Finally, Code emits the actual object code, based on the selected patterns and register
allocation.

The code generator combines the code for the procedures in a compilation unit
to produce a relocatable object module and determines where (short-displacement)
branches can be used and where jumps are required.

Finally, the final phase of the compiler does peephole optimizations, such as ma
chine idioms, jump simplifications, cross jumping, and code duplication (i.e., inverse
cross jumping); and instruction scheduling using a detailed machine model and an
algorithm that is based on determination of critical paths in straight-line code. The
scheduler does some cross-block scheduling for safe speculative execution.4

Feedback of profiling results can be used to guide procedure integration and
the order of the generated basic blocks and to tailor the calling conventions for
frequently called routines.

Figure 21.16 shows the assembly code that is produced by the GEM C compiler
with 05 optimization for the routine shown in Figure 21.1. Note that the constant
value of kind has been propagated into the conditional and the dead code elimi
nated; the loop invariant length * width has been removed from the loop; the loop

4. Execution of an instruction in a particular block is speculative if the instruction originated from a
following block with an intervening conditional. The speculative execution is safe if taking the other
arm of the conditional does not require compensating for the effect of the speculatively executed
instruction.

Section 21.3 Digital Equipment’s Compilers for Alpha 731

main:

L$3:

ldah gp,(r27)
Ida gP.(gp)
ldq rl,8(gp)
Ida sp,-16(sp)
ldq rO,16(gp)
clr rl6
stq r26,(sp)
clr rl7
ldl rl,(rl)
ldl rO,(rO)
mull r0,rl,r0
clr rl
mull rl,r0,r2
ldq r27,(gp)
addl rl,1,r3
addl rl,2,r4
addl rl,3,r5
addl rl,4,r6
addl rl6,r0,rl6
addl rl6,r0,rl6
addl rl6,r0,rl6
addl rl,5,rl
addl rl6,0,rl6
addl rl6,r0,rl6
mull r3,r0,r3
addl rl7,r2,r2
mull r4,rO,r4
addl r2,r3,r2
addq rl,-10,r3
mull r5,r0,r5
addl r2,r4,r2
mull r6,r0,r6
addl r2,r5,r2
addl r2,r6,rl7
bit r3,L$3
jsr r26,r27
ldah gp,(r26)
ldq r26,(sp)
Ida gp.Cgp)
clr rO
Ida sp,16(sp)
ret r26

FIG. 21.16 Alpha assembly language produced by the GEM C compiler with 05 optimization for
the routine in Figure 21.1.

732 Case Studies of Compilers and Future Trends

ldl rl7,(rl7)
mov 1 ,r0
mov 2,rl
ble rl7,L$4
mov rl,r2
cmple r2,rl7,r3
beq r3,L$7
nop
sll r2,4,r3
ble rl7,L$13
sll r2,11,r5
s4subq r3,r3,r3
subq r5,r3,r3
sll r0,4,r5
sll rO,11,r6
s4subq r5,r5,r5
subq r6,r5,r5
subl rl7,3,r6
addq rl6,r3,r3
addq rl6,r5,r5
cmplt rl7,r6,r7
mov 1 ,r4
Ida r3,-2000(r3)
Ida r5,-2000(r5)
bne r7,L$24
ble r6,L$24

FIG. 21.17 Alpha assembly language produced by the GEM Fortran 77 compiler with 05
optimization for the routine s l () in Figure 21.2.

has been unrolled by a factor of five; all the local variables have been allocated to
registers; and instruction scheduling has been performed, including the safe specula
tive scheduling of the load of r27 in the instruction following the label L$3 from the
following block. On the other hand, the allocation of the stack frame is unnecessary,
the computation of area could have been reduced to a single multiplication, and the
tail call to p rocess () has not been optimized. Also, the multiplications to compute
the terms that are added to produce volume could have been strength-reduced to
additions.

Figure 21.17 shows the assembly language that is produced by the GEM For
tran 77 compiler with 05 optimization for the routine s l () in Figure 21.2. The
code from s l_ to L$21 is initialization code for the routine and the loops, and the
code from L$13 on is loop control for the outer loops and finalization code. The
remaining code is for the innermost loop. It has been unrolled by a factor of four
(the code beginning with L$21) and a rolled copy has also been produced, beginning
at L$24. In the rolled loop, there are nine instructions, since linear-function test re
placement has not been performed. The unrolled loop consists of 21 instructions, of
which only one is inessential, again because linear-function test replacement has not
been performed. The local variables have been allocated to registers and instruction

Section 21.3 Digital Equipment’s Compilers for Alpha 733

L$21: ldl r8,(rS)
addl r4,4,r4
ldl rl9,(r3)
addl r8,rl9,r8
stl r8,(r3)
ldl rl9,4(rS)
ldl r8,4(r3)
addl rl9,r8,r8
stl r8,4(r3)
ldl rl9,8(r5)
ldl r8,8(r3)
addl rl9,r8,r8
stl r8,8(r3)
ldl rl9,12(r5)
ldl r8,12(r3)
Ida r3,16(r3)
Ida r5,16(r5)
addl rl9,r8,r8
cmple r4,r6,rl9
stl r8,-4(r3)
bne rl9,L$21
cmple r4,rl7,r8
beq
nop

r8,L$13

L$24: ldl r7,(r5)
addl r4,l,r4
ldl rl9,(r3)
Ida r3,4(r3)
cmple r4,rl7,r8
Ida r5,4(r5)
addl r7,rl9,r7
stl r7,-4(r3)
bne r8,L$24

L$13: addl r2,1,r2
cmple r2,rl7,rl9
bne rl9,L$8

L$7: addl rO,1,rO
cmple r0,rl7,r7
addl rl.l.rl
bne r7,L$5

L$4: ret r26
FIG. 21.17 (continued)

scheduling has been performed. On the other hand, procedure integration of s l ()
into the main program has not been performed. Doing so would have saved the call
and return overhead and would have propagated the value of n (= 500) into the sub
routine, making the rolled copy of the innermost loop unnecessary, since 4 divides
500 evenly.

734 Case Studies of Compilers and Future Trends

21.4 The Intel Reference Compilers for the Intel 386
Architecture Family

21.4.1 The Intel 386 Architecture
The Intel 386 architecture family includes the Intel 386 and its successors, the 486,
Pentium, Pentium Pro, and so on, all of which implement essentially the same in
struction set5 but often in radically different ways (see, e.g., [Pent94]). The architec
ture is a thoroughly cisc design, but some of the implementations utilize Rise princi
ples, such as pipelining and superscalarity, to achieve significant speed improvements
over previous family members. The architecture is significantly constrained by the
requirement that it be upwardly compatible with such early Intel processors as the
8086, which included only byte and halfword data and a rather difficult-to-use seg
mented addressing scheme. We discuss only a few of the compatibility features.

There are eight 32-bit integer registers named eax, ebx, ecx, edx, ebp, esp, e s i ,
and edi. The low-order 16 bits of each register has a second name that is its name
in the 8086 and that is used by the 8086 subset of the instruction set. The name of
each 16-bit register is the name of the 32-bit register without the e. Each of the first
four 16-bit registers is further subdivided into two byte registers, such as ah and a l
that comprise the high- and low-order bytes of ax, respectively. In addition, there are
six 32-bit segment registers that are used in computing addresses for loads, stores,
branches, and calls. Some of the registers have dedicated purposes, such as ebp and
esp, which point to the base and top of the current stack frame, respectively, while
others have dedicated uses in certain classes of instructions, such as ecx, e s i , and
edi in string-manipulation instructions.

A memory address is composed from a segment register (which is, in most cases,
selected by the type of instruction), a base register, an optionally scaled (by 1, 2, 4,
or 8) index register, and an eight- or 32-bit displacement, with each part optional
(except that at least one must be present).

Conditional control is accomplished by compare operations that set bits in a
flags register and branches based on them.

The architecture includes instructions for data movement (between registers and
memory and between registers); binary and decimal arithmetic; logical, shift, and ro
tate operations; conditional and unconditional jumps; call and return; loop control;
string manipulation; procedure entry and exit; floating point; byte translation; byte
swap; and system control.

The floating-point programming model includes a stack of eight 80-bit floating
point registers. The floating-point formats are 32-bit single, 64-bit double, and
80-bit extended precision. All data are converted to extended precision upon being
loaded into registers and may be converted back when stored. In addition to floating
point loads and stores, arithmetic and comparison operations, and conversions,

5. The Pentium Pro actually has some new instructions, including integer and floating-point condi
tional moves and a floating-point compare that sets the integer condition codes.

Section 21.4 The Intel Reference Compilers for the Intel 386 Architecture Family 7 35

Code generator

FIG. 21.18 Intel reference compiler structure.

there are instructions to load any of seven specific constants (such as tt) and to
perform trigonometric, exponential, and logarithmic operations.

M ost Intel architecture instructions have two operands, although a significant
number have one or zero. In the more typical two-operand case, the first operand is
usually the first source and the second is both the second source and the destination,
and operands are written in that order in the assembly language. The allowed types
of the operands differ from one instruction to another, but in most cases one may be
a memory address, register, or constant and the other may be a constant or register.
See Appendix A.4 for further details of the assembly language.

21.4.2 The Intel Compilers
Intel provides what it calls reference compilers for C, C++, Fortran 77, and For
tran 90 for the 386 architecture family.

The structure of the compilers, which use the mixed model of optimizer orga
nization, is as shown in Figure 21.18. Each compiler consists of a language-specific
front end (derived from work done at Multiflow and the Edison Design Group);
the interprocedural, memory, and global optimizers; and a three-phase code gen
erator that does instruction selection, register allocation, and code scheduling. The
interprocedural and memory optimizers were added to the compilers in 1991, along
with a redesign of the code generator, called Proton, in an effort to increase the

736 Case Studies of Compilers and Future Trends

scope of optimization for the Pentium processor and its successors. Since then, the
global optimizer has been extensively reworked to base much of its action on partial-
redundancy elimination.

The front ends produce a medium-level intermediate code called IL-1 that in
cludes some notable features, such as array indexes that are regenerated from
pointer-based array traversal, as may occur in C and C++. Figure 21.19 shows the
IL-1 code for the main routine in Figure 21.2 (as produced by the Fortran front
end) as an example. The operations are organized into basic blocks with lists of
predecessors and successors. The meanings of some of the operations are as follows:

1. ENTRY in instruction 1 represents the entry point to the routine.

2. SSTORE in instructions 3, 9, 25, and 29 represents storing an integer to memory.

3. VOGEN in instruction 20 and ASTORE in instruction 21 represent generating an array
subscript and storing into the indexed array location, respectively.

4. L00P_BEGIN in instructions 5 and 11 represents the beginning of a loop.

5. IF_REL. LE in lines 7 and 13 represents a loop closure test.

The result operand comes first after the operator, followed by the source operands.
Note that the SI32 qualifier marks operands as 32-bit integers and that the IF.REL
operations include expected execution frequencies for the two branches.

There is only one selectable level of global optimization (other than unopti
mized) and separate options control invocation of the interprocedural and memory
optimizers.

The interprocedural optimizer operates across file boundaries (by saving the
IL-1 form of each routine) and may be driven by the results of execution profil
ing. It performs a series of analyses that are designed to collect information about
how procedures are used and about some of their characteristics, such as their sizes,
constant arguments, and uses of module-level static variables. The interprocedural
optimizer then performs a series of optimizations that include inlining, procedure
cloning, parameter substitution, and interprocedural constant propagation (see Sec
tion 19.3). Inlining is guided by whether a routine is called inside a loop, the size of
the loop’s code body, and the presence of constant-valued arguments, and it is done
as much for the benefit of the memory optimizer as to reduce call-return overhead.
Cloning is done to create individual copies of routines that have distinct constant
parameters, thus potentially making loop and array bounds known constants. Pa
rameter substitution tracks constant-valued arguments and propagates them to their
uses as parameters. The interprocedural optimizer may also decide to pass arguments
to particular routines in registers rather than on the run-time stack (except for unix,
for which the Application Binary Interface requires that they be passed in the stack).

The output of the interprocedural optimizer is a lowered version of IL-1, called
IL-2, along with IL -l’s program-structure information; this intermediate form is used
for the remainder of the major components of the compiler, down through input to
the code generator. The IL-2 form (after optimization) of the inner loop of the main
program in Figure 21.2 is shown in Figure 21.20. The result operand comes first,
after the operator, followed by the source operands. Note that most of the operations

Section 21.4 The Intel Reference Compilers for the Intel 386 Architecture Family 7 3 7

Entry bblocks: O(MAIN)
BBLOCK 0: (an entry bblock), preds: , succs: 1, stats:

I ENTRY.ARGS_REGS.ENT_GL0BAL
3 SST0RE.SI32 5 1(SI32) __l.MAIN.k

BBLOCK 1: preds: 0 6, succs: 4 2, stats:
5 L00P.BEGIN 5 500
6 SLOAD.ND.NREG.SI32 5 tO __l.MAIN.k
7 IF_REL. LE. SI32 5 99°/. 0°/, tO 500(SI32)

BBLOCK 2: preds: 1, succs: 3, stats:
31 CALL.ARGS_REGS.CALLER_SAVES si

BBLOCK 3: preds: 2, succs: , stats:
33 RET.Sr

BBLOCK 4: preds: 1, succs: 5, stats:
9 SST0RE.SI32 6 1(SI32) __l.MAIN.l

BBLOCK 5: preds: 4 7, succs: 7 6, stats:
II LOOP.BEGIN 6 500
12 SLOAD.ND.NREG.SI32 6 tl __l.MAIN.l
13 IF_REL.LE.SI32 6 99°/, 0°/. tl 500(SI32)

BBLOCK 6: preds: 5, succs: 1, stats:
27 SLOAD.ND.NREG.SI32 5 tlO __l.MAIN.k
28 GADD.SI32 5 til 2 [tlO,1(SI32)]
29 SSTORE.SI32 5 til __l.MAIN.k

BBLOCK 7: preds: 5, succs: 5, stats:
15 SLOAD.ND.NREG.SI32 7 t2 __l.MAIN.k
16 SLOAD.ND.NREG.SI32 7 t3 __l.MAIN.l
17 GADD.SI32 7 t4 2 [t2,t3]
18 SLOAD.ND.NREG.SI32 7 t5 __l.MAIN.k
19 SLOAD.ND.NREG.SI32 7 t6 __l.MAIN.l
20 V0GEN.2 7 t7 __l.MAIN.a 2
21 ASTORE.2.SI32 7 t4 __l.MAIN.a t7 2
23 SLOAD.ND.NREG.SI32 6 t8 __l.MAIN.l
24 GADD.SI32 6 t9 2 [t8,l(SI32)]
25 SSTORE.SI32 6 t9 __l.MAIN.l

FIG. 21.19 The IL-1 form of the main routine in Figure 21.2 as produced by the Fortran front end.

BBLOCK 7: preds: 7 4, succs: 7 9, stats:
26 LOOP.BEGIN 6 500
30 ADD.SI32 7 t6 t4 t5
25 ASSIGN.N32 7 tl4 500(SI32)
29 IMUL.SI32 7 t7 tl4 t5
24 ADD.SI32 7 t8 t4 t7
23 SST.SI32 7 t6 t8 (addr(1.MAIN.a)(P32) - 2004(SI32))(P32) __l.MAIN.a
21 ADD.SI32 6 t5 1(SI32) t5
2 IF.REL. GE. SI32 6 99°/, 0°/, 500(SI32) t5

FIG. 21.20 The IL-2 form of the inner loop in the main routine in Figure 21.2 as presented to the
code generator.

738 Case Studies of Compilers and Future Trends

have been lowered, subscripts have been expanded to address computations (note,
particularly, line 23), and loop inversion and code motion have been performed.

Intraprocedural control-flow analysis is done as the first stage of either mem
ory optimization or global optimization, whichever comes first according to the
compilation options selected. It includes putting loops into a canonical form and
representing their nesting structure.

The memory optimizer is concerned with improving use of memory and caches,
almost entirely by performing loop transformations. It first does SSA-based sparse
conditional constant propagation (see Section 12.6) and then data-dependence ana
lysis using Banerjee’s tests [Bane8 8] for loops with known bounds. Before the de
pendence analysis, a phase known as “ loop cleanup” attempts to make loop nests
perfectly nested and to make their bounds and strides known constants. The trans
formations that may be applied are loop interchange, loop distribution, strip mining,
software prefetching, tiling, and creation of alternate loops. The last of these meth
ods deals with loops that would be susceptible to significant optimization if their
bodies satisfied certain dependence (or independence) relations but for which the
determination of that condition depends on information available only at run time.
The loop tile sizes are selected using techniques developed by Lam, Rothberg, and
Wolf ([LamR91] and [WolL91]). Iteration distances computed by the memory op
timizer are passed on to the code generator to control loop unrolling and code
scheduling. Note that the inlining and procedure cloning that are done by the inter
procedural optimizer increase the effectiveness of memory optimization by making
more loops susceptible to the dependence-testing algorithms.

The global optimizer does a series of data-flow analyses and Banerjee’s array-
dependence test for loops with known bounds, the latter to identify ordering con
straints on moves to and from memory. Control-flow analysis is done by determining
dominators and back edges by the method of Lengauer and Tarjan (see Section 7.3).
Data-flow analysis is done by a version of partial-redundancy elimination. Alias ana
lysis assumes that all pointer references may conflict with each other, except for
reference parameters in Fortran, as prescribed by the language standard. The op
timizations performed by the global optimizer are, in order:

1 . promotion of local and file-static variables to candidates for register allocation

2 . constant propagation

3. dead-code elimination

4. local common-subexpression elimination

5. copy propagation

6 . partial-redundancy elimination

7. a second pass of copy propagation

8 . a second pass of dead-code elimination

The code generator, called Proton, uses its own intermediate form called Proton
IL (PIL). The PIL code that results directly from translating the IL-2 in Figure 21.20

Section 21.4 The Intel Reference Compilers for the Intel 386 Architecture Family 739
esp based stack
Stack frame size: 8

BL0CK=3 Phys_pred=2 Phys_succ=4 Loop=2
CFlow_preds= B3 B2
CFlow_succs= B3 B4

B3 opcode opl op2
1 imerge B2.1 8
2 imerge B1.3 B4.2
3 add 2 1
4 movi $500
5 imul 4 1
6 add 2 5
7 St 3 ..1.MAIN.LOCALSTATIC.a-2004(6,4)
8 addi 1 $1
9 movi $500
10 cjge 9 8 B3 p70°/0 m00/.

FIG. 21.21 The PIL form of the inner loop in the main routine in Figure 21.2 immediately after
translation to PIL from the IL-2 form in Figure 21.20.

is shown in Figure 2 1 .2 1 . The operations are triples with the source operands
specified after the operator and the triple number used to represent the result. Thus,
for example, line 3 adds the results of lines 2 and 1, and line 7 stores the result of
line 3 in the indicated memory location, which is indexed by the result of triple 6
and has an offset given by the result of triple 4. The imerge operator is an SSA-form
0 -function.

Proton performs instruction selection, register allocation, instruction schedul
ing, and a series of low-level optimizations, with the four tasks intermingled to a
significant degree. Formation of cisc addresses is done first. This is a nontrivial op
eration because an address may consist of a base register, an index register, a scaling
factor, and a displacement, and address evaluation can be executed in parallel with
other operations on the more advanced implementations of the architecture. The
optimization is done by peephole optimization applied along du-chains. Induction-
variable optimizations are also done before code selection, so as to shape the code
to the architecture.

Instruction selection is relatively straightforward, except for instruction combin
ing, which is driven by the small number of registers available and by the possibilities
for running instructions in parallel in the Pentium and its successors. For example,
a memory-to-memory add and a load-add-store sequence both take three cycles on
Pentium, but the latter is more likely to be pairable with other instructions in the
implementation’s dual pipelines. As another example, PIL represents sign extension
of a byte as a load followed by a shift left 24 and a shift right 24, but use of the
architecture’s load with sign extend instruction requires fewer cycles in some situa
tions. Similarly, generating an effective address that includes a base, an index, and
a displacement can be done in a single instruction without a result register, as indi
cated above, but it can also be done by two register adds with the result going to a

740 Case Studies of Compilers and Future Trends

register—which may be cheaper if the address is used more than once and if there is
a register available to hold it.

Register allocation is done by a combination of local methods within basic
blocks and by Chaitin-style graph coloring across basic blocks. The code generator
divides the registers into local and global ones according to the loop structure of
the given program. Programs with loops that have high (expected or measured)
execution frequencies are allocated more registers for local use and registers are
allocated from the innermost loops outward.

The stack structure of the eight floating-point registers limits the effectiveness
of register allocation, since merging paths are required to have their stacks match.
However, on the Pentium and Pentium Pro, the f xch (floating-point exchange regis
ter contents) instruction can be executed with zero result latency in the V pipeline, so
the floating-point stack can be treated as a register set, at least within a basic block.
This is in contrast to the 486 processor, in which f xch requires four cycles, so that
treating the floating-point stack as a set of equivalent registers is highly unprofitable.

Global allocation of the integer registers might seem highly dubious, since there
are only eight 32-bit registers and several of them have dedicated uses. However,
four of the 32-bit registers have as their low-order 16 bits pairs of byte registers,
thus increasing the number of registers available; also, only the stack-pointer register
is permanently dedicated and unavailable for other uses. Moreover, while eight
registers are certainly less useful than 32, studies of global register allocation have
shown that eight are also much better than one or two.

Instruction scheduling is done by list scheduling and includes local register allo
cation, much in the style of the method developed by Goodman and Hsu [G0 0 H 8 8].
It is mostly done a block at a time, although predecessor and successor blocks are
taken into account to a limited degree. Scheduling is strongly table-driven, since the
architecture’s implementations differ significantly in their pipeline organization and
instruction timing. For example, the 386 is not pipelined at all, while Pentium has
dual pipelines and the Pentium Pro has decoupled pipelines with a significant capac
ity for out-of-order execution.

The low-level optimizations performed in the code generator include the fol
lowing:

1 . induction-variable optimizations, as mentioned above, to optimize usage of address
ing modes and registers; strength reduction; and linear-function test replacement,
including replacing multiplications by sequences of shifts and adds

2 . machine idioms, searched for along du-chains, such as using the increment and
decrement instructions in place of addition and subtraction by one

3. alignment of loops on cache-block boundaries

4. converting of so-called prefix instructions that operate on halfword operands to
the corresponding byte or word forms, which are faster on Pentium and newer
implementations

5. code reselection to replace register-to-register instruction sequences with memory-
based operations where register pressure makes it desirable or necessary to do so

6 . software pipelining along the lines of window scheduling (see Section 17.4.1)

Section 21.4 The Intel Reference Compilers for the Intel 386 Architecture Family 741

main: .Bl.l:
pushl %ebp
movl °/0esp, °/0ebp
subl $3,°/0esp
andl $-8,°/0esp
addl $4,#/«esp
pushl °/0edi
pushl °/0esi
pushl °/0ebx
subl $8,#/«esp
movl length, °/0e si
xorl °/«ebx, °/0ebx
imull width, °/0e si
movl #/0esi,°/0edi
xorl #/0ecx,°/0ecx
movl $-10,°/0edx
xorl °/0eax, °/0eax
addl #/0esi,#/0ecx
addl °/«eax, °/0ebx
addl °/0edi, °/0eax
incl #/0edx
jne .B1.2
movl °/0ecx, (°/0esp)
movl #/0ebx,4(#/«esp)
call process
xorl °/0eax, °/0eax
popl °/0edx
popl °/0ecx
popl °/0ebx
popl °/0esi
popl #/«edi
movl °/0ebp, °/0esp
popl #/.ebp
ret

FIG. 2 1 .2 2 Pentium assembly code for the C program in Figure 21.1 as produced by the Intel
reference compiler.

7. reassociation to collect loop-invariant operations and to move them out of the
containing loop

8 . loop unrolling

9. straightening and basic-block reordering to permit usage of short branch instructions

The code generator includes an option to produce position-independent code for
Unix systems, and common-subexpression elimination applies to GOT references
(see Section 5.7) as it does to other expressions.

The Pentium assembly code for the example C program in Figure 21.1 is shown
in Figure 21.22. Note that the constant value of kind has been propagated into the
conditional and the dead code eliminated, the loop invariant len gth * width has

742 C ase Studies o f C om pilers and Future Trends

si: .B1.1:

.B1.7: movl -2004 (#/«ecx) , °/0edx
movl -2004(°/0eax) ,°/0ebx
addl °/«ebx, #/«edx
movl °/,edx,-2004(#/,eax)
movl -2000(#/«ecx) ,°/0edx
movl -2000 (#/«eax) ,#/«ebx
addl °/0ebx, °/0edx
movl #/,edx, -2000 (#/«e ax)
movl -1996(#/«ecx) ,#/«edx
movl -1996(#/«eax) ,#/,ebx
addl #/,ebx, #/«edx
movl #/,edx, -1996 (#/0eax)
movl -1992(#/«ecx) ,#/,edx
movl -1992(#/«eax) ,#/«ebx
addl $16,°/«ecx
addl #/*ebx, #/«edx
movl #/,edx,-1992(°/,eax)
movl 16(°/0esp) ,°/0edx
addl $16,#/«ea x
cmpl #/,edx, °/0eax
jle .B1.7

.B1.17: cmpl #/,ebp, #/,eax
jg .B1.8

do 00 movl -2004(°/0ecx) ,#/0edx
movl -2004(°/ceax) ,#/«ebx
addl °/0ebx, °/0edx
addl $4,°/0ecx
movl #/*edx, -2004 (°/,eax)
addl $4, °/0eax
cmpl °/0ebp, °/0eax
jle .B1.18

.B1.8: movl 8(°/0esp) , °/0ebx

FIG. 21.23 Pentium assembly code for the routine s l () in the Fortran 77 program in Figure 21.2
as produced by the Intel reference compiler.

been removed from the loop, the multiplication by h e ig h t has been strength-reduced
to additions, the local variables have been allocated to registers, and instruction
scheduling has been perform ed. On the other hand, the loop has not been unrolled,
the tail call to p r o c e s s () has not been optim ized, and the accumulation o f a re a
could have been turned into a single multiplication.

The Pentium assem bly code shown in Figures 21 .23 and 21 .24 is produced by
the Fortran 77 compiler, with interprocedural, memory, and global optimization all
enabled, for our exam ple program in Figure 21 .2 , except that we have elided the
initialization loops in the main program and all o f s i () except the innermost loop.

Section 21.4 The Intel Reference Compilers for the Intel 386 Architecture Family 7 4 3

MAIN: .B2.1:
pushl °/«esi
pushl °/.ebp
pushl °/0ebx
movl $2000 ,°/0ebx
movl $l,#/0ebp

.B2.5: movl $1 ,#/0esi
movl $500, °/0ebp

.B2.6: leal l(#/,esi) ,#/,eax
cmpl $500, °/0eax
jg .B2.12

.B2.7: movl °/0eax, °/0edx
shll $2, #/«edx
subl °/,eax, °/0edx
leal (#/*eax, °/0edx, 8), °/0eax
leal (#/,eax, °/0eax, 4), #/,ebx
shll $4, °/0ebx

.B2.8: movl $-500,°/0eax
movl °/0ebp, °/0ecx
shll $2,#/0ecx

.B2.9: movl . . 1. MAIN. LOCLSTATC. a. 1.0 (#/,ecx, °/,eax, 4) , °/,edx
addl #/,edx, . . 1. MAIN. LOCLSTATC. a. 1.0 (°/,ebx, °/,eax, 4)
incl °/0eax
jne .B2.9

.B2.10: addl $2000, °/0ebx
cmpl $1000000, °/,ebx
j1© .B2.8

.B2.12: incl #/,esi
addl $500,#/,ebp
cmpl $500,#/,esi
jle .B2.6

.B2.13: popl °/0ebx
popl #/.ebp
popl
ret

#/,esi

Pentium assembly code for the main routine in the Fortran 77 program
as produced by the Intel reference compiler.

Since s i () has been inlined, the compiler can make use of the information that the
value of n is 500, which it does in using constant values in the loop control. The
innermost loop (beginning at label .B2.9) has not been unrolled, but linear-function
test replacement has been performed on it. The local variables have been allocated
to registers, but otherwise the code in the innermost loop is entirely cisc-style.

However, the compiler produces code for both s l () and the main routine,
although this is unnecessary—the main routine manifestly calls only s l (), which
in turn, calls no other routines. And, there are some interesting differences between
the code produced for s l () and for the main program for the same loop nest.

744 Case Studies o f Com pilers and Future Trends

While the code has not been unrolled and is cisc-style in the main routine, in the
subroutine it has been unrolled by a factor o f four (beginning at label .B 1.7) and
is thoroughly Rise-style code. Interprocedural constant propagation has not been
done, as can be seen by noting, for example, that there is a rolled version of the loop
(beginning at label .B 1 .18) in addition to the unrolled one. According to [Sava95],
this is the case because the inlining was done and no clones of s l () were created.
Also, the compiler chooses between cisc- and Rise-style code generation according
to the opportunities for pairing instructions in Pentium’s dual pipelines. If the r isc-
like intermediate code includes nontrivial opportunities for pairing, Rise-style code
is generated; if it does not, cisc-style code is produced. Unrolling the innermost loop
in the subroutine created opportunities for pairing, so Rise-style code was produced
for it.

21.5 W rap-Up
In Table 21.1 we summarize the performance of each of the four compiler suites on
the first (C) example program, and in Table 21.2 we summarize their performance
on the second (Fortran) program.

TABLE 2 1 .1 Comparison of the four compiler suites on the C example program.

Sun SPARC IBM XL DEC GEM
Intel 386
family

constant propagation
of kind yes yes yes yes
dead-code elimination almost all yes yes yes
loop-invariant
code motion yes yes yes yes
strength reduction
of height yes yes no yes
reduction of area
computation no no no no
loop unrolling factor 4 2 5 none
rolled loop yes yes no yes
register allocation yes yes yes yes
instruction scheduling yes yes yes yes
stack frame eliminated yes no no no
tail call optimized yes no no no

Section 21.6 Future Trends in Compiler Design and Implementation 745

TABLE

21.6

21.2 Com parison of the four compiler suites on the Fortran example program .

Sun SPARC IBM XL DEC GEM
Intel 386
family

address of a (i) a
common subexpression yes yes yes yes
procedure integration
o f s l() yes no no yes
loop unrolling factor 4 2 4 none
rolled loop yes yes yes yes
instructions in
innermost loop 21 9 21 4
linear-function test
replacement no no no yes
software pipelining yes no no no
register allocation yes yes yes yes
instruction scheduling yes yes yes yes
elimination of s l ()
subroutine no no no no

Future Trends in Compiler Design
and Implementation
There are several clear main trends developing for the near future of advanced
compiler design and implementation:

1. SSA form is being used for more and more optimizations, primarily because it
allows methods that were originally designed to apply to basic blocks or extended
basic blocks to be applied to whole procedures, and because it generally results in
significant additional improvements in performance.

2. Partial-redundancy elimination is being used more frequently, in part because the
modern versions of it are very effective and much more efficient than the original
form, and in part because its data-flow analyses provide a basis for organizing one’s
thinking about and performing other optimizations.

3. Techniques such as SSA form and partial-redundancy elimination are being com
bined to produce versions of optimizations that improve their applicability, effec
tiveness, and/or speed.

4. Scalar-oriented optimizations, including most of the ones we cover, are being inte
grated more closely with parallelization and vectorization in production compiler
systems.

5. Data-dependence testing, data-cache optimization, and software pipelining will all
advance significantly in the next decade.

746 Case Studies of Compilers and Future Trends

6 . The most active research area in scalar compilation is and will continue to be
optimization.

Examples of all these trends can be seen in the papers presented at the annual
conferences on programming language implementation.

21.7 Further Reading
The official descriptions of the processor architectures discussed in this chapter are
as follows:

Architecture Reference

sparc Version 8 [SPAR92]
sparc Version 9 [WeaG94]
power [POWE90]
PowerPC [Powe93]
Alpha [Alph92]
Intel 386 family [Pent94]

and the published descriptions of the compiler suites are as follows:

Compilers References

Sun sparc compilers [Much8 8]
Digital’s GEM compilers [BliC92]
Intel 386 family reference compilers [Inte93]

There is, unfortunately, no in-depth published description of the IBM XL compilers,
although [BerC92], [GolR90], [OBrH90], and [Warr90] describe aspects of them.
The IBM XL compilers and their intermediate languages, XIL and YIL, are dis
cussed in [0Br095]. [BerG89] concentrates on the register allocator, and [Warr90],
[GolR90], and [BerC92] concentrate on the instruction scheduler.

AT&T’s specification of C++ is [E11S90]. A bare-bones description of IBM’s PL.8
language is found in [AusH82].

The IBM 801 R is e system is described in [Radi82] and [Hopk87].
Banerjee’s array-dependence test for loops with known bounds is described

in [Bane8 8]. The Banerjee-Wolfe test is found in [Wolf89b].
The description of the Sun compiling and operating systems’ support for dy

namic linking is found in Gingell et al. [GinL87].
Data-flow analysis in the GEM compilers is done using the symbolic evaluation

method of Reif and Lewis as described in [ReiL77] and [ReiL8 6]. The GEM code
generator was designed from the ideas in the PDP-11 bliss compiler [WulJ75].

The unix System V Release 4 ABI supplement for the Intel 386 family is
[UNIX93]. The Intel compilers select loop tile sizes using techniques developed by
Lam, Rothberg, and Wolf (see [LamR91] and [WolL91]). Goodman and Hsu’s tech
nique for combining instruction scheduling and local register allocation is described
in [G0 0 H8 8].

APPENDIX A

Guide to Assembly
Languages Used

in This Book

In this appendix, we present succinct descriptions of the assembly language for
each of the architectures we have used in examples. These descriptions are not
assembly-language manuals—they provide only enough information to read our
examples.

A. 1 Sun SPARC Versions 8 and 9 Assembly
Language
In sparc assembly language, an instruction consists of an optional label field ending
with a colon, an opcode, a series of operands separated by commas, and an optional
comment field beginning with an exclamation point. The target operand is the last
one. The address in a load or store is written as a bracket-enclosed sum of a register
and either a register or a displacement. Register operands may be of the forms shown
in Table A .l. Register rO (equals gO) is special: it produces a zero when it is used as an
operand and discards results written to it. The operators °/0hi () and 70lo () extract
the high-order 2 2 bits and low-order 10 bits, respectively, of their operand.

The opcodes used in the examples are listed in Table A.2. Some of the opcodes
are extensions of the machine instruction set—for example, Id may produce either
an integer or a floating-point load instruction, depending on the type of its target
operand. The , a completer (whose value may be “ ,a ” or absent) nullifies the branch
delay slot. Branches with “ i , ” or “x ,” at the beginning of the operand list branch
based on the 32-bit and 64-bit condition codes, respectively.

sparc pseudo-operations begin with a period. The ones used in the examples
appear in Table A.3.

While sparc-V9 extends Version 8 in many upward-compatible ways, such situ
ations are, in most cases, not pertinent to our examples.

747

748 G uide to A ssem bly L an gu ages Used in T h is Book

TABLE A.1 sparc register operand forms.

Name Meaning

%Ti Integer register 0 < i < 31

Xgi Global integer register /, 0 < / < 7
Hi In integer register /, 0 < i < 7
H i Local integer register /, 0 < / < 7
lot Out integer register /, 0 < / < 7
U i Floating-point register /, 0 < / < 31
y.sp Stack pointer (#/,o6)
•/.fp Frame pointer (#/,i6)

TABLE A*2 sparc opcodes used in the text.

Name Operation

add Add
ba, a Branch always

bg,a Branch on greater
bge, a Branch on greater than or equal
b l ,a Branch on less
b le, a Branch on less than or equal
bne, a Branch on not equal
c a l l Call
cmp Compare
faddd Floating-point add double
f adds Floating-point add single
fd iv s Floating-point divide single
fd to i Convert double to integer
f ito d Convert integer to double
fmuld Floating-point multiply double
f subs Floating-point subtract single
ip re fe tch Instruction prefetch (sparc-V9 only)
Id Load word
ldd Load doubleword
ld f Load word floating-point
ldh Load halfword
mov Move
move Conditional move on equals
nop No operation
or Or

Section A.2 IBM POWER and PowerPC Assembly Language 749

TABLE A.2 (continued)

Name Operation

restore Restore register window
ret Return
save Save register window
seth i Set high-order 22 bits
s l l Shift left logical
smul Signed multiply
St Store word
std Store doubleword
s t f Store word floating-point
sub Subtract
subcc Subtract and set condition codes
umul Unsigned multiply
unimp Unimplemented

TABLE A.3 s p a r c p s e u d o -o p e ra t io n s .

Name Meaning

.a lign Set alignment (in bytes)

.data Switch to data segment

.double Doubleword constant

.end End of inlining template

.global Global symbol

.seg Switch segments

.template Beginning of inlining template

.tex t Switch to text segment

.word Word constant

A.2 IBM POWER and PowerPC Assembly Language
In p o w e r and PowerPC assembly language, an instruction consists of an optional
label field terminated by a colon, an opcode, a series o f operands separated by
commas, and an optional comment field beginning with a pound sign. The target
operand is the first one. The address in a load or store is written as either a displace
ment followed by a base register in parentheses, or an index register followed by a
base register separated by a comma. A general register operand is a number in the
range 0 through 31 or the letter r followed by such a number, with the type of each

750 G uide to A ssem bly L an gu ages Used in This Book

TABLE A .4 p o w e r and PowerPC opcodes used in the text.

POWER
Name

PowerPC
Name Operation

a addc Add
a i addic Add immediate
b b Unconditional branch
bbt bbt Branch on condition register bit true
be be Branch conditional
ber ber Branch conditional register
b l b l Branch and link
ca l addi Compute address lower
emp emp Compare
empi empi Compare immediate
cror cror Condition register or
doz — Difference or zero
fa fadd Floating add
1 lwz Load
lbz lbz Load byte and zero
lhau lhau Load half algebraic with update
lu lwzu Load with update
mf spr mf spr Move from special register
mtspr mtspr Move to special register
muls mullw Multiply short
rlinm rlwinm Rotate left immediate and mask
St stw Store
stu stwu Store with update

register distinguished by the opcode. Register rO is special: in address com putations,
it produces a zero when used as an operand in address com putation. An operand of
the form CRw, with 0 < n < 7, represents a condition register; CRO may be set by any
integer instruction whose opcode ends in a dot. C om pare instructions may set any
condition register and branch instructions may test any o f them.

Registers SP and RTOC are the stack pointer and the pointer to the global object
table, respectively.

The opcodes used in the exam ples are listed in Table A.4. The difference or zero
instruction (d o z) in p o w e r has been eliminated in PowerPC.

A.3 DEC Alpha Assembly Language
In Alpha assem bly language, an instruction consists o f an optional label field ending
with a colon, an opcode, a series o f operands separated by com m as, and an optional

Section A.3 DEC Alpha Assembly Language 751

comment field beginning with a semicolon. The target operand is the last one. The
address in a load or store is written as a displacement followed by a base register
in parentheses. Integer register operands may be of the forms shown in Table A.5.
Register r31 is special: it produces a zero when used as an operand and discards
results written to it.

The opcodes used in the examples are listed in Table A.6. Some of the opcodes
are extensions of the machine instruction set—for example, c l r and mov both do
logical ors.

Recall that DEC’S “ longword” and “ quadword” are our “word” and “ double-
word,” respectively.

TABLE A.5 Alpha integer register names.

N am e M eaning

r i Integer register /, 0 < / < 31

sp Stack pointer (r30)

gP Global pointer (r29)

TABLE A.6 Alpha opcodes used in the text.

N am e O peration

ad d l Add longword

addq Add quadw ord

beq Branch if register equal to zero

b i s Logical or

b le Branch if register less than or equal to zero

b i t Branch if register less than zero

bne Branch if register not equal to zero

c l r C lear register

cmple C om pare signed longword less than or equal

cm plt C om pare signed longword less than

c v t tq Convert ieee floating point to integer

in s b l Insert byte low

j s r Jum p to subroutine

Id a Load address

ld ah Load address high

l d l Load longword

ld q Load quadw ord

ld q_u Load unaligned quadw ord

mov M ove register

m skbl M ask byte low

m ull M ultiply longword

nop N o operation (continued)

7 5 2 Guide to Assembly Languages Used in This Book

TABLE A*6 (continued)

Name Operation

ret Return from subroutine
s4subq Scale quadword by 4 and subtract
s l l Shift left logical
s t l Store longword
stq Store quadword
stq_u Store unaligned quadword
subq Subtract quadword

A.4 Intel 386 Architecture Assembly Language
In the Intel assembly language for the 386 architecture family, an instruction consists
of an optional label field terminated by a colon, an opcode, a series of operands
separated by commas, and an optional comment field beginning with a semicolon.
Instructions may have zero to two operands, depending on the opcode and usage
(e.g., the return instruction r e t may have one operand, but it is optional). For two-
operand instructions, the second operand is usually both the second source and the
destination.

A memory address is written as a displacement followed by a comma-separated
list in parentheses; the list consists of a base register followed by an index register
followed by a scaling factor (which applies to the index register), each of which
is optional, except that if no index register appears there can be no scaling factor.
An integer register operand is a percent sign followed by the name of the register.
Constants begin with a dollar sign.

The integer register names are given in Table A.7. Some of the 32-bit registers
have 16-bit subregisters and some have eight-bit subregisters also, to provide com-

TABLE A.7 Intel 386 architecture integer register names.

32-Bit
Name

16-Bit
Name

8-Bit
Names Usage

eax ax al, ah General register
ebx bx bl, bh General register
ecx cx cl, ch General register
edx dx dl, dh General register
ebp bp Base (or frame) pointer
e si s i General register
edi di General register
esp sp Stack pointer

Section A.5 Hewlett-Packard’s PA-RISC Assembly Language 753

TABLE A.8 Intel 386 architecture opcodes used
in the text.

Name Operation

addl Add
andl Logical and
ca ll Call
cmpl Compare
fadd Floating-point add
imull Multiply
incl Increment

jg Jump on greater than

j l e Jump on less than or equal
jne Jump on not equal
le a l Load effective address
movl Move
popl Pop
pushl Push
ret Return
sh ll Shift left logical
subl Subtract
xorl Logical exclusive or

patibility with earlier Intel processors. While six of the registers are general purpose,
in some cases some of them are used in dedicated ways by specific instructions, such
as ecx, e s i , and ed i for string-manipulation instructions.

The floating-point registers are 80 bits long and form a stack. They are named
#/0s t (0) (or just °/0s t) through °/0s t (7) . Typical instructions, such as floating-point
adds, may appear as follows:

fadd °/0st (2) ,°/0st
fadd 1.0

The first of these instructions adds the contents of %st and °/0s t (2) and replaces the
value of °/0s t with the result, and the second adds 1.0 to °/0s t .

The opcodes used in examples in the text are listed in Table A.8. The suffix
“ 1” on all the integer instructions indicates that they operate on long (i.e., 32-bit)
operands.

A. 5 Hewlett-Packard’s PA-RISC Assembly Language
In p a - r i s c assembly language, an instruction consists of an optional label field, an
opcode, a series of operands separated by commas, and an optional comment field.

754 G uide to A ssem bly L an gu ages U sed in Th is Book

TABLE A.9

TABLE A. 10

The target operand is the last one. The address in a load or store is written as a
displacem ent or index register followed by a base register in parentheses. Register
operands may be o f the form s shown in Table A.9. The operators LR' and RR'
extract the high-order and low-order 16 bits, respectively, o f their constant operand.

The opcodes used in the exam ples are listed in Table A. 10. Some of the op
codes are extensions o f the machine instruction set— for exam ple, COPY is actually
a subcase o f OR, and COMB is shorthand for COMBF and COMBT (compare and branch
on false and true, respectively). The completer m od indicates a modification of the
base register in a load or store instruction; in particular, MA modifies the base reg
ister by adding the displacem ent to it after forming the effective memory address.
The completer cond indicates an arithmetic (or other) condition (for exam ple, SDC
indicates “ some digit carry”) and the completer n (whose value may be N) indicates
nullification of the instruction following a branch.

p a - r i s c r e g is te r n a m e s .

Name Meaning

°/0rz Integer register /, 0 < i < 31
#/0frz Floating-point register /, 0 < i < 31
#/ofrzL Floating-point register /, 0 < / < 31, left half
°/ofr/R Floating-point register /, 0 < / < 31, right half

pa-risc opcodes.

Name Operation

ADD Add
ADDB Add and branch
ADDBT Add and branch on true
ADDI Add immediate
ADDIB, cond Add immediate and branch on condition
ADDIL Add immediate left
B Branch
BL Branch and link
BV Branch vectored
COMB,cond, n Compare and branch
COMBF, cond Compare and branch on false
COMCLR Compare and clear
COMIBF,cond, n Compare immediate and branch on false
COPY Copy
DCOR Decimal correct

Section A.5 Hewlett-Packard’s PA-RISC Assembly Language 755

TA BLE A. 10 (continued)

Name Operation

FLDWS, mod Floating-point load word short
FSTWS, mod Floating-point store word short
LDHS, mod Load halfword short
LDI Load immediate
LDO Load offset
LDWM, mod Load word and modify
LDWS, mod Load word short
LDWX, mod Load word indexed
MOVE Move register
NOP No operation
OR Logical or
SHIADD Shift one and add
SH2ADD Shift two and add
SH3ADD Shift three and add
SHD Shift double
STW Store word
STWM, mod Store word and modify
SUB Subtract
XMPYU Fixed-point multiply unsigned

APPENDIX B

Representation of Sets,
Sequences, Trees, DAGs,

and Functions

T he choice of an appropriate concrete representation of an abstract data
structure can make the difference between an algorithm’s running in linear
or quadratic time versus its requiring large polynomial or even exponential
time. Thus, it is essential that we understand the possible choices for representing

data structures, the time required by various operations performed on them, and the
space they occupy if we are to turn algorithms presented here or elsewhere into code
that runs efficiently.

Our goal in this appendix is not to provide a course in data structures, but
primarily to remind the reader of useful concrete representations of data structures
that should be considered in implementing algorithms such as those in this book.

For example, suppose we need to represent strictly increasing sequences of
integers in the range 0 through u — 1 with at most s members in the sequences. Then,
for u = 64,

1 ,3 ,5 ,1 1 ,2 3 ,4 3 ,5 3 ,6 2

is such a sequence, and

3 ,1 ,1 5

is not, since in this second case, the first member of the sequence is larger than the
second. We might represent such sequences, for example, by two-way linked lists
in which the list entries contain the integers or by doubleword bit vectors in which
bit position i is 1 if and only if i is in the sequence, as shown in Figure B .l(a) and
(b), respectively. Let s be the number of elements that are currently in the sequence.
Suppose that the operations we need to be able to perform on such sequences are (1)
adding a value, (2) removing a value, (3) testing membership of a value, (4) merging
sequences, and (5) determining the length of a sequence.

For the linked-list implementation, we perform each of the operations as
follows:

757

758 R epresentation of Sets, Sequences, Trees, D A G s, and Functions

Head

(a)

FIG. B.l

1.

2.

3.

4.

5.

1.
2.

3.

4.

(b)
0x00000000 0x00004044

Representation of the three-member, strictly increasing sequence 3, 7, 15 by (a) a two-
way linked list, and (b) by a doubleword bit vector (the bits are numbered from the
right).

adding a value v : Traverse the list, comparing members to v until we (a) find vy (b)
find a value larger than i/, or (c), come to the end of the list. For cases (b) and (c),
we insert v at the appropriate place, and for (a), we do nothing more.

removing a value v : Traverse the list, comparing members to v until we (a) find i/, (b)
find a value larger than v, or (c) come to the end of the list. For case (a), we remove
the entry containing i/, and for (b) and (c), we do nothing more.

testing membership of v : Traverse the list, comparing members to v until we (a) find
i/, (b) find a value larger than i/, or (c) come to the end of the list. For case (a), we
answer “ yes,” and for (b) and (c), we answer “ no.”

merging sequences: Traverse both lists in parallel, selecting elements from each list
according to their relative magnitudes and combining them into one list, eliminating
duplicates in the process.

determining the length of a sequence: Traverse the list, counting the members.

Each of these operations takes 0 {u) time in the worst case and O(s) time in the
typical case, and the sequences require 3s words of storage.

For the bit-vector implementation, we first construct an array of u = 64 double-
words mask [1 • • 6 4], each of which has one bit set to 1, namely, the /th bit in the ith
doubleword. Call the current value of the sequence seq.

We perform the operations as follows:

adding a value v : Logically or together se q and mask [i/].

removing a value v : Bitwise complement mask _v~\ and logically and the result with
seq.

testing membership of v : Logically and together seq and mask O] . If the result is
nonzero, answer “ yes,” otherwise answer “ no.”

merging sequences: Logically or the two sequences.

Section B.l Representation of Sets 759

5. determining the length of a sequence: For v = 1 to w, logically and together seq and
mask |>] , counting the number of times that the result is nonzero.

Now each operation other than (5) requires constant time, while determining length
requires 0 (u) time, and the bit vectors occupy two words each.

Thus, given the above set of operations to be performed, we would prefer the bit-
vector representation, unless determining the length of the sequence is an operation
that occurs very frequently. Note also that determining the length of the sequence
can be sped up significantly for either representation by amortizing its cost over
the other operations; i.e., we could keep a count of the length of the sequence and
modify it each time an operation adds or removes an element. For the bit-vector
representation, this still requires counting when we combine two sequences.

On the other hand, suppose that the range of integers allowed in the sequences
is on the order of u = 1,000,000 but that the sequences that occur never have more
than s = 50 elements. Now the trade-offs steer us toward the linked-list implemen
tation: Each of the linked-list operations costs us at most 50 operations and the lists
occupy at most 150 words each, while the bit-vector operations each take time that
is O (m), but the vectors occupy [1,000,000/32] = 31,250 words each.

Note that both implementations can be dynamically allocated and reallocated to
deal with changes in size of the data structure, as long as they are accessed through
pointers.

Representation of Sets
As is the case for most data structures, how we choose to represent sets depends
on the nature of the elements, the cardinality of the universe from which the sets’
elements are drawn, the typical and maximal sizes of the sets, and the operations to
be performed on them.

If the universe U is a range of u integers, and preferably 0 , . . . , « — 1 for some
m, then several sorts of representations become simpler than they otherwise might
be. If it is not of this form, it is often useful to map the elements of U onto the range
0 , . . . , u — 1 by hashing.

Whether the hash function needs to be easily invertible depends on the oper
ations to be performed on the set, e.g., if we are to union two sets and then to
enumerate the members of the union, an invertible hash function is virtually nec
essary. If no operation requires us to enumerate the members of a set, invertibility is
unnecessary.

The fundamental operations on sets are union (“ U”), intersection (“ fl”), differ
ence equality (“= ”), subset (“c ”), and membership (“€”). Some situations
may require set product (“ x ”) and other operations as well.

Bit vectors are a set representation that maximizes the ease of performing the
fundamental operations, especially if U = { 0 , . . . , u — 1} for some relatively small
u . They are used in most data-flow analyses (see Chapter 8) because the relevant
operations are fast and the representation is relatively compact. For a U with u

760 Representation of Sets, Sequences, Trees, DAGs, and Functions

procedure Set_Union(A,B) returns set of U
A, B: set of U

begin
S := A: set of U
x, y: U
for x := f ir s t (B) to last(B) do

for y := f ir s t (A) to last(A) do
i f x = y then

goto LI
f i
y := next(A)
x := next(B)

od
S := append(S,x)

LI: od
return S

end I I Set_Union

FIG. B.2 i c a n c o d e t o c o m p u t e se t u n io n fo r th e lin k e d - lis t r e p r e s e n ta t io n .

elements, they require \u/32] words per set and the fundamental operations are
performed as follows:

Set Operation Bit-Vector Operation

c := a U b bv(c) : = bv(a) or bv(b)
c := aC\b bv(c) : = bv(a) and bv(b)
c := a — b bv(c) : = bv(a) and ! bv(b)
t := a = b t := (bv(a) xor bv(b)) * 0
t := a c b t : = (! bv(a) and bv(b)) * 6
t := a e b t := (mask[<z] and bv{b)) *

where bv{x) is the bit-vector representation of x; 0 is the bit vector of all zeros; or,
and, xor, and “ ! ” (not) are the bitwise logical operators; and mask [] is a mask such
that bit i of mask [/] is a one and all other bits are zero. Thus, the typical operations
can all be performed in time O (m), independent of the number of elements in the sets
themselves.

Linked lists are a set representation that maximizes the ease of representing
sets S (of size s) that are small subsets of their universe U. A typical doubly linked
representation is shown in Figure B .l(a). The size of the representation of S is O(s),
not O (m), as it is for bit vectors. Performing the fundamental operations is harder
than for bit vectors. For example, the code for computing the union of A and B is
as shown in Figure B.2, where f i r s t (), n ex t() , and l a s t () traverse the linked
list and append () adds its second argument to the end of its first. This requires
0 (a b) time, where a and b are the cardinalities of A and B, respectively, or 0 (s 2).
O f course, in the worst case this is 0 (m2), but we are assuming that the sets A and B
have many fewer than u elements. Similar routines are needed to perform the other
operations, with similar time bounds, except that membership testing is O(s).

Section B.l Representation of Sets 761

(b)

(a)

(c)

FIG. B.3 (a) A balanced binary tree of identifiers; (b) the result of adding day, making the tree
unbalanced; and (c) the result of rebalancing the tree.

Balanced binary trees are an important representation of sets that have an easily
computed total order among their elements (or that need to be kept ordered), such
as the identifiers in a local symbol table. In such a tree, the value at each node is
greater than all the values in its left subtree and less than all the values in its right
subtree, and the lengths of the minimum and maximum paths from the root to a leaf
differ by at most one. An example of a balanced binary tree representing the set of
identifiers {bone, dog, ear, eye, limb, mouth, nose} is given in Figure B.3(a). In (b),
we have added the value day to the set, resulting in the tree’s becoming unbalanced.
Part (c) shows the result of rebalancing the tree. Note that membership in a set S
represented by a balanced binary tree can be tested in time O (logs). Computing
union, intersection, difference, equality testing, and subset require 0 (s logs).

Hashing is another important representation for sets. As generally formulated,
it involves computing a function hash{) from elements of the set S c U to a range

762 Representation of Sets, Sequences, Trees, DAGs, and Functions

c = 4

d [i] i s[i]
| 8 |

7 T ~

6

5 ~2~

~ T 4 T ~

T ~ 3

~ 2 1
~ 2~ 1

FIG. B.4 Sparse representation of the set {2, 5, 7, 4} with u = 8.

0 , u — 1 for some appropriate w. One then finds in entry hash(a) of an array
Hash[0* 1] a pointer to a linked list of entries (usually called “ buckets”), each
corresponding to an element a of S that hashes to hash {a). The efficiency of the set
operations depends strongly on the choice of the hash function. Assuming that the
elements are distributed so that no more than 2u/n elements hash to each entry,
testing membership requires 0{u /ri) time; and union, intersection, equality, and
subset require O(u) time if the items in each hash chain are kept ordered.

A new representation of sparse sets that requires constant time for the basic
operations was developed by Briggs and Torczon [BriT93]. It represents a sparse set
S c U = { 1 , . . . , u) by two w-element arrays s[] and d[] and a scalar c. The value of
c is the cardinality of S. The array d[] holds in positions 1, . . . , c the c elements of
S in any order and the elements of s[] are set so that

1 < s[i] < c and d[s[i]] = i if and only if / e S

1. e., the /th element of s[] gives the position of i in the array d[]. The values in the
other entries of s[] and d[] do not matter. For example, Figure B.4 shows how the
set {2, 5, 7 , 4} would be represented with u = 8. The fundamental operations are
adding and removing an element, testing membership, and determining the size of
the set. We perform the operations as follows:

1. adding an element v: Check whether 1 < s[i/] < c and d[s[i/]] = v. If not, set c to c + 1,
d[c] to i/, and s[t/] to c.

2. removing an element v: Check whether 1 < s[i/] < c and d[s[v]] = v. If so, set d[s[v]]
to d[c], c to c — 1, and s[i/] := 0.

3. testing membership of v: Check whether 1 < s[i/] < c and d[s[i/]] = v. If so, answer
“ yes,” otherwise answer “ no.”

4. determining size: Return c.

Two mixed representations can be useful in representing sparse sets for particu
lar kinds of problems. Linked-segment lists combine the dynamic allocation of linked

Section B.3 Representation of Trees and DAGs 763

Head

FIG. B.5 Representation of the set {5, 2, 11, 23, 94, 17} by a two-way linked-segment list.

lists with the fast traversal of arrays. For example, Figure B.5 shows a linked-segment
representation of the set {5, 2, 11, 23, 94, 17}. Bit-vector linked lists are similar, ex
cept that the values stored in the list elements are bit vectors. They are useful for
bit-vector problems in which most of the bits are constant throughout the analysis.

B.2 Representation o f Sequences
Sequences are almost as important as sets and, in fact, many of the representations
carry over from sets to sequences, as long as we keep the members of the sequences
in their predetermined order.

Some of the important operations for sequences are those listed near the begin
ning of the appendix, namely, adding a value, removing a value, testing membership,
merging sequences, and determining the length of a sequence. Concatenation is also
important.

Linked lists and linked-segment lists are common representations of sequences
that allow the operations to be performed in time O(s), where s is the length of the
sequence (note that this also includes concatenation, since all we need to do is splice
the end of the first sequence to the beginning of the second).

Bit vectors, on the other hand, are not generally useful for representing se
quences, since they impose an order on the elements that usually is not the desired
one.

Balanced binary trees are quite useful because they allow any chosen order to
be imposed on their entries (one merely adjoins to each element its position in that
ordering and uses it in rebalancing the trees), and because the operations on them
are fast.

B.3 Representation o f Trees and DAGs
Trees are important in several areas in compiling, such as parsing, code generation,
and expression optimization. In most cases, the trees are binary—particularly for
code generation and optimization—so we concentrate on that variety.

Two representations of trees are frequently used, linked and linearized. The
linked form usually involves nodes with at least four fields: parent, left child, right

764 Representation of Sets, Sequences, Trees, DAGs, and Functions

(a) (b)
FIG. B.6 (a) Linked representation of a binary tree, namely, an expression tree that represents

(2 + x) — 3; (b) the meanings of its fields.

child, and value, as shown in Figure B.6. Additional fields may represent other values
in each node.

Linearized notations for trees depend on the fact that a binary tree can always be
represented by its root, followed by the representation of its left subtree, followed by
the representation of its right subtree, i.e., in Polish-prefix notation. The linked rep
resentation in Figure B.6 becomes - + 2 x 3 in this form. This type of representation
is used as intermediate code in some compilers and is the basis for Graham-Glanville-
style code generation (see Section 6.2).

DAGs, which are useful in optimizing and generating code for basic blocks and
in scheduling them (see Section 17.1.2), are almost always represented by linked
structures.

B.4 Representation of Functions
Functions are used to represent mappings of various sorts in compilers, such as map
ping basic blocks and flowgraph edges to their execution frequencies, representing
aliases, and so on.

The most efficient representation of a function requires that it have a domain
that is composed of simple types and a result of a simple type, and that the function
is easily computed from the domain elements, such as f (x , y, z) = x + 2 * y - z .
Such functions are, of course, typically represented by code.

The next most efficient representation of a function is to use an array. For this
approach to be usable, the components of the domain must be ranges of integers or
easily mapped to ranges of integers and the values of the function must be of uniform
size or reached by pointers stored in the array elements.

Flashing provides an attractive alternative for functions that do not easily map
onto arrays. In this approach, one hashes the domain elements to determine a list of
buckets and then searches the bucket list to find an entry that matches the arguments
and that holds the corresponding function value.

Section B.5 Further Reading 765

^B3a in (B4a)

FB4a f B3 in (B4)

n

id f B 6

FIG. B.7 DAG representation of structural data-flow equations.

The operation most frequently performed on functions is computing a value
when given a sequence of arguments, which is trivial to easy for each of the three
representations discussed above.

Less frequently, one may need to compose two functions or to modify one, either
by changing its domain or by changing a value or both. Composition is easiest for
the code representation, of course, and only somewhat harder for the other two.
Modifying a function is generally not possible for the code representation, but can
be accommodated by the other two.

Another kind of function representation is one designed to be constructed by
a program and then used repeatedly to compute values, such as in control-tree-
based data-flow analysis (see Section 8.6). In this case, we need to construct a data
structure that can then be interpreted, such as the graphs discussed in Section 8.7.3.
Figure B.7 is an example of such a graph. The roots are the names of functions to
be computed and the subgraph below each says how to compute it (“ o” represents
function composition, “ ()” represents function application, “ n ” represents the
lattice operation meet, and id represents the identity function). Such graphs can
easily be constructed and then can be interpreted as needed to compute data-flow
information.

B.5 Further Reading
For the details of how to keep binary trees balanced and descriptions of other data
structures that are valuable in compiler construction, see any good data structures
text, such as Knuth [Knut73].

Briggs and Torczon’s new representation for sparse sets is described in [BriT93].

APPENDIX C

Software Resources

T his appendix describes software that is freely available on the Internet or
through other means of distribution for use in student compiler-construction
projects. Most of the software packages carry licenses that restrict their use
to educational projects; some may be incorporated into commercial products with

explicit restrictions. This entire appendix may be accessed online at the publisher’s
Web site, with links to all Internet, WWW, and ftp addresses in this appendix. The
URL for this book is h ttp :/ /w w w .m kp .com /book s_cata log / l-55860-320-4 .asp .

Finding and Accessing Software on the Internet
The resources listed here are only a few of the many software packages available that
may be useful in compiler-related projects. Information about others may be found
on the World Wide Web (WWW) by means of one or another search engine, such
as Yahoo, Alta Vista, Lycos, Infoseek, etc. Numerous references such as [Krol92]
and [Keho93] provide information about accessing and using such search engines.

Machine Simulators
Spim
James Larus of the University of Wisconsin has written a mips R2000 and R3000
simulator called spim that is available for use in student projects and that is described
in detail in Appendix A of [HenP94].

spim can read and execute files that contain assembly-language statements and
m ip s a .o u t files. It is a self-contained system that includes a debugger and an

http://www.mkp.com/books_catalog/l-55860-320-4.asp

Software Resources

operating-system interface and runs on at least DEC, Sun, IBM, and HP work
stations.

spim implements almost the entire mips extended assembler instruction set (ex
cluding some of the complex floating-point comparisons and the details of page-table
manipulation). It comes with complete source code and documentation of all in
structions. It has both a simple, terminal-style interface and an X-Windows-based
interface.

As we go to press, a DOS version and a new Windows version of spim are being
developed. The Windows version will run under Windows 3.1, Windows 95, and
Windows NT. In the fall of 1997, look for information about these new versions on
the publisher’s Web site at h t tp : / / www.mkp. com/cod2e. htm.

To retrieve a compressed tar file containing the spim system and documenta
tion, access the URL http ://w w w .cs.w isc.edu /-larus/sp im .h tm l and follow the
instructions found there. To be informed of future updates to the system, send your
electronic mail address to larus@ cs.w isc .edu .

C.2.2 Spa

Spa is a set of tools that includes a sparc simulator and that was written by Gordon
Irlam of the University of Adelaide in Australia. To find out more about it, access
the file gordoni/spa.htm l at the URL http://www.base.com.

C.3 Compilers
C.3.1 GNU

The GNU compilers were written by contributors to the Free Software Foundation
and may be freely distributed and modified. They may be included in commercial
products if certain conditions are met. Contact the foundation at 675 Massachusetts
Avenue, Cambridge, MA 02139 for information.

To obtain the GNU compiler source, establish an anonymous ftp connection to
p rep . a i . mi t . edu, f t p . uu. net, or any of several other machines around the world,
and retrieve the compressed tar file pub/gnu/gcc-^rs/ow .tar.gz where version is
the highest version number available. The file GETTING.GNU.SOFTWARE in the same
directory may be helpful to the beginner.

C.3.2 LCC

lc c is an easily retargetable ansi C compiler written by Christopher Fraser and
David Hanson that is available by anonymous ftp from ftp .p rin ceton .ed u in the
directory pub/lcc. It is suggested that you begin by retrieving the file README from
that directory. The front end was adapted for use in the suif system (see below), lcc
can also be obtained from the URL h t tp : //www. c s . p rin ceton . edu/sof tw are/lcc
on the World Wide Web.

The compiler contains no optimizer, but its intermediate code is suitable for most
of the optimizations discussed in this book.

768

http://www.mkp
http://www.cs.wisc.edu/-larus/spim.html
mailto:larus@cs.wisc.edu
http://www.base.com
ftp://ftp.princeton.edu

Section C.4 Code-Generator Generators: BURG and IBURG 769

C.3.3

1.

2 .

3.

4.

5.

6.

7.

8.

9.

10.

C.4

The compiler is described briefly in [FraH91b] and in detail in [FraH95]. If you
wish to be added to the lc c mailing list, send e-mail with the one-line message
su bscribe lc c to majordomo@cs.princeton.edu. For more information, access
the World Wide Web site h t tp : //www. c s . p rin ceton . edu/so f tw are/lcc .

SUIF
s u if is an experimental compiling system that was developed by Monica Lam and
colleagues at Stanford University.1 It consists of the intermediate format, the kernel
components of a compiler, and a functional parallelizing compiler that translates C
or Fortran 77 to m ip s code. The release includes, among other things:

C and Fortran front ends,

an array data-dependence analysis library,

a loop-transform ation library (based on unim odular transform ations and tiling),

a m atrix and linear-inequality m anipulation library,

a parallel code generator and run-time library,

a scalar optimizer,

a m ip s back end,

a C back end (so a native C com piler can be used as a back end for non-MiPS
system s),

a linear-inequality calculator (for prototyping algorithms), and

a simplified interface that can be used for compiler courses.

s u if is available on the World Wide Web from URL

h t tp :/ / su if .s ta n fo r d .e d u

s u if is released without warranty and with no promise of support. It is available free
for noncommercial use. Redistribution is prohibited.

s u if is not meant to be a production-quality compiler. It does not run as fast, nor
generate code as efficiently, as a production compiler such as gcc or your machine’s
native compiler. It does, however, compile most major benchmarks and can be used
as a base for student projects or compiler research.

Code-Generator Generators: BURG and IBURG
b u r g , a code-generator generator based on b u r s technology (see [Pele88] and
[PelG88]), was written by Christopher Fraser, Robert Henry, and Todd Proebst-
ing and is available by anonymous ftp from k aese .c s .w isc .e d u . It is provided as
a compressed shar archive located in file pub/burg. sh a r . Z. [FraH91a] provides an
overview of the system and how to use it.

1. The name suif stands for Stanford University Intermediate Form.

mailto:majordomo@cs.princeton.edu
http://suif.stanford.edu

770 Software Resources

iburg, another code-generator generator based on burs technology, but that
does dynamic programming at compile time, was written by Fraser, Hanson, and
Proebsting [FraH92] and is available by anonymous ftp from

f t p . c s .p rin ceton . edu

It is provided as a compressed t a r archive located in file p u b /ib u rg .tar.Z or
pub/iburg. t a r .z ip . [FraH92] provides an overview of the system and how to
use it.

C.5 Profiling Tools
C.5.1 QPT

QPT is an exact and efficient program profiler and tracing system that was written
by Thomas Ball and James Larus of the University of Wisconsin. It rewrites a pro
gram’s executable (a.out) file by inserting code to record the execution frequency
or sequence of every basic block or control-flow edge. From this information, an
other program, called QPT_STATS, calculates the execution costs of procedures
in the program. Unlike the unix tools prof and gprof, QPT records exact exe
cution frequencies rather than statistical samples. When tracing a program, QPT
produces a trace regeneration program that reads the highly compressed trace file
and generates the full program trace. To obtain QPT and its documentation, access
the URL h ttp ://w w w .cs.w isc .edu /-laru s/q p t.h tm l and follow the instructions
found there.

When used for profiling, QPT operates in either of two modes. In slow mode, it
places a counter in each basic block in a program. In quick mode, it places counters
on an infrequently executed subset of the edges in the program’s control-flow graph.
This placement can reduce the cost of profiling by a factor of three or four, but
increases somewhat the time required to produce a profile or trace.

QPT currently runs on SPARC-based systems and is written to be portable—all
of the machine-specific features are collected in a few files. Porting the program to a
new machine requires about two person-months’ worth of effort. QPT is distributed
with the full source and a small amount of documentation.

QPT is part of a larger project called WARTS (Wisconsin Architectural Research
Tool Set), which is accessible at URL

h ttp : //www. c s .w ise . e d u /- la ru s /w a r ts .html

C.5.2 SpixTools and Shade
SpixTools is a collection of programs that were written by Robert Cmelik of Sun
Microsystems to allow instruction-level profiling of sparc application programs.
[Cmel93] provides both a tutorial introduction to and a reference manual for Spix
Tools.

Spix creates an instrumented version of the user’s program. As the instrumented
program runs, it keeps track of how often each basic block is executed and writes out

ftp://ftp.cs.princeton.edu
http://www.cs.wisc.edu/-larus/qpt.html
http://www.cs.wise.edu/-larus/warts.html

Section C.5 Profiling Tools 771

the block execution counts on termination. Several tools are provided for displaying
and summarizing these counts. S p ix s ta t s prints tables that show opcode usage,
branch behavior, register usage, function usage, etc. Sdas disassembles the applica
tion program, annotating the disassembled code with instruction execution counts.
S p r in t prints the source code of the application, annotating it with statement or
instruction counts.

Applications that use SpixTools must be statically linked and must not use self
modifying code. A few other limitations apply.

Shade is an instruction-set simulator and custom trace generator that was writ
ten by David Keppel and Robert Cmelik. It executes and traces application programs
under the control of a user-supplied trace analyzer. To reduce communication over
head, Shade and the analyzer are run in the same address space. To further improve
performance, code that simulates and traces the application is dynamically generated
and cached for reuse. Current implementations run on sparc systems and, to vary
ing degrees, simulate the sparc Version 8 and Version 9 and mips i architectures.
[CmeK93] describes the capabilities, design, implementation, and performance of
Shade and discusses instruction-set simulation in general.

Shade provides fine-grained control over tracing, so one pays data-collection
overhead only for the data actually needed. Shade is also extensible, so analyzers can
examine arbitrary state and thus collect special information that Shade itself does
not know how to collect.

SpixTools and Shade are both available on the Web at URL

h t t p : //www. su n . co m /m icroe lectro n ics/sh ad e /

http://www.sun.com/microelectronics/shade/

Illustrations

1.1 High-level structure of a simple compiler. 2

1.2 A code fragment (assuming v2 is positive) in (a) hir, (b) mir, and (c) lir with symbolic
registers. 5

1.3 SSA form of the example in Figure 1.2. Note the splitting of s2 into three variables s2 i,
s 22, and s 23 , and the 0-function at the entry to block B2. 5

1.4 A C code fragment in (a) with naive sparc code generated for it in (b) and optimized
code in (c). 7

1.5 Two high-level structures for an optimizing compiler: (a) the low-level model, with all
optimization done on a low-level intermediate code, and (b) the mixed model, with
optimization divided into two phases, one operating on each of a medium-level and a
low-level intermediate code. 8

1.6 Adding data-cache optimization to an optimizing compiler. The continuation is to
either the translator in the low-level model in Figure 1.5(a) or to the intermediate-code
generator in the mixed model in Figure 1.5(b). 10

1.7 Order of optimizations. 12

1.8 Examples of (a) the effect of doing scalar replacement of aggregates after constant
propagation, and (b) before constant propagation. 14

1.9 Reading flow among the chapters in this book. 15

2.1 A sample ican global declaration and procedure (the line numbers at left are not part of
the code). 21

2.2 A second example of ican code (the line numbers at left are not part of the code). 22

2.3 An example ican procedure declaration. 24

2.4 (a) An ican for loop that iterates over a set, and (b) equivalent code using a while
loop. 32

3.1 (a) A series of Pascal type declarations, and (b) its representation by ican tuples. 47

3.2 Hashed local symbol table with a chain of buckets for each hash key. 49

773

Illustrations

3.3 Nesting structure of an example Pascal program. 50

3.4 Tree of local symbol tables for the Pascal code in Figure 3.3. 50

3.5 Symbol-table stacks occurring during compiling the Pascal code in Figure 3.3. 51

3.6 Hashed global symbol table with a block stack. 51

3.7 An example of code with an import. 53

3.8 (a) Hashed global symbol table with innermost level numbers, and (b) after entering
g (), a scope with local variable d and imported symbols a and b. 53

3.9 Routines to do storage binding of local variables. 56

3.10 (a) A mir fragment and two translations to lir, one with names bound to storage
locations (b) and the other with simple variables bound to symbolic registers (c). 57

3.11 C local variable declarations. 58

3.12 (a) Unsorted aligned and (b) sorted frame layouts for the declarations shown in
Figure 3.11 (offsets in bytes). 58

3.13 Global types and data structures used to generate loads and stores. 60

3.14 Routines to load and store, respectively, a variable’s value to or from a register, register
pair, or quadruple. 61

3.15 Auxiliary routines used in generating loads and stores. 62

4.1 (a) High-, (b) medium-, and (c) low-level representations of a C array reference. 69

4.2 A tiny C routine whose abstract syntax tree is given in Figure 4.3. 70

4.3 Abstract syntax tree for the C routine in Figure 4.2. 70

4.4 A mir fragment in (a) with alternative pa-risc code sequences generated for it in (b)
and (c). 72

4.5 Example pair of C procedures. 77

4.6 mir code for the pair of C procedures in Figure 4.5. 77

4.7 (a) Form of the hir fo r loop, and (b) its semantics in mir. 79

4.8 Types and functions used to determine properties of mir instructions. 85

4.9 The body of the mir program unit insert_node in Figure 4.6 represented by ican
tuples. 86

4.10 ican types and functions to determine properties of hir instructions. 88

4.11 ican data types and functions to determine properties of lir instructions. 90

4.12 An example of lir code to be represented by ican tuples. 91

4.13 The sequence of ican tuples corresponding to the lir code in Figure 4.12. 91

4.14 The ican routines in se r t_ b e fo re (), in s e r t _ a f t e r (), and append_block() that
insert an instruction into a basic block before or after a given position or append an
instruction to a block. 93

774

Illustrations 775

4.15 The ican routine d e le te _ in s t () that deletes an instruction at a given position from a
basic block. 94

4.16 The ican routine in se rt_ b lo ck () that splits an edge by inserting a block between the
two given blocks. 94

4.17 The ican routine d e lete_b lock () that removes an empty basic block. 95

4.18 (a) A mir code fragment for comparison to other intermediate-code forms, and (b) its
translation to triples. 97

4.19 Alternative forms of trees: (a) with an explicit assignment operator, and (b) with the
result variable labeling the root node of its computation tree. 97

4.20 Translation of the (non-control-flow) mir code in Figure 4.18(a) to a sequence of simple
trees. 98

4.21 Minimized tree form of the (non-control-flow) mir code in Figure 4.18(a). 98

4.22 Result of trying to translate the mir instructions a <- a + 1; b a + a to a single
tree. 99

4.23 Example of translation from minimized tree form to mir code. 99

4.24 DAG for the non-control-flow code of mir code in Figure 4.18(a). 100

4.25 Example basic block of mir code to be converted to a DAG. 101

4.26 Graphic form of the DAG corresponding to the mir code in Figure 4.25. 101

4.27 Polish-prefix form of the trees in Figure 4.21 divided into instructions. 101

5.1 Two C structs, one unpacked in (a) and the other packed in (b). 108

5.2 Representation of the structures in Figure 5.1. 108

5.3 An example of sets in Pascal. 109

5.4 A stack frame with the current and old stack pointers. 112

5.5 A stack frame with frame and stack pointers. 113

5.6 An example of nested procedures for static link determination. 115

5.7 (a) Static nesting structure of the seven procedures and calls among them in Figure 5.6,
and (b) their static links during execution (after entering g () from 1()). 116

5.8 Call by name parameter-passing mechanism in Algol 60. 119

5.9 Structure of the stack frame for the procedure-calling example with parameters passed
in registers. 122

5.10 Structure of the stack frame for the procedure-calling example with parameters passed
on the run-time stack for the Intel 386 architecture family. 124

5.11 sparc register windows for three successive procedures. 125

5.12 Structure of the stack frame for the procedure-calling example with register windows
(s/u means structure or union). 126

Illustrations

5.13 A procedure descriptor containing a procedure’s address and its static link. 126

5.14 An example of a shared library’s table of contents. 128

5.15 sparc PLT (a) before loading, and (b) after two routines have been dynamically
linked. 131

5.16 A lisp list cell and a sparc tagged pointer to it. 132

6.1 (a) lir instructions, (b) Graham-Glanville machine-description rules, and (c)
corresponding sparc instruction templates. 140

6.2 A lir code sequence for Graham-Glanville code generation. 140

6.3 Trees corresponding to the lir code sequence in Figure 6.2. 141

6.4 (a) Parsing process and (b) emitted instructions for the trees in Figure 6.3. 141

6.5 The code-generation algorithm. 143

6.6 Constructing the SLR (l) parsing tables. 144

6.7 The functions Uniform(), C lo su re(), and Advance() used in constructing the
SLR(l) parsing tables. 146

6.8 (a) lir instructions, (b) Graham-Glanville machine-description rules, and (c)
corresponding sparc instruction templates. 148

6.9 Relations, sets, and functions for our example machine-description grammar in
Figure 6.8. 149

6.10 Action/Next table for the machine-description grammar given in Figure 6.8. 150

6.11 The code-generation automaton produced for the machine-description grammar in
Figure 6.8. 151

6.12 Parsing automaton for the example grammar that has a chain loop. 152

6.13 The procedure Elim_Chain_Loops() to eliminate chain loops of nonterminals and the
procedure C lo se () used by this procedure. 153

6.14 The procedures Reach() andPrune() u sed b y C lo se (). 154

6.15 Fragment of a machine-description grammar for Hewlett-Packard’s pa-risc addressing
modes. 155

6.16 Derivation sequence for the tree form of T + r * c r. 155

6.17 Routines to repair syntactic blocking by generalizing one or more nonterminals. 156

6.18 A simple tree-rewriting system. 161

6.19 Specification in twig corresponding to the tree-rewriting system in Figure 6.18. 162

6.20 Tree-matching path strings for the rules in Figure 6.18. 163

6.21 Tree-matching automaton for the rules in Figure 6.18. 164

7.1 A C routine that computes Fibonacci numbers. 170

776

Illustrations 777

7.2 mir intermediate code for the C routine in Figure 7.1. 170

7.3 Flowchart corresponding to Figure 7.2. 171

7.4 Flowgraph corresponding to Figure 7.3. 172

7.5 Dominance tree for the flowgraph in Figure 7.4. 172

7.6 A pair of routines to construct the set of blocks in the extended basic block with a given
root. 176

7.7 A routine to construct all the extended basic blocks in a given flowgraph. 176

7.8 Flowgraph with extended basic blocks indicated by the dashed boxes. 177

7.9 (a) A rooted directed graph, and (b) a depth-first presentation of it. 178

7.10 A generic depth-first search routine. 179

7.11 (a) A rooted directed graph and (b) and (c) two distinct depth-first presentations of
it. 179

7.12 Computing a depth-first spanning tree, preorder traversal, and postorder traversal. 180

7.13 Computing a breadth-first order. 181

7.14 A simple approach to computing all the dominators of each node in a flowgraph. 182

7.15 Computing immediate dominators, given sets of dominators. 184

7.16 A more complicated but faster approach to computing dominators. 186

7.17 Depth-first search and path-compression algorithms used in computing
dominators. 187

7.18 Label evaluation and linking algorithms used in computing dominators. 188

7.19 For v and w to satisfy Dfn(v) < Dfn(w), w may be in any of the positions of v, a , b, or c,
where b is some descendant of u visited after all the tree descendants of v. A dotted arrow
represents a possibly empty path, and a dashed arrow represents a non-empty path. 189

7.20 (a) A rooted directed graph and (b) a depth-first presentation of it. 192

7.21 Computing the natural loop of back edge m->n. 192

7.22 Example loop (a) without and (b) with preheader. 193

7.23 Two natural loops with the same header Bl. 193

7.24 Alternative C code sequences that would both produce the flowgraph in
Figure 7.23. 194

7.25 A flowgraph with two strongly connected components, one maximal and one not
maximal. 194

7.26 Computing strongly connected components. 195

7.27 Simple improper regions. 197

Illustrations

7.28 Result of applying node splitting to B3 in the improper region shown in
Figure 7.27(a). 197

7.29 T1-T2 transformations. 198

7.30 Example of T1-T2 transformations. 199

7.31 T1-T2 control tree for the flowgraph in Figure 7.30. 199

7.32 An example of the difference between (a) maximal intervals and (b) minimal
intervals. 200

7.33 Example of interval analysis. 201

7.34 Control tree for the flowgraph in Figure 7.33. 201

7.35 Some types of acyclic regions used in structural analysis. 203

7.36 Some types of cyclic regions used in structural analysis. 203

7.37 An acyclic region that does not fit any of the simple categories and so is identified as a
proper interval. 204

7.38 Global data structures used in structural analysis. 205

7.39 The structural analysis algorithm. 206

7.40 Computing a postorder traversal of the nodes in a flowgraph. 207

7.41 Routine to identify the type of an acyclic structure. 208

7.42 Routine to identify the type of a cyclic structure. 208

7.43 Region-reduction routine for structural analysis. 209

7.44 Routine to do node and edge replacement and control-tree building for structural
analysis. 210

7.45 Improper-interval minimization routine for structural analysis. 210

7.46 Structural analysis of a flowgraph. 211

7.47 Depth-first spanning tree for the flowgraph in Figure 7.46(a). 212

7.48 Control tree for the flowgraph analyzed in Figure 7.46. 213

7.49 Two examples of improper intervals. 213

7.50 An example graph to which to apply the algorithm Strong_Components() in
Figure 7.26. 216

8.1 Example of undecidability of reaching definitions and dependence on input values. 219

8.2 BV3, the lattice of three-element bit vectors. 224

8.3 Integer constant-propagation lattice ICP. 225

8.4 Flowgraph for which associating data-flow information with edges produces better
results than associating it with node entries. 228

778

Illustrations 779

8.5 Example that differentiates reaching definitions from upwards exposed uses. 230

8.6 Worklist algorithm for iterative data-flow analysis (statements that manage the worklist
are marked with asterisks). 232

8.7 Flow functions for structural analysis of an if- th en construct. 237

8.8 Flow functions for structural analysis of an if- th e n -e lse construct. 238

8.9 Flow functions for structural analysis of a while loop. 239

8.10 An improper region. 241

8.11 Structural control-flow analysis of our reaching definitions example. 242

8.12 Flow functions for backward structural analysis of an if- th e n -e lse construct. 244

8.13 An acyclic region A for backward structural analysis. 246

8.14 Code representation of some of the structural data-flow equations for an if- th e n -
e lse . 248

8.15 Graphic representation of some of the structural data-flow equations for the region Bla
in Figure 8.10. 248

8.16 Interval control-flow analysis of our reaching definitions example. 249

8.17 (a) Example for construction of webs and (b) the webs. 252

8.18 Standard translation of the example in Figure 8.17 into SSA form. 253

8.19 Code to compute the dominance frontier of a flowgraph. 255

8.20 Code to compute the iterated dominance frontier of a flowgraph. 256

8.21 Example flowgraph to be translated to minimal SSA form. 256

8.22 Dominator tree for the flowgraph in Figure 8.21. 257

8.23 Result of translating the flowgraph in Figure 8.21 to minimal SSA form. 257

8.24 Assignments involving array elements and their translation into access/update
form. 259

8.25 Simple example for constant-propagation analysis. 261

8.26 Simple factorial computation. 262

8.27 Full factorial computation. 262

9.1 Example of control and data dependence in mir code. 268

9.2 The dependence graph for the code in Figure 9.1. 268

9.3 (a) A basic block of lir code, and (b) its dependence DAG. 270

9.4 (a) A more complex lir example, and (b) its dependence DAG. 270

9.5 Computing the Latency () function. 272

Illustrations

9.6 Algorithm to construct the dependence DAG for basic-block scheduling. 274

9.7 A canonical loop nest. 275

9.8 An example of a doubly nested loop. 276

9.9 The iteration-space traversal for the code in Figure 9.8. 276

9.10 A doubly nested loop with a nonrectangular iteration-space traversal. 276

9.11 The trapezoidal iteration-space traversal of the loop nest in Figure 9.10. 277

9.12 The dependence relations for the code in Figure 9.8. 277

9.13 An assignment SI with the distance vector (1, 0). 279

9.14 Two example hir loops for dependence testing. 279

9.15 Form of the hir loop nest assumed for dependence testing. 281

9.16 An example of weak separability. 283

9.17 Flowgraph from Figure 7.4 with s t a r t node added. 285

9.18 Postdominance tree for the flowgraph in Figure 9.17. 285

9.19 Basic control-dependence graph for the flowgraph in Figure 9.17. 286

9.20 Control-dependence graph with region nodes for the flowgraph in Figure 9.17. 286

9.21 (a) Example of a C type declaration for a recursive data structure, and (b) axioms that
apply to structures built from it. 287

9.22 Example of a C function that uses structures of the type defined in Figure 9.21. 288

10.1 Simple pointer aliasing in C. 294

10.2 Relationship between the variables at the call to p r in tf () in Figure 10.1. 294

10.3 Example of the importance of alias computation. 294

10.4 Different aliases in different parts of a procedure. 297

10.5 A flowgraph that provides examples of aliasing concepts. 303

10.6 One of Coutant’s C aliasing examples. 309

10.7 Flowgraph for the C code in Figure 10.6. 309

10.8 mir code for the C program fragment in Figure 10.6 annotated with aliasing
information. 311

10.9 A second example for alias analysis in C. 311

10.10 Flowgraph for the C code in Figure 10.9. 311

10.11 A third example for alias analysis in C. 313

10.12 Flowgraph for the C code in Figure 10.11. 313

10.13 An example C procedure for alias analysis. 317

780

Illustrations 781

11.1 Order of optimizations. 326

12.1 An algorithm for performing constant-expression evaluation. 330

12.2 A simple example for scalar replacement of aggregates in C. 332

12.3 Main procedure resulting from procedure integration and scalar replacement of
aggregates for the program in Figure 12.2. 332

12.4 Main procedure after constant propagation and dead-code elimination for the program
in Figure 12.3. 333

12.5 A Pascal fragment that accesses elements of an array. 336

12.6 Tree transformations to do simplification of addressing expressions. 337

12.7 Tree for the address of the Pascal expression a [i , j] and the first stages of simplifying
it. 339

12.8 Further stages of simplifying the address of a [i , j] . 340

12.9 Final stages of simplifying the address of a [i , j] . 341

12.10 Another Pascal fragment that accesses elements of an array. 341

12.11 mir examples that show that value numbering, constant propagation, and common-
subexpression elimination are incomparable. 343

12.12 Value numbering in a basic block. The sequence of instructions in (a) is replaced by the
one in (b). Note the recognition of the expressions in the first and second instructions
as being identical modulo commutativity and the conversion of the b in if in the fourth
instruction to an assignment and a v a l i f . 344

12.13 Code to perform value numbering in a basic block. 345

12.14 Code to remove killed expressions from the hash function’s bucket sequence. 347

12.15 (a) An example basic block, (b) the result of applying value numbering to its first three
instructions, and (c) the result of applying value numbering to the whole block. Note
that the i f in line 3 has been replaced by two instructions, the first to evaluate the
condition and the second to perform the conditional branch. 347

12.16 A short example program fragment for which to construct the value graph. 349

12.17 Value graph for the code in Figure 12.16. 349

12.18 Example flowgraph for global value numbering. 350

12.19 Minimal SSA form for the flowgraph in Figure 12.18. 350

12.20 Value graph for the code in Figure 12.19. 351

12.21 Partitioning algorithm to do global value numbering by computing congruence. 352

12.22 Auxiliary routines used by the partitioning algorithm. 354

12.23 (a) Example of a copy assignment to propagate, namely, b <- a in Bl, and (b) the result
of doing copy propagation on it. 357

Illustrations

12.24 O(n) algorithm for local copy propagation. 357

12.25 An example of the linear-time local copy-propagation algorithm. 359

12.26 Another example for copy propagation. 360

12.27 Flowgraph from Figure 12.26 after copy propagation. 361

12.28 Copy assignments not detected by global copy propagation. 362

12.29 (a) Example of a constant assignment to propagate, namely, b <- 3 in Bl, and (b) the
result of doing constant propagation on it. 363

12.30 The constant-propagation lattice ConstLat. 364

12.31 SSA-based algorithm for sparse conditional constant propagation. 365

12.32 Auxiliary routines for sparse conditional constant propagation. 366

12.33 A simple example for sparse conditional constant propagation. 368

12.34 Another example for sparse conditional constant propagation. 368

12.35 Minimal SSA form of the program in Figure 12.34 with one instruction per basic
block. 369

12.36 The result of doing sparse conditional constant propagation on the routine shown in
Figure 12.35. 370

12.37 Order of optimizations. The ones discussed in this chapter are highlighted in bold
type. 372

13.1 (a) Example of a common subexpression, namely, a + 2, and (b) the result of doing
common-subexpression elimination on it. 379

13.2 A routine to do local common-subexpression elimination. 380

13.3 Example basic block before local common-subexpression elimination. 382

13.4 Our example basic block after eliminating the first local common subexpression (lines
1, 2, and 5). 383

13.5 Our example basic block after eliminating the second local common subexpression
(line 7). 383

13.6 Our example basic block after eliminating the third local common subexpression. 384

13.7 Our example basic block after eliminating the last two local common
subexpressions. 385

13.8 Example flowgraph for global common-subexpression elimination. 386

13.9 A routine to implement our first approach to global common-subexpression
elimination. 389

13.10 Our example flowgraph from Figure 13.8 after global common-subexpression
elimination. 390

782

Illustrations 783

13.11 Routines to implement our second approach to global common-subexpression
elimination. 392

13.12 Combining common-subexpression elimination with copy propagation: (a) the original
flowgraph, and (b) the result of local common-subexpression elimination. 394

13.13 Combining common-subexpression elimination with copy propagation (continued from
Figure 13.12): (a) after global common-subexpression elimination, and (b) after local
copy propagation. 395

13.14 Combining common-subexpression elimination with copy propagation (continued from
Figure 13.13): after global copy propagation. Note that dead-code elimination can now
eliminate the assignments t2 t3 and t l t3 in block B1 and that code hoisting
(Section 13.5) can move the two evaluations of t3 + t3 to block Bl. 395

13.15 In (a), two registers are needed along the edge from block Bl to B2, while in (b), three
registers are needed. 396

13.16 (a) Example of loop-invariant computations in Fortran, and (b) the result of
transforming it. 398

13.17 Code to mark loop-invariant instructions in a loop body. 398

13.18 An example for loop-invariant code motion. 400

13.19 Example of a computation in (a) for which reassociation results in recognition of a
loop-invariant in (b). 402

13.20 Illustrations of two flaws in our basic approach to code motion. In both cases, if n <- 2
is moved to the preheader, it is always executed, although originally it might have been
executed only in some iterations or in none. 402

13.21 Code to move loop-invariant instructions out of a loop body. 404

13.22 The result of applying loop-invariant code motion to the flowgraph in
Figure 13.18. 405

13.23 Loop-invariant code motion on nested Fortran loops (invariants are underlined). 406

13.24 An example of a reduction. 407

13.25 In (a), the edge from Bl to B4 is a critical edge. In (b), it has been split by the introduction
of Bla. 408

13.26 An example of partially redundant expressions. 409

13.27 The example from Figure 13.26 with the edges from B2 to B5 and B3 to B5 split. The
new blocks B2a and B3a have been added to the flowgraph. 409

13.28 The result of applying modern partial-redundancy elimination to the example in
Figure 13.27. 414

13.29 An example of the weakness of strength reduction when it is derived from partial-
redundancy elimination. The hir code in (a) can be strength-reduced to the code in

Illustrations

(b) by the algorithm in Section 14.1.2, but not by the method derived from partial-
redundancy elimination, because it does not recognize i as a loop invariant in the
inner loop. 415

13.30 Only common-subexpression elimination applies to the loop in A, producing the one
in B. 415

13.31 Combining common-subexpression elimination and loop-invariant code motion with
reassociation results in more possible transformation sequences and an improved result,
compared to Figure 13.30. 416

13.32 Combining partial-redundancy elimination with reassociation produces the same result
as in Figure 13.31. 416

13.33 An example for code hoisting. 417

13.34 An ica n routine to perform code hoisting. 419

13.35 The result of performing code hoisting on the example program in Figure 13.33. 420

13.36 Place of redundancy-related optimizations (highlighted in bold type) in an aggressive
optimizing compiler. 421

14.1 Form of a fo r loop in C. 425

14.2 An example of induction variables in Fortran 77. The value assigned to a (i) in (a)
decreases by 2 in each iteration of the loop. It can be replaced by the variable t l , as
shown in (b), replacing a multiplication by an addition in the process. 426

14.3 In (a), the m i r form of the loop in Figure 14.2(b) and, in (b), the same code with
induction variable i eliminated, the loop-invariant assignments t3 <- addr a and
t4 <- t3 - 4 removed from the loop, strength reduction performed on t5, and induction
variable i removed. 427

14.4 The result of biasing the value of t4 in the code in Figure 14.3(b) so that a test against 0
can be used for termination of the loop. Loop inversion (see Section 18.5) has also been
performed. 427

14.5 Example of splitting a basic induction variable with two modifications (a) into two
induction variables (b). 428

14.6 Template for splitting a basic induction variable with two modifications (a) into two
induction variables (b). 429

14.7 Code to identify induction variables. 430

14.8 Auxiliary routines used in identifying induction variables. 432

14.9 A second example for induction-variable identification. 434

14.10 Code to strength-reduce induction variables. 437

14.11 In (a), the m i r form of the loop in Figure 14.3(a) and, in (b), the same code with strength
reduction performed on the induction variable t5. 439

784

Illustrations 785

14.12 The result of removing the loop invariants t3 and t4 and strength-reducing t6 in the
code in Figure 14.11(b). 439

14.13 The result of removing loop invariants from the inner loop of our second example,
Figure 14.9, and deleting the outer loop, except B3, which is the preheader of the
inner loop. 440

14.14 The result of strength-reducing t l2 on the code in Figure 14.13. 441

14.15 The result of strength-reducing t l3 on the partial flowgraph in Figure 14.14. 443

14.16 The result of strength-reducing the remaining induction variables in the partial
flowgraph in Figure 14.15. 444

14.17 The result of doing constant folding and elimination of trivial assignments in block B3
for the partial flowgraph in Figure 14.16. 445

14.18 Example flowgraph for computing live variables. 446

14.19 Examples of useless induction variables in Fortran 77 code. 447

14.20 Transformed versions of code in Figure 14.12: (a) after removing the induction variable
t5, and (b) after removing t7 also. 448

14.21 Result of induction-variable removal (of i and t6) and linear-function test replacement
on variable i in the code in Figure 14.20(b). 449

14.22 Code to implement removal of induction variables and linear-function test
replacement. 450

14.23 Example of mir bounds-checking code for accessing the array element b [i , j] in
Pascal. 455

14.24 Pascal example in which no bounds-checking code is needed for accessing b [i , j] . 455

14.25 Bounds-checking transformation: (a) the original loop, and (b) the transformed
code. 457

14.26 Place of loop optimizations (in bold type) in an aggressive optimizing compiler. 458

14.27 Example of a lir loop for which address scaling, address modification, and operation-
test-and-branch instructions might all be useful. 460

15.1 Example of a tail call and tail recursion in C. 462

15.2 Effect of tail-recursion elimination on insert_node() shown in the source code. 462

15.3 (a) lir code corresponding to Figure 15.1, and (b) the result of performing tail-call
optimization on both calls in in se r t .node (). 463

15.4 ican code to perform tail-recursion elimination. 464

15.5 The Unpack routine saxpy() and its calling context in sgef a (). 466

15.6 A fragment of the Unpack routine sgef a () after integrating saxpy () into it. 467

15.7 Capture of a caller’s variable in C by a call-by-value parameter that results from simply
substituting the callee’s text for a call. 469

786 Illustrations

15.8 Incorrect placement of save and restore code for the register allocated for variable
c. 473

15.9 A l i r f lo w g r a p h e x a m p le f o r s h r in k w r a p p in g . 475

15.10 The example in Figure 15.9 after shrink wrapping. 476

15.11 Place of procedure optimizations (in bold type) in an aggressive optimizing
compiler. 477

16.1 (a) A simple example for register allocation by graph coloring; (b) a symbolic register
assignment for it; and (c) an allocation for it with three registers, assuming that y and w
are dead on exit from this code. 486

16.2 Interference graph for code in Figure 16.1(b). 486

16.3 Global type definitions and data structures used in register allocation by graph
coloring. 487

16.4 Top level of graph-coloring register-allocation algorithm. 488

16.5 An example of webs. The most complex web is shaded. 489

16.6 Interferences among the webs in Figure 16.5. 490

16.7 The routine Make_Webs() to determine webs for register allocation by graph
coloring. 490

16.8 Each SSA-form variable is the head of a du-chain. 492

16.9 i c a n code to convert the m i r form of a procedure to l i r code with symbolic registers in
place of variables. 493

16.10 Example flowgraph for which the two definitions of interference produce different
interference graphs. 495

16.11 Adjacency matrix for the interference graph in Figure 16.2, where t and f stand for
tru e and f a l s e , respectively. 496

16.12 i c a n code to build the adjacency-matrix representation of the interference graph for
register allocation by graph coloring. 497

16.13 Initial adjacency lists for the interference graph in Figure 16.2. 498

16.14 i c a n c o d e t o b u i ld th e a d ja c e n c y - l i s t s r e p r e s e n t a t io n o f th e in t e r fe r e n c e g r a p h . 499

16.15 Code to coalesce registers. 500

16.16 i c a n code to compute spill costs for symbolic registers. 502

16.17 Example graphs that are (a) 2-colorable and (b) 3-colorable, but not by the degree < R
rule. 503

16.18 Code to attempt to jR-color the interference graph. 505

16.19 The routine A djust.N eighbors () used in pruning the interference graph. 506

16.20 Routine to assign colors to real and symbolic registers. 507

Illustrations 787

16.21 i c a n routine to modify the instructions in the procedure to have real registers in place
of symbolic ones. 508

16.22 The example in Figure 16.5 after splitting web wl. 509

16.23 Interferences among the webs in Figure 16.22. 509

16.24 i c a n code to generate spill code using the costs computed b y Compute_Spill_Costs ()
in Figure 16.16. 510

16.25 A small example of register allocation by graph coloring. 512

16.26 The example in Figure 16.25 with symbolic registers substituted for the local
variables. 512

16.27 The interference graph (a) and adjacency matrix (b) for the example in Figure 16.26,
where t and f stand for true and fa l s e , respectively. 513

16.28 The example in Figure 16.26 after coalescing registers s4 and s i . 513

16.29 The interference graph (a) and adjacency matrix (b) for the example in Figure 16.28
after coalescing symbolic registers s i and s4, where t and f stand for tru e and f a l s e ,
respectively. 514

16.30 The adjacency lists for the code in Figure 16.28. 514

16.31 The interference graph that results from pushing r l through r4 onto the stack. 515

16.32 The adjacency lists corresponding to the interference graph in Figure 16.31. 516

16.33 The interference graph that results from pushing r5 onto the stack. 516

16.34 The adjacency lists corresponding to the interference graph in Figure 16.33. 517

16.35 The flowgraph in Figure 16.28 with real registers substituted for symbolic registers. 518

16.36 Another example flowgraph for register allocation by graph coloring. 518

16.37 The interference graph (a) and adjacency matrix (b) for the example in
Figure 16.36. 519

16.38 The adjacency lists for the code in Figure 16.36. 520

16.39 (a) The interference graph after removing nodes s i , r2, r3, r4, s4, and s9, and pushing
them onto the stack, (b) then removing node s8 and pushing it onto the stack, and
(c) after removing node s7 and pushing it onto the stack. 520

16.40 The interference graph (a) after popping the top three nodes from the stack and (b) after
popping the fourth node. 521

16.41 The flowgraph in Figure 16.36 with spill code included for s5 and s7. 521

16.42 The interference graph for the code in Figure 16.41. 522

16.43 The flowgraph in Figure 16.41 with real registers substituted for the symbolic
ones. 522

788 Illustrations

16.44 Rematerialization lattice. 523

16.45 Example of code for which Chow and Hennessy’s live ranges are less precise than our
webs. 524

16.46 (a) Priority-based graph-coloring interference graph and (b) graph-coloring interference
graphs for the code in Figure 16.45. 525

16.47 Place of register allocation (in bold type) in an aggressive optimizing compiler. 527

17.1 (a) A basic block of l i r code, and (b) a better schedule for it, assuming that a goto has
a delay slot after it and that there is a one-cycle delay between initiating a load and the
loaded value’s becoming available in the target register. 533

17.2 Flowchart for the process of filling branch delay slots. 536

17.3 (a) A basic block including a call, and (b) its dependence DAG. Asterisks mark nodes
corresponding to instructions that can be moved into the delay slot of the call. 538

17.4 Two equivalent pairs of instructions. Either might provide more latitude in scheduling
than the other in a particular situation. 538

17.5 Computing the Delay () function. 539

17.6 Instruction scheduling algorithm. 540

17.7 An example dependence DAG. 541

17.8 (a) A l i r basic block, (b) Hennessy and Gross’s machine-level DAG, and (c) our
dependence DAG for it. 543

17.9 Two greedy schedules for a superscalar processor, one of which (a) is optimal and the
other of which (b) is not. 544

17.10 (a) A basic block of l i r code with a register assignment that constrains scheduling
unnecessarily, and (b) a better register assignment for it. 545

17.11 Dependence DAGs for the basic blocks in Figure 17.10. 546

17.12 A scheduling of the basic block in Figure 17.10(b) that covers all the load delays. 546

17.13 (a) p o w e r l o o p w ith a o n e - c y c le u n c o v e r e d cm p -b c d e la y , a n d (b) t r a n s f o r m e d c o d e t h a t

c o v e r s it . 547

17.14 (a) A m i r routine that searches a list, and (b) the same routine with the fetching of the
next element boosted to occur before testing whether the current element is the end of
the list. 548

17.15 A s im p le S p a r c l o o p w ith a s s u m e d i s s u e a n d r e s u l t l a t e n c ie s . 549

17.16 Pipeline diagram for the loop body in Figure 17.15. 549

17.17 The result of software pipelining the loop in Figure 17.15, with issue and result
latencies. 550

17.18 Pipeline diagram for the loop body in Figure 17.17. 550

Illustrations 789

17.19 (a) Dependence DAG for a sample loop body, and (b) double version of it used in
window scheduling, with dashed lines showing a possible window. 551

17.20 Algorithm for window scheduling. 552

17.21 Double DAGs for successive versions of the loop in Figures 17.15 and 17.22 during the
window-scheduling process. 554

17.22 Intermediate versions of the loop in Figure 17.15. 554

17.23 Another example loop for software pipelining. 555

17.24 Dependence DAG for the body of the loop in Figure 17.23. 555

17.25 A possible unconstrained schedule of the iterations of the loop in Figure 17.23. The
boxed parts represent the prologue, body, and epilogue of the software-pipelined
loop. 556

17.26 (a) Resulting instruction sequence for the pipelined loop, and (b) the result of doing
register renaming (Section 17.4.5) and fixing the addresses in load instructions so that
they will execute correctly. 557

17.27 Algorithm to find a repeating unit from which to construct a software pipelining. 558

17.28 (a) A Pascal loop, and (b) the result of unrolling it by a factor of two. 559

17.29 (a) A more general Fortran 77 loop, and (b) the result of unrolling it by a factor of w.
The notation body/i/j means body with i substituted for /. 560

17.30 ic a n code to implement loop unrolling for a specific pattern of loop control. 561

17.31 (a) A hir loop with examples of accumulator (acc), induction (i), and search (max and
imax) variables; and (b) the loop after unrolling by a factor of two and expanding the
accumulator, induction, and search variables. 563

17.32 (a) An example of l i r code to which register renaming may be applied, (b) the result
of performing it, and (c) an alternate schedule of the instructions made possible by the
renaming. 564

17.33 i c a n code to rename registers in a basic block. 566

17.34 An example of an extended basic block for register renaming. 567

17.35 (a) A s p a r c loop containing a conditional, and (b) the result of window scheduling
it and moving the two Id instructions marked with asterisks into both arms of the
conditional. 568

17.36 An example for trace scheduling. 570

17.37 (a) Example m i r code for the trace in Figure 17.36 made up of B1 and B3 (along with
code for B2), and (b) the result of a scheduling operation and compensation code. 570

17.38 An example of write-live dependence, namely, v <$w' u, because of variable n. 571

17.39 A simple algorithm for percolation scheduling. 572

17.40 Order of optimizations with scheduling phases in bold type. 574

Illustrations

18.1 Algorithm to eliminate unreachable code. 581

18.2 Our example (a) before and (b) after unreachable-code elimination. 582

18.3 (a) An example for straightening, and (b) the result of applying the transformation. 583

18.4 m i r code versions of the example code in Figure 18.3. 583

18.5 i c a n c o d e t o p e r fo r m s t r a ig h te n in g o f b a s ic - b lo c k p a i r s . 584

18.6 The routine Fuse_Blocks() used by Stra igh ten (). 584

18.7 (a) An example with a condition that is a common subexpression, and (b) the result of
removing the dead arm of the i f . 586

18.8 (a) An example of a loop that can be turned into (b) straight-line code and (c) executed
at compile time. 587

18.9 An example of loop inversion in C. 588

18.10 Nested loops with identical bounds in a Fortran 77 example. 588

18.11 Inverting a C loop that we cannot determine to be entered. 588

18.12 (a) Fortran 77 code with a loop-invariant predicate nested in a loop, and (b) the result
of unswitching it. 589

18.13 Unswitching a conditional without an e lse part. 589

18.14 (a) A l i r code example for tail merging, and (b) the result of transforming it. 591

18.15 Code to compute the maximum of a and b (a) with branches and (b) with conditional
moves. 591

18.16 (a) Example code pattern for which branches may be replaced by conditional moves,
and (b) the result of the replacement. 592

18.17 (a) Another example code pattern for which branches may be replaced by conditional
moves, and (b) the result of the replacement. 592

18.18 Variable i contributes only to defining itself and thus is inessential. 593

18.19 i c a n routine to detect and remove dead code. 594

18.20 An example for dead-code elimination. 595

18.21 (a) The Mark table after identifying dead code and (b) the flowgraph in Figure 18.20
after dead-code elimination. 597

18.22 (a) Example of code for a superscalar processor for which instruction combining can
decrease performance, as shown in (b). 601

18.23 Order of optimizations with control-flow and low-level optimizations in bold type. 603

19.1 A program skeleton. 610

19.2 Call graph for the program skeleton in Figure 19.1. 610

19.3 Constructing the call graph. 611

790

Illustrations 791

19.4 Partial call graphs resulting from separate compilation of parts of Figure 19.1. 611

19.5 Constructing the call graph with procedure-valued variables. 612

19.6 The procedure P rocess_In st () used in constructing the call graph with procedure
valued variables. 613

19.7 The procedure Process_Call() used in constructing the call graph with procedure
valued variables. 614

19.8 An example program skeleton with procedure-valued variables. 617

19.9 Call graph of the program skeleton with procedure-valued variables shown in
Figure 19.8. 618

19.10 An example program used throughout this section. 621

19.11 (a) Static nesting structure and (b) call graph of the program in Figure 19.10. 622

19.12 i c a n algorithm to compute IM O D () for a program P. 623

19.13 Algorithm to construct the binding graph B for a program P. 625

19.14 Binding graph for the program in Figure 19.10. 626

19.15 Algorithm to compute RBM O D () on the binding graph B. 626

19.16 i c a n algorithm to compute IM OD+ (). 628

19.17 Algorithm to compute nesting levels Level () in a call graph and the subgraphs
(consisting of nodes N[] , roots R[] , and edges E[]) that exclude routines that call
others at lower nesting levels. S t r a t i fy () uses Set .L e v e ls to compute the nesting
level of each procedure. 629

19.18 Algorithm for computing GMOD() efficiently from IMOD+ () by using a version of
Tarjan’s algorithm. 630

19.19 An example program for flow-sensitive side-effect computation. 635

19.20 Program summary graph for the program in Figure 19.19. 636

19.21 Site-independent interprocedural constant-propagation algorithm. 638

19.22 Integer constant-propagation lattice ICP. 639

19.23 An example for interprocedural constant propagation. 640

19.24 An example of interprocedural aliasing. 642

19.25 An example program for interprocedural alias computation. 644

19.26 Algorithm to construct the binding graph B for a program P. 645

19.27 The (a) call and (b) binding graphs for the program in Figure 19.25. 646

19.28 Algorithm for efficiently computing aliases of nonlocal variables using the binding
graph B. 647

Illustrations792 Illustrations

19.29 Algorithm to invert the nonlocal alias function, thus computing the set of formal
parameters aliased to each nonlocal variable. 648

19.30 Algorithm to build a program’s pair binding graph n. 649

19.31 Schema for adding arcs that satisfy p a ir .match () to the pair binding graph. Given
that procedure p has extended formal parameters u and v, procedure q nested inside p
has at call site <g,s> a call to procedure r that passes u to formal parameter x of r and w
to y, and v e A(w), we put the edge <w, */>-><*, y> into the pair binding graph n. 650

19.32 Pair binding graph n for our example program. The nodes and edges are produced by
Build_Pair_Graph(). The shaded nodes are marked by M ark_Alias_Pairs(). No
additional nodes are marked by Prop_Marks(). 651

19.33 Algorithm to mark parameter pairs in a program’s pair binding graph. 652

19.34 Algorithm to propagate marking of parameter pairs in a program’s pair binding
graph. 652

19.35 Algorithm to compute formal-parameter alias information from Mark(), A(), and
ALIAS (). 653

19.36 Algorithm to combine aliasing information with alias-free side-effect information. 654

19.37 Call site, entry, and return of a C routine. 655

19.38 An example C program for interprocedural alias analysis. 655

19.39 The Linpack routine saxpy() and its calling context in sgef a () after determining that
incx = incy = 1 and propagating that information into the body of saxpy(). 657

19.40 An example call graph for interprocedural register allocation. 659

19.41 (a) Example l i r code sequence and associated annotations, and (b) the result of
allocating x and y to registers. 660

19.42 Annotated l i r code for the C statement x = y = a++ - b. 660

19.43 Order of optimizations, with interprocedural optimizations shown in bold type. 665

19.44 Example program on which to run site-specific interprocedural constant
propagation. 668

20.1 Four versions of matrix multiplication in Fortran: (a) MM, the usual form; (b) MMT,
with A transposed; (c) MMB, with the j and k loops tiled; and (d) MMBT, with both
transposing and tiling. 671

20.2 Procedure-sorting algorithm. 674

20.3 Node-coalescing procedure used in Figure 20.2. 675

20.4 Auxiliary procedures used in the procedure-sorting algorithm. 676

20.5 (a) An example flowgraph for procedure sorting, and (b) through (d) the first three
transformations of the flowgraph. 677

20.6 Bottom-up basic-block positioning algorithm. 679

Illustrations 793

20.7 An example flowgraph for intraprocedural code positioning. 681

20.8 The example flowgraph in Figure 20.7 after intraprocedural code positioning. 681

20.9 (a) A group of procedure bodies, each split into primary (p) and secondary (s)
components, and (b) the result of collecting each type of component. 682

20.10 Fortran matrix multiply from Figure 20.1(a) with a scalar temporary in place of
C(i,j). 683

20.11 (a) A simple h i r recurrence, and (b) the result of using scalar temporaries in it. 683

20.12 (a) A doubly nested hir loop, and (b) the result of interchanging the loops. 684

20.13 (a) A pair of h i r loops, and (b) the result of fusing them. 685

20.14 (a) A C loop with a control-flow construct in its body, and (b) the result of applying
scalar replacement to a [] . 685

20.15 (a) A d o u b l y n e s t e d h i r l o o p , a n d (b) th e lo o p w ith s c a l a r r e p la c e m e n t p e r f o r m e d o n

x [i] in th e in n e r lo o p . 6 8 6

20.16 The loop in Figure 20.15(b) with the inner loop unrolled by a factor of three. 686

20.17 The loop in Figure 20.16 with y [j] scalar replaced in the inner loop. 687

20.18 h i r loops that sum the same sequence of floating-point values but that produce different
results. The loops in (a) and (b) produce the result 0 .0 , while the one in (c) produces
1.0 and the one in (d) produces n. 689

20.19 The assignment in this hir loop nest has the distance vector (1 ,0). 691

20.20 The code in Figure 20.19 with the loops interchanged. 691

20.21 (a) A hir loop nest, and (b) the result of skewing the inner loop. 692

20.22 Transformation of (a) the iteration-space traversal of the loop nest shown in
Figure 20.21(a) by skewing (b). 692

20.23 (a) A pair of hir loops, and (b) the result of fusing them. 693

20.24 Two pairs of hir loops, (a) and (b), and the results of fusing them in (c) and (d),
respectively. In the fused loop (c), there is one dependence, S2 (1) S I, while in loop (d),
the dependence is SI (1) S2, so loop fusion is legal for the example in (a) but not for the
one in (b). 693

20.25 (a) A hir loop, and (b) the result of tiling it with a tile size of 2. 694

20.26 The result of tiling both loops in the hir loop nest shown in Figure 20.21(a) with a tile
size of 2. 695

20.27 Iteration-space traversal of the tiled loop nest in Figure 20.26, with n = 6. 695

20.28 (a) Fortran matrix multiplication from Figure 20.1(a) with a tile loop for each index,
and (b) the result of tiling all the loops. 697

20.29 A hir example for which tiling may benefit at most one of the two loops. 697

Illu stration s

20.30 Order of optimizations, with optimizations for the memory hierarchy shown in bold
type. 702

21.1 A C procedure that is used as an example in this chapter. 706

21.2 A Fortran 77 program that is used as an example in this chapter. 706

21.3 Sun s p a r c compiler structure. 709

21.4 Sun IR code for lines 9 through 17 in the Fortran 77 routine in Figure 21.2. 709

21.5 asm+ code corresponding to lines 9 through 12 of the Fortran 77 program in
Figure 21.2. 712

21.6 s p a r c assembly code corresponding to the machine code produced by the Sun C
compiler with 04 optimization for the program in Figure 21.1. 714

21.7 s p a r c assembly code corresponding to the machine code produced by the Sun Fortran
77 compiler with 04 optimization for the main program in Figure 21.2. 715

21.8 IBM X L compiler structure. 718

21.9 Structure of the XIL for a procedure. 720

21.10 XIL code for lines 1 through 10 of the C program in Figure 21.1. 721

21.11 An example of coalescing condition-code setting with an arithmetic operation in p o w e r .

The c i in (a) has been absorbed into the s . in (b) by setting its record bit. 723

21.12 p o w e r assembly code produced by the X L disassembler from the object code
resulting from compiling the program in Figure 21.1 with the X L C compiler with 03
optimization. 724

21.13 p o w e r assembly code produced by the X L disassembler from the object code resulting
from compiling the routine s l () in Figure 21.2 with the X L Fortran compiler with 03
optimization. 724

21.14 DEC Alpha compiler structure. 727

21.15 (a) Example of CIL code for the C statement a = x [i] , and (b) its expansion to EIL
code. 728

21.16 Alpha assembly language produced by the GEM C compiler with 05 optimization for
the routine in Figure 21.1. 731

21.17 Alpha assembly language produced by the GEM Fortran 77 compiler with 05
optimization for the routine s l () in Figure 21.2. 732

21.18 Intel reference compiler structure. 735

21.19 The IL-1 form of the main routine in Figure 21.2 as produced by the Fortran front
end. 737

21.20 The IL-2 form of the inner loop in the main routine in Figure 21.2 as presented to the
code generator. 737

794

Illustrations 795

21.21 The PIL form of the inner loop in the main routine in Figure 21.2 immediately after
translation to PIL from the IL-2 form in Figure 21.20. 739

21.22 Pentium assembly code for the C program in Figure 21.1 as produced by the Intel
reference compiler. 741

21.23 Pentium assembly code for the routine s l () in the Fortran 77 program in Figure 21.2
as produced by the Intel reference compiler. 742

21.24 Pentium assembly code for the main routine in the Fortran 77 program in Figure 21.2
as produced by the Intel reference compiler. 743

B .l Representation of the three-member, strictly increasing sequence 3, 7, 15 by (a) a two-
way linked list, and (b) by a doubleword bit vector (the bits are numbered from the
right). 758

B.2 ic a n code to compute set union for the linked-list representation. 760

B.3 (a) A balanced binary tree of identifiers; (b) the result of adding day, making the tree
unbalanced; and (c) the result of rebalancing the tree. 761

B.4 Sparse representation of the set {2, 5, 7, 4} with u = 8. 762

B.5 Representation of the set {5, 2, 11, 23, 94, 17} by a two-way linked-segment list. 763

B.6 (a) Linked representation of a binary tree, namely, an expression tree that represents
(2 + x) - 3; (b) the meanings of its fields. 764

B.7 DAG representation of structural data-flow equations. 765

Tables

1.1 Sizes of data types. 17

2.1 Operators used in Extended Backus-Naur Form syntax descriptions. 20

2.2 Syntax of whole ic a n program s. 25

2.3 Syntax of ic a n type definitions. 26

2.4 Syntax of ic a n declarations. 26

2.5 Syntax of ic a n expressions. 27

2.6 Syntax of ic a n constants o f generic simple types. 28

2.7 Syntax of ic a n statements. 37

2.8 The keywords in i c a n . 40

3.1 Typical fields in symbol-table entries. 46

4.1 x b n f s y n t a x o f m i r p r o g r a m s a n d p r o g r a m u n it s . 74

4.2 x b n f s y n t a x o f m i r i n s t r u c t i o n s . 74

4.3 Unary operators in m i r . 75

4.4 Changes to x b n f description of instructions and operands to turn m i r into h i r . 79

4.5 Changes in the x b n f description of m i r instructions and expressions to create l i r . 80

4.6 Nam es of m i r , h i r , and l i r operators as members o f the ic a n enumerated type
IROper. 82

4.7 m i r instructions represented as ic a n tuples. 83

4.8 Representation of h i r instructions that are not in m i r in i c a n . 87

4.9 Representation of l i r instructions in i c a n . 89

4.10 Representation of memory addresses (denoted by t r a n(M em A ddr) in Table 4.9). 91

8.1 Correspondence between bit-vector positions, definitions, and basic blocks for the
flowchart in Figure 7.3. 220

797

798 Tables

8.2 Flow functions for the flowgraph in Figure 7.4. 233

8.3 in () values computed by structural analysis for our reaching definitions example. 244

8.4 in () values computed by interval analysis for our reaching definitions example. 250

8.5 Inductive assertions associated with the exit from each block in Figure 8.27 that are
needed to determine that it computes the integer factorial function. 263

9.1 Access-path matrix for the point just preceding the return in Figure 9.22. The value at
the intersection of row Ja.varl and column varl represents the path from the original
value of varl to the current value of varl. A entry means there is no such path. 288

14.1 Assignment types that may generate dependent induction variables. 429

18.1 The basic-block data structures for the flowgraph in Figure 18.2. 582

19.1 Values of Nonlocals() and IMOD() for the program in Figure 19.10. 624

19.2 Initial values of RBMOD() obtained by evaluating the existentially quantified
expression in the equations for RBMOD() for the nodes in the binding graph for our
example in Figure 19.10. 627

19.3 Final values of RBMOD() for the nodes in the binding graph for our example in
Figure 19.10. 627

19.4 Values of RMOD() for our example in Figure 19.10. 628

19.5 Values of IM OD+ () for our example in Figure 19.10. 629

19.6 Values of Level (), N [] , R[] , and E[] for our example program in Figure 19.10. 632

19.7 Initial values for GMOD() for our example program. 632

19.8 Final values for GM OD () for our example program. 633

19.9 Values of DMOD() for our example program. 633

19.10 Possible jump functions and their support sets for the example program in
Figure 19.23. 640

19.11 (a) The A() sets computed by N o n lo c a l_ A l ia se s () and (b) the ALIAS()
sets computed by In v e rt_ N o n lo c a l_ A lia se s () for our example program in
Figure 19.25. 648

19.12 Alias sets for formal parameters computed by Form al.A liases () for our example
program in Figure 19.25. 653

21.1 Comparison of the four compiler suites on the C example program. 744

21.2 Comparison of the four compiler suites on the Fortran example program. 745

A .l sparc register operand forms. 748

A.2 sparc opcodes used in the text. 748

A.3 sparc pseudo-operations. 749

Tables 799

A.4 power and PowerPC opcodes used in the text. 750

A.5 Alpha integer register names. 751

A.6 Alpha opcodes used in the text. 751

A. 7 Intel 386 architecture integer register names. 752

A.8 Intel 386 architecture opcodes used in the text. 753

A.9 pa-risc register names. 754

A.10 pa-risc opcodes. 754

Bibliography

[Ada83]

[AdlG93]

[AhaL93]

[AhoC75]

[AhoG89]

[AhoH74]

[AhoJ76]

[AhoS86]

[AigG84]

[Aike88]

[AikN88a]

[AikN88b]

[AikN91]

The Programming Language Ada Reference Manual, ANSI/MIL-STD-1815A-1983, U.S.
Dept, of Defense, Washington, DC, 1983.

Adl-Tabatabai, Ali-Reza and Thomas Gross. Detection and Recovery of Endangered Variables
Caused by Instruction Scheduling, in [PLDI93], pp. 13-25.

Ahalt, Stanley C. and James F. Leathrum. Code-Generation Methodology Using Tree-Parsers
and High-Level Intermediate Representations, J. o f Programming Languages, Vol. 1, No. 2,
1993, pp. 103-126.

Aho, Alfred V. and M.J. Corasick. Efficient String Matching: An Aid to Bibliographic Search,
CACM, Vol. 18, No. 6, June 1975, pp. 333-340.

Aho, Alfred V., Mahadevan Ganapathi, and Steven W.K. Tjiang. Code Generation Using Tree
Pattern Matching and Dynamic Programming, ACM TOPLAS, Vol. 11, No. 4, Oct. 1989,
pp. 491-516.

Aho, Alfred V., John Hopcroft, and Jeffrey D. Ullman. The Design and Analysis o f Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

Aho, Alfred V. and Steven C. Johnson. Optimal Code Generation for Expression Trees,/ACM,
Vol. 23, No. 3, July 1976, pp. 488-501.

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools, Addison-Wesley, Reading, MA, 1986.

Aigran, Philippe, Susan L. Graham, Robert R. Henry, M. Kirk McKusick, and Eduardo
Pelegri-Llopart. Experience with a Graham-Glanville Style Code Generator, in [Comp84],
pp. 13-24.

Aiken, Alexander. Compaction-Based Parallelization, Ph.D. thesis, Tech. Rept. TR-88-922,
Dept, of Comp. Sci., Cornell Univ., Ithaca, NY, June 1988.

Aiken, Alexander and Alexandru Nicolau. Optimal Loop Parallelization, in [PLDI88],
pp. 308-317.

Aiken, Alexander and Alexandru Nicolau. Perfect Pipelining: A New Loop Parallelization
Technique, Proc. o f the 1988 Euro. Symp. on Programming, Springer-Verlag, Berlin, 1988,
pp. 308-317.

Aiken, Alexander and Alexandru Nicolau. A Realistic Resource-Constrained Software
Pipelining Algorithm, in Nicolau, Alexandru, David Gelernter, Thomas Gross, and

801

802 Bibliography

David Padua (eds.). Advances in Languages and Compilers for Parallel Processing, MIT Press,
Cambridge, MA, 1991.

[AllC72a] Allen, Frances E. and John Cocke. A Catalogue of Optimizing Transformations, in Rustin,
Randall (ed.). Design and Optimization of Compilers, Prentice-Hall, Englewood Cliffs, NJ,
1972, pp. 1-30.

[AllC72b] Allen, Frances E. and John Cocke. Graph Theoretic Constructs for Program Control Flow
Analysis, Research Rept. RC3923, IBM Thomas J. Watson Research Ctr., Yorktown Heights,
NY, 1972.

[A11C76] Allen, Frances E. and John Cocke. A Program Data Flow Analysis Procedure, CACM, Vol.
19, No. 3, Mar. 1976, pp. 137-147.

[A11C811 Allen, Frances E., John Cocke, and Ken Kennedy. Reduction of Operator Strength, in
[MucJ81], pp. 79-101.

[A11C86] Allen, J. Randy, David Callahan, and Ken Kennedy. An Implementation of Interprocedural
Data Flow Analysis in a Vectorizing Fortran Compiler, Tech. Rept. COMP TR-86-38, Dept,
of Comp. Sci., Rice Univ., Houston, TX, May 1986.

[Alle69] Allen, Frances E. Program Optimization, in Halprin, Mark I. and Christopher J. Shaw (eds.).
Annual Review of Automatic Programming, Vol. 5, Pergamon Press, Oxford, UK, 1969,
pp. 239-307.

[Alph92] Alpha Architecture Handbook, Digital Equipment Corp., Maynard, MA, 1992.

[AlpW88] Alpern, Bowen, Mark N. Wegman, and F. Kenneth Zadeck. Detecting Equality of Variables
in Programs, in [POPL88], pp. 1-11.

[AlsL96] Alstrup, Stephen and Peter W. Lauridsen. A Simple Dynamic Algorithm for Maintaining a
Dominator Tree, Tech. Rept. 96/3, Dept, of Comp. Sci., Univ. of Copenhagen, Copenhagen,
1996.

[AndS92] Andrews, Kristy and Duane Sand. Migrating a cisc Computer Family onto R is e via Object
Code Translation, in [ASPL92], pp. 213-222.

[ANSI89] American National Standard X3.159-1989, The C Programming Language, ANSI, New
York, NY, 1989.

[ASPL82] Proc. of the Symp. on Architectural Support for Programming Languages and Operating Systems, Palo Alto, CA, published as SIGPLAN Notices, Vol. 17, No. 4, Apr. 1982.

[ASPL87] Proc. of the 2nd Inti. Conf. on Architectural Support for Programming Languages and
Operating Systems, Palo Alto, CA, IEEE Comp. Soc. Order No. 805, Oct. 1987.

[ASPL89] Proc. of the 3rd Inti. Conf. on Architectural Support for Programming Languages and Op
erating Systems, Boston, MA, published as SIGPLAN Notices, Vol. 24, special issue, May
1989.

[ASPL91] Proc. of the 4th Inti. Conf. on Architectural Support for Programming Languages and Oper
ating Systems, Santa Clara, CA, published as SIGPLAN Notices, Vol. 26, No. 4, Apr. 1991.

[ASPL92] Proc. of the Fifth Inti. Conf. on Architectural Support for Programming Languages and
Operating Systems, Boston, MA, published as SIGPLAN Notices, Vol. 27, No. 9, Sept. 1992.

[AusH82] Auslander, Marc and Martin Hopkins. An Overview of the PL.8 Compiler, in [Comp82], pp.
22-31.

Bibliography 803

[BalL92] Ball, Thomas and James R. Larus. Optimally Profiling and Tracing Programs, in [POPL92],
pp. 59-70.

[BalL93] Ball, Thomas and James R. Larus. Branch Prediction for Free, in [PLDI93], pp. 300-313.

[Bane76] Banerjee, Utpal. Dependence Testing in Ordinary Programs, M.S. thesis, Dept, of Comp. Sci.,
Univ. of Illinois, Urbana-Champaign, IL, Nov. 1976.

[Bane8 8 | Banerjee, Utpal. Dependence Analysis for Supercomputingy Kluwer Academic Publishers,
Boston, MA, 1988.

[Bane93] Banerjee, Utpal. Loop Transformations for Restructuring Compilers, Kluwer Academic Pub
lishers, Boston, MA, 1993.

[Bane94] Banerjee, Utpal. Loop Parallelization, Kluwer Academic Publishers, Boston, MA, 1993.

[Bann79] Banning, John P. An Efficient Way to Find the Side Effects of Procedure Calls and the Aliases
of Variables, in [POPL79], pp. 29-41.

[Bart78] Barth, John M. A Practical Interprocedural Data Flow Analysis Algorithm, CACM, Vol. 21,
No. 9, Nov. 1978, pp. 724-736.

[Bell90] Bell, Ron. IBM RISC System/6000 Performance Tuning for Numerically Intensive Fortran
and C Programs, Document No. GG24-3611, IBM Inti. Tech. Support Ctr., Poughkeepsie,
NY, Aug. 1990.

[BerC92] Bernstein, David, Doron Cohen, Yuval Lavon, and Vladimir Rainish. Performance Evaluation
of Instruction Scheduling on the IBM RISC System/6000, Proc. o f MICRO-25, Portland, OR,
published as SIG MICRO Newsletter; Vol. 23, Nos. 1 and 2, Dec. 1992.

[BerG89] Bernstein, David, Dina Q. Goldin, Martin C. Golumbic, Hugo Krawczyk, Yishay Mansour,
Itai Nahshon, and Ron Y. Pinter. Spill Code Minimization Techniques for Optimizing Com
pilers, in [PLDI89], pp. 258-263.

[BerG95] Bergin, Thomas J. and Richard G. Gibson (eds.). The History o f Programming Languages-II,
ACM Press, New York, NY, 1995.

[BerK87] Bergh, A., Keith Keilman, Daniel Magenheimer, and James A. Miller. HP 3000 Emulation on
HP Precision Architecture Computers, Hewlett-Packard J., Dec. 1987.

[BerR91] Bernstein, David and M. Rodeh. Global Instruction Scheduling for Superscalar Machines, in
[PLDI91], pp. 241-255.

[Bird82] Bird, Peter. An Implementation of a Code Generator Specification Language for Table Driven
Code Generators, in [Comp821, pp. 44-55.

[BliC92] Blickstein, David S., Peter W. Craig, Caroline S. Davidson, R. Neil Faiman, Jr., Kent D.
Glossop, Richard B. Grove, Steven O. Hobbs, and William B. Noyce. The GEM Optimizing
Compiler System, Digital Tech. J., Vol. 4, No. 4, special issue, 1992.

[BodC90] Bodin, Francois and Francois Charot. Loop Optimization for Horizontal Microcoded Ma
chines, Proc. of the 1990 Inti Conf. on Supercomputing, Amsterdam, June 1990, pp. 164-
176.

[Brad91] David G. Bradlee. Retargetable Instruction Scheduling for Pipelined Processors, Ph.D. thesis,
Tech. Rept. UW-CSE-91-08-07, Dept, of Comp. Sci. and Engg., Univ. of Washington, Seattle,
WA, June 1991.

804 B ibliograph y

[BraE91] Bradlee, David G., Susan J. Eggers, and Robert R. Henry. Integrated Register Allocation and
Instruction Scheduling for RISCs, in [ASPL91], pp. 122-131.

[BraH91] Bradlee, David G., Robert R. Henry, and Susan J. Eggers. The Marion System for Retar-
getable Instruction Scheduling, in [PLDI91], pp. 229-240.

[BriC89] Briggs, Preston, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Coloring Heuristics for
Register Allocation, in [PLDI89], pp. 275-284.

[BriC94a] Briggs, Preston, Keith D. Cooper, and Linda Torczon. Improvements to Graph Coloring
Register Allocation, ACM TOPLAS, Vol. 16, No. 3, May 1994, pp. 428-455.

[BriC94b] Briggs, Preston and Keith D. Cooper. Effective Partial Redundancy Elimination, in [PLDI94],
pp. 159-170.

[BriC94c] Briggs, Preston, Keith D. Cooper, and Taylor Simpson. Value Numbering, Tech. Rept. CRPC-
TR94517-S, Ctr. for Research on Parallel Computation, Rice Univ., Houston, TX, Nov. 1994.

[Brig92] Briggs, Preston. Register Allocation via Graph Coloring, Tech. Rept. CRPC-TR92218, Ctr.
for Research on Parallel Computation, Rice Univ., Houston, TX, Apr. 1992.

[BriT93] Briggs, Preston and Linda Torczon. An Efficient Representation for Sparse Sets, ACM LO-
PLAS, Vol. 2, Nos. 1-4, Mar.-Dec. 1993, pp. 59-69.

[CalC8 6] Callahan, David, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Interprocedural Con
stant Propagation, in [Comp8 6], pp. 152-161.

[CalC90] Callahan, David, Steve Carr, and Ken Kennedy. Improving Register Allocation for Subscripted
Variables, in [PLDI90], pp. 53-65.

[CalG95] Calder, Brad, Dirk Grunwald, Donald Lindsay, James Martin, Michael Mozer, and Benjamin
G. Zorn. Corpus-Based Static Branch Prediction, in [PLDI95], pp. 79-92.

[CalK91] Callahan, David and Brian Koblenz. Register Allocation by Hierarchical Tiling, in [PLDI91],
pp. 192-203.

[Call8 6] Callahan, David. Dependence Testing in PFC: Weak Separability, Dept, of Comp. Sci., Rice
Univ., Houston, TX, Aug. 1986.

[Call8 8] Callahan, David. The Program Summary Graph and Flow-Sensitive Interprocedural Data
Flow Analysis, in [PLDI8 8], pp. 47-56.

[CamK93] Campbell, Philip L., Ksheerabdhi Krishna, and Robert A. Ballance. Refining and Defining the
Program Dependence Web, Tech. Rept. CS93-6, Univ. of New Mexico, Albuquerque, NM,
Mar. 1993.

[Catt79] Cattell, Roderic G.G. Code Generation and Machine Descriptions, Tech. Rept. CSL-79-8,
Xerox Palo Alto Research Ctr., Palo Alto, CA, Oct. 1979.

[CF7790] CF77 Compiling System, Volume 1: Fortran Reference Manual, Publication SR-3071 4.0,
Cray Research, Inc., Mendota Heights, MN, 1990.

[ChaA81] Chaitin, Gregory, Marc Auslander, Ashok Chandra, John Cocke, Martin Hopkins, and Peter
Markstein. Register Allocation Via Coloring, Computer Languages, Vol. 6 , No. 1, 1981, pp.
47-57; also in [Stal90], pp. 88-97.

[Chai82] Chaitin, Gregory. Register Allocation and Spilling via Graph Coloring, in [Comp82], pp. 98-
105.

Bibliography 805

[ChaW90] Chase, David R., Mark Wegman, and F. Kenneth Zadeck. Analysis of Pointers and Structures,
in [PLDI90], pp. 296-310.

[CheM92] Chernoff, Anton and Maurice P. Marks. Personal communication, Digital Equipment Corp.,
Nashua, NH, Mar. 1992.

[Cher92] Chernoff, Anton. Personal communication, Digital Equipment Corp., Nashua, NH, May
1992.

[ChiD89] Chi, Chi-Hung and Hank Dietz. Unified Management of Registers and Cache Using Liveness
and Cache Bypass, in [PLDI89], pp. 344-355.

[ChoH84] Chow, Frederick and John Hennessy. Register Allocation by Priority-Based Coloring, in
[Comp84], pp. 222-232; also in [Stal90], pp. 98-108.

[ChoH90] Chow, Frederick and John Hennessy. The Priority-Based Coloring Approach to Register
Allocation, ACM TOPLAS, Vol. 12, No. 4, pp. 501-536.

[Chow83] Chow, Frederick. A Portable Machine-Independent Global Optimizer—Design and Mea
surements, Tech. Rept. 83-254, Comp. Systems Lab., Stanford Univ., Stanford, CA, Dec.
1983.

[Chow8 6] Chow, Paul, mips-x Instruction Set and Programmer’s Manual, Tech. Rept. No. CSL-86-289,
Comp. Systems Lab., Stanford Univ., Stanford, CA, May 1986.

[Chow8 8] Chow, Frederick. Minimizing Register Usage Penalty at Procedure Calls, in [PLDI8 8], pp.
85-94.

[ChoW92] Chow, Frederick and Alexand Wu. Personal communication, mips Computer Systems, Inc.,
Mountain View, CA, May 1992.

[ChrH84] Christopher, Thomas W., Philip J. Hatcher, and Ronald C. Kukuk. Using Dynamic Profiling
to Generate Optimized Code in a Graham-Glanville Style Code Generator, in [Comp84], pp.
25-36.

[CliR91] Clinger, William and Jonathan Rees (eds.). Revised4 Report on the Algorithmic Language
Scheme, Artificial Intelligence Lab., MIT, Cambridge, MA, and Comp. Sci. Dept., Indiana
Univ., Bloomington, IN, Nov. 1991.

[CloM87] Clocksin, W.F. and C.S. Mellish. Programming in Prolog, third edition, Springer-Verlag,
Berlin, 1987.

[CmeK91] Cmelik, Robert F., Shing I. Kong, David R. Ditzel, and Edmund J. Kelly. An Analysis of sparc
and mips Instruction Set Utilization on the spec Benchmarks, in [ASPL91], pp. 290-302.

[CmeK93] Robert F. Cmelik and David Keppel. Shade: A Fast Instruction-Set Simulator for Execution
Profiling, Tech. Rept. SMLI 93-12, Sun Microsystems Labs, Mountain View, CA, and Tech.
Rept. UWCSE 93-06-06, Dept, of Comp. Sci. and Engg., Univ. of Washington, Seattle, WA,
1993.

[Cmel93] Cmelik, Robert F. SpixTools User’s Manual, Tech. Rept. SMLI TR-93-6, Sun Microsystems
Labs, Mountain View, CA, Feb. 1993.

[CocS69] Cocke, John and Jacob T. Schwartz. Programming Languages and Their Compilers: Prelimi
nary Notes, Courant Inst, of Math. Sci., New York Univ., New York, NY, 1969.

806 Bib liograph y

[ColN87] Colwell, Robert P., Robert P. Nix, John J. O’Donnell, David B. Papworth, and Paul K.
Rodman. A VLIW Architecture for a Trace Scheduling Compiler, in [ASPL87], pp. 180-192.

[Comp79] Proc. o f the SIGPLAN 379 Symp. on Compiler C o n s trDenver, CO, published as SIGPLAN
Notices, Vol. 14, No. 8 , Aug. 1979.

[Comp82] Proc. o f the SIGPLAN 382 Symp. on Compiler Constr., Boston, MA, published as SIGPLAN
Notices, Vol. 17, No. 6 , June 1982.

[Comp84] Proc. o f the SIGPLAN 384 Symp. on Compiler Constr.y Montreal, Quebec, published as
SIGPLAN Notices, Vol. 19, No. 6 , June 1984.

[Comp8 6] Proc. o f the SIGPLAN 386 Symp. on Compiler Constr.y Palo Alto, CA, published as SIG
PLAN Noticesy Vol. 21, No. 7, July 1986.

[CooH92] Cooper, Keith D., Mary W. Hall, and Linda Torczon. Unexpected Effects of Inline Substitu
tion: A Case Study, ACM LOPLAS, Vol. 1, No. 1, pp. 22-32.

[CooH93] Cooper, Keith D., Mary W. Hall, Robert T. Hood, Ken Kennedy, K.S. McKinley, J.M.
Mellor-Crummey, Linda Torczon, and S.K. Warren. The ParaScope Parallel Programming
Environment, Proc. o f the IEEE, Vol. 81, No. 2, 1993, pp. 244-263.

[CooK84] Cooper, Keith D. and Ken Kennedy. Efficient Computation of Flow Insensitive Interprocedural
Summary, in [Comp84], pp. 247-258.

[C0 0 K 8 6] Cooper, Keith D., Ken Kennedy, and Linda Torczon. Interprocedural Optimization: Eliminat
ing Unnecessary Recompilation, in [Comp8 6], pp. 58-67.

[CooK8 8 a] Cooper, Keith D. and Ken Kennedy. Efficient Computation of Flow Insensitive Interprocedural
Summary—A Correction, SIGPLAN Notices, Vol. 23, No. 4, Apr. 1988, pp. 35-42.

[CooK8 8 b] Cooper, Keith D. and Ken Kennedy. Interprocedural Side-Effect Analysis in Linear Time, in
[PLDI8 8], pp. 57-66.

[CooK89] Cooper, Keith D. and Ken Kennedy. Fast Interprocedural Alias Analysis, in [POPL89], pp.
49-59.

[CooS95a] Cooper, Keith D., Taylor Simpson, and Christopher Vick. Operator Strength Reduction, Tech.
Rept. CRPC-TR95635-S, Ctr. for Research on Parallel Computation, Rice Univ., Houston,
TX, Oct. 1995.

[CooS95b] Cooper, Keith D., and Taylor Simpson. SCC-Based Value Numbering, Tech. Rept. CRPC-
TR95636-S, Ctr. for Research on Parallel Computation, Rice Univ., Houston, TX, Oct.
1995.

[CooS95c] Cooper, Keith D., and Taylor Simpson. Value-Driven Code Motion, Tech. Rept. CRPC-
TR95637-S, Ctr. for Research on Parallel Computation, Rice Univ., Houston, TX, Oct.
1995.

[CouH8 6] Coutant, Deborah, Carol Hammond, and John Kelly. Compilers for the New Generation of
Hewlett-Packard Computers, Proc. o f COMPCON S 386, 1986, pp. 48-61; also in [Stal90],
pp. 132-145.

[Cout8 6] Coutant, Deborah. Retargetable High-Level Alias Analysis, in [POPL8 6], pp. 110-118.

[CytF89] Cytron, Ronald, Jean Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
An Efficient Method of Computing Static Single Assignment Form, in [POPL89], pp. 23-25.

Bibliography 807

[CytF91] Cytron, Ronald, Jean Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently Computing Static Single Assignment Form and the Program Dependence Graph,
ACM TOPLAS, Vol. 13, No. 4, Oct. 1991, pp. 451-490.

[DamG94] Damron, Peter C., Vinod Grover, and Shahrokh Mortazavi. Personal communication, Sun
Microsystems, Inc., Mountain View, CA, May 1994.

[DanE73] Dantzig, George and B.C. Eaves. Fourier-Motzkin Elimination and Its Dual, J. o f Combina
torial Theory A, Vol. 14, 1973, pp. 288-297.

[DeuS84] Deutsch, L. Peter and Allan M. Schiffman. Efficient Implementation of the Smalltalk-80
System, in [POPL84], pp. 297-302.

[Deut94] Deutsch, Alain. Interprocedural May-Alias Analysis for Pointers: Beyond ^-Limiting, in
[PLDI94], pp. 230-241.

[Dham8 8] Dhamdhere, Dhananjay M. A Fast Algorithm for Code Movement Optimization, SIGPLAN
Notices, Vol. 23, No. 10, Oct. 1988, pp. 172-180.

[Dham91] Dhamdhere, Dhananjay M. Practical Adaptation of the Global Optimization Algorithm of
Morel and Renvoise, ACM TOPLAS, Vol. 13, No. 2, Apr. 1991, pp. 291-294.

[DhaR92] Dhamdhere, Dhananjay M., Barry K. Rosen, and F. Kenneth Zadeck. How to Analyze Large
Programs Efficiently and Informatively, in [PLDI92], pp. 212-223.

[DonB79] Dongarra, Jack, James Bunch, Cleve Moler, and G. Stewart. LINPACK Users Guide, Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1979.

[EbcG94] Ebcioglu, Kemal, Randy Groves, Ki-Chang Kim, Gabriel Silberman, and Isaac Ziv. vliw
Compilation Techniques in a Superscalar Environment, in [PLDI94], pp. 36-46.

[EisW92] Eisenbeis, Christine and D. Windheiser. A New Class of Algorithms for Software Pipelining
with Resource Constraints, Tech. Rept., INRIA, Le Chesnay, France, 1992.

[E1H85] Ellis, John R. Bulldog: A Compiler for VLIW Architectures, Ph.D. dissertation, Dept, of
Comp. Sci., Yale Univ., New Haven, CT, 1985.

[E11S90] Ellis, Margaret A. and Bjarne Stroustrup. The Annotated C++ Reference Manual, Addison-
Wesley, Reading, MA, 1990.

[Enge75] Engelfriet, Joost. Tree Automata and Tree Grammars, DAIMI Rept. FN-10, Dept, of Comp.
Sci., Univ. of Aarhus, Aarhus, Denmark, Apr. 1975.

[FarK75] Farrow, Rodney, Ken Kennedy, and Linda Zucconi. Graph Grammars and Global Pro
gram Flow Analysis, Proc. o f the 17th IEEE Symp. on Foundations o f Comp. Sci., Houston,
TX, Nov. 1975.

[Farn8 8] Farnum, Charles. Compiler Support for Floating-Point Computation, Software—Practice and
Experience, Vol. 18, No. 7, July 1988, pp. 701-709.

[Feau91] Feautrier, P. Data Flow Analysis of Array and Scalar References, Inti. J. o f Parallel Program
ming, Vol. 20, No. 1, Jan. 1991.

[Fer087] Ferrante, Jeanne, Karl J. Ottenstein, and Joe D. Warren. The Program Dependence Graph and
Its Use in Optimization, ACM TOPLAS, Vol. 9, No. 3, July 1987, pp. 319-349.

[Fish81] Fisher, Joseph A. Trace Scheduling: A Technique for Global Microcode Compaction, IEEE
Trans, on Comps., Vol. C-30, No. 7, July 1981, pp. 478-490.

808 B ibliograph y

[FisL91] Fischer, Charles N. and Richard J. LeBlanc, Jr. Crafting a Compiler With C, Benjamin-
Cummings, Redwood City, CA, 1991.

[Fort78] Programming Language FORTRAN, ANSI X3.9-1978 and ISO 1539-1980(E), ANSI, New
York, NY, 1978.

[Fort92] Programming Language Fortran 90, ANSI X 3 .198-1992 and ISO/IEC 1539-1991(E), ANSI,
New York, NY, 1992.

[FraH91a] Fraser, Christopher W., Robert R. Henry, and Todd A. Proebsting. BURG—Fast Optimal
Instruction Selection and Tree Parsing, SIGPLAN Notices, Vol. 27, No. 4, Apr. 1991,
pp. 68-76.

[FraH91b] Fraser, Christopher W., David A. Hanson. A Retargetable Compiler for ANSI C, SIGPLAN
Notices, Vol. 26, No. 10, Oct. 1991, pp. 29-43.

[FraH92] Fraser, Christopher W., David R. Hanson, and Todd A. Proebsting. Engineering a Simple
Code-Generator Generator, ACM LOPLAS, Vol. 1, No. 3, Sept. 1992, pp. 213-226.

[FraH95] Fraser, Christopher W. and David R. Hanson. A Retargetable C Compiler: Design and Imple
mentation, Benjamin-Cummings, Redwood City, CA, 1995.

[Frei74] Freiburghouse, Richard A. Register Allocation via Usage Counts, CACM, Vol. 17, No. 11,
Nov. 1974, pp. 638-642.

[GanF82] Ganapathi, Mahadevan and Charles N. Fischer. Description-Driven Code Generation Using
Attribute Grammars, in [POPL82], pp. 107-119.

[GanF84] Ganapathi, Mahadevan and Charles N. Fischer. Attributed Linear Intermediate Representa
tions for Code Generation, Software—Practice and Experience, Vol. 14, No. 4, Apr. 1984,
pp. 347-364.

[GanF85] Ganapathi, Mahadevan and Charles N. Fischer. Affix Grammar Driven Code Generation,
ACM TOPLAS, Vol. 7, No. 4, Oct. 1985, pp. 560-599.

[GanK89] Ganapathi, Mahadevan and Ken Kennedy. Interprocedural Analysis and Optimization, Tech.
Rept. RICE COMP TR89-96, Dept, of Comp. Sci., Rice Univ., Houston, TX, July 1989.

[GarJ79J Garey, Michael R. and David S. Johnson. Computers and Intractability: A Guide to the
Theory o f NP-Completeness, W.H. Freeman and Co., San Francisco, CA, 1979.

[GhoM861 Ghodssi, Vida, Steven S. Muchnick, and Alexand Wu. A Global Optimizer for Sun Fortran,
C, and Pascal, Proc. o f the Summer 1986 USENIX Conf., Portland, OR, June 1986, pp.
318-334.

[GibM8 6] Gibbons, Phillip A. and Steven S. Muchnick. Efficient Instruction Scheduling for a Pipelined
Processor, in [Comp8 6], pp. 11-16.

[GilG83] Gill, John, Thomas Gross, John Hennessy, Norman P. Jouppi, Steven Przybylski, and Christo
pher Rowen. Summary of mips Instructions, Tech. Note 83-237, Comp. Systems Lab., Stan
ford Univ., Stanford, CA, Nov. 1983.

[GinL87] Gingell, Robert A., Meng Lee, Xuong T. Dang, and Mary S. Weeks. Shared Libraries in
SunOS, Proc. o f the 1987 Summer USENIX Conf, Phoenix, AZ, June 1987, pp. 131-146.

[GlaG78] Glanville, R. Steven and Susan L. Graham. A New Method for Compiler Code Generation,
in [POPL78], pp. 231-240.

Bibliography 809

[GofK91] Goff, Gina, Ken Kennedy, and Chau-Wen Tseng. Practical Dependence Testing, in [PLDI91],
pp. 15-29.

[Gold72] Goldstine, Hermann H. The Computer from Pascal to Von Neumann, Princeton Univ. Press,
Princeton, NJ, 1972.

[Gold84] Goldberg, Adele. Smalltalk-80: The Interactive Programming Environment, Addison-Wesley,
Reading, MA, 1984.

[Gold91] Goldberg, David. What Every Computer Scientist Should Know About Floating-Point Arith
metic, ACM Computing Surveys, Vol. 23, No. 1, Mar. 1991, pp. 5-48.

[GolR901 Golumbic, M.C. and Victor Rainish. Instruction Scheduling Beyond Basic Blocks, in [IBMJ90],
pp. 93-97.

[G0 0 H8 8] Goodman, J.R. and W.-C. Hsu. Code Scheduling and Register Allocation in Large Basic
Blocks, Proc. o f the Inti. Conf. on Super computing, St. Malo, France, July 1988, pp. 442-
452.

[GosJ96] Gosling, James, Bill Joy, and Guy Steele. The Java Language Specification, Addison-Wesley,
Reading, MA, 1996.

[GraH82] Graham, Susan L., Robert R. Henry, and Robert A. Schulman. An Experiment in Table Driven
Code Generation, in [Comp82], pp. 32-43.

[GraJ79] Graham, Susan L., William N. Joy, and Olivier Roubine. Hashed Symbol Tables for Lan
guages with Explicit Scope Control, in [Comp79], pp. 50-57.

[GriP6 8] Griswold, Ralph E., James F. Poage, and Ivan P. Polonsky. The SNOBOL4 Programming
Language, Prentice-Hall, Englewood Cliffs, NJ, 1968.

[GroF92] Grove, Richard B. and R. Neil Faiman, Jr. Personal communication, Digital Equipment Corp.,
Littleton, MA, Sept. 1992.

[GroT93] Grove, Dan and Linda Torczon. Interprocedural Constant Propagation: A Study of Jump
Function Implementation, in [PLDI93], pp. 90-99.

[Grov94] Grove, Richard B. Personal communication, Digital Equipment Corp., Littleton, MA, May
1994.

[GupS89] Gupta, Rajiv, Mary Lou Soffa, and Tim Steele. Register Allocation via Clique Separators, in
[PLDI89], pp. 264-274.

[Gupt90] Gupta, Rajiv. Compiler Optimization o f Data Storage, Ph.D. dissertation, California Inst, of
Technology, Pasadena, CA, July 1990.

[Gupt93] Gupta, Rajiv. Optimizing Array Bounds Checks Using Flow Analysis, ACM LOPLAS, Vol. 2,
Nos. 1-4, Mar.-Dec. 1993, pp. 135-150.

[HalB90] Hall, Mark and John Barry (eds.). The SunTechnology Papers, Springer-Verlag, New York,
NY, 1990.

[Hall91] Hall, Mary Wolcott. Managing Interprocedural Optimization, Ph.D. thesis, Dept, of Comp.
Sci., Rice Univ., Houston, TX, Apr. 1991.

[Hay92] Hay, William. Personal communication, IBM Canada Lab., Toronto, Canada, May 1992.

[Hay94] Hay, William. Personal communication, IBM Canada Lab., Toronto, Canada, June 1994.

810 B ibliograph y

[Hech77] Hecht, Matthew S. Flow Analysis o f Computer Programs, Elsevier North-Holland, New
York, NY, 1977.

[HecU75] Hecht, Matthew S. and Jeffrey D. Ullman. A Simple Algorithm for Global Data Flow Prob
lems, SIAM J. o f Computing, Vol. 4, No. 4, Dec. 1975, pp. 519-532.

[HenD89a] Henry, Robert R. and Peter C. Damron. Performance of Table-Driven Code Generators Using
Tree-Pattern Matching, Tech. Rept. 89-02-02, Comp. Sci. Dept., Univ. of Washington, Seattle,
WA, Feb. 1989.

[HenD89b] Henry, Robert R. and Peter C. Damron. Algorithms for Table-Driven Code Generators Using
Tree-Pattern Matching, Tech. Rept. 89-02-03, Comp. Sci. Dept., Univ. of Washington, Seattle,
WA, Feb. 1989.

[Hend90] Hendren, Laurie J. Parallelizing Programs with Recursive Data Structures, IEEE Trans, on
Parallel and Distributed Systems, Vol. 1 , No. 1, Jan. 1990, pp. 35-47.

[HenG83] Hennessy, John and Thomas Gross. Postpass Code Optimization of Pipeline Constraints,
ACM TOPLAS, Vol. 5, No. 3, July 1983, pp. 422-448.

[HenP94] Hennessy, John L. and David A. Patterson. Computer Organization and Design: The
Hardware/Software Interface, Morgan Kaufmann, San Francisco, CA, 1994.

[Henr84] Henry, Robert R. Graham-Glanville Code Generators, Rept. UCB/CSD 84/184, Comp. Sci.
Division, Dept, of Elec. Engg. and Comp. Sci., Univ. of California, Berkeley, CA, May 1984.

[HewP91] PA-RISC Procedure Calling Conventions Reference Manual, HP Part No. 09740-90015,
Hewlett-Packard, Palo Alto, CA, Jan. 1991.

[HimC87] Himelstein, Mark I., Fred C. Chow, and Kevin Enderby. Cross-Module Optimization: Its
Implementation and Benefits, Proc. o f the Summer 1987 USENIX Conf., Phoenix, AZ, June
1987, pp. 347-356.

[Hime91] Himelstein, Mark I. Compiler Tail Ends, tutorial notes, ACM SIGPLAN ’91 Conf. on Pro
gramming Language Design and Implementation, Toronto, Ontario, June 1991.

[Hof082] Hoffman, C.W. and Michael J. O ’Donnell. Pattern Matching in Trees, JACM, Vol. 29, No. 1,
Jan. 1982, pp. 68-95.

[Hopk87] Hopkins, Martin. A Perspective on the 801/Reduced Instruction Set Computer, IBM Sys
tems J., Vol. 26, No. 1, 1987, pp. 107-121; also in [Stal90], pp. 176-190.

[HumH94] Hummel, Joseph, Laurie J. Hendren, and Alexandru Nicolau. A General Data Dependence
Test for Dynamic, Pointer-Based Data Structures, in [PLDI94], pp. 218-229.

[IBMJ901 IBM /. of Research and Development, special issue on the IBM Rise System/6000 Processor,
Vol. 34, No. 1, Jan. 1990.

[IEEE83] IEEE Standard Pascal Computer Programming Language, Inst, of Elec, and Electronic Engrs.,
New York, NY, 1983.

[IEEE85] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985, Inst, of Elec,
and Electronic Engrs., New York, NY, 1985.

[Inge61] Ingerman, Peter Z. Thunks, CACM, Vol. 4, No. 1, Jan. 1961, pp. 55-58.

[Inte93] Intel Reference Compiler for the Intel 386, Intel 486, and Pentium Microprocessor Family:
An Overview, Intel Corporation, Santa Clara, CA, 1993.

Bibliography 811

[Jain91] Jain, Sunil. Circular Scheduling: A New Technique to Perform Software Pipelining, in
[PLDI91],pp. 219-228.

[JaiT88] Jain, Sunil and Carol Thompson. An Efficient Approach to Data Flow Analysis in a Multiple
Pass Global Optimizer, in [PLDI88], pp. 154-163.

[JohM86] Johnson, Mark S. and Terrence C. Miller. Effectiveness of a Machine-Level, Global Optimizer,
in [Comp86], pp. 99-108.

[John78] Johnson, Steven C. A Portable Compiler: Theory and Practice, in [POPL78], pp. 97-104.

[JohP93] Johnson, Richard and Keshav Pingali. Dependence-Based Program Analysis, in [PLDI93], pp.
78-89.

[JonM76] Jones, Neil D. and Steven S. Muchnick. Binding Time Optimization in Programming Lan
guages: Some Thoughts Toward the Design of an Ideal Language, in [POPL76], pp. 77-94.

[JonM78] Jones, Neil D. and Steven S. Muchnick. TEMPO: A Unified Treatment of Binding Time and
Parameter Passing Concepts in Programming Languages, Lecture Notes in Comp. Sci., Vol.
66, Springer-Verlag, Berlin, 1978.

[JonM81a] Jones, Neil D. and Steven S. Muchnick. Flow Analysis and Optimization of usp-Like Struc
tures, in [MucJ81], pp. 102-131.

[JonM81b] Jones, Neil D. and Steven S. Muchnick. Complexity of Flow Analysis, Inductive Assertion
Synthesis, and a Language Due to Dijkstra, in [MucJ81], pp. 380-393.

[KamU75] Kam, J.B. and Jeffrey D. Ullman. Monotone Data Flow Analysis Frameworks, Tech. Rept.
No. 169, Dept, of Elec. Engg., Princeton Univ., Princeton, NJ, 1975.

[KanH92] Kane, Gerry and Joe Heinreich. MIPS RISC Architecture, Prentice-Hall, Englewood Cliffs,
NJ, 1992.

[Karr84] Karr, Michael. Code Generation by Coagulation, in [Comp84], pp. 1-12.

[Keho93] Kehoe, Brendan P. Zen and the Art of the Internet, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[Keil94] Keilman, Keith. Personal communication, Hewlett-Packard, Cupertino, CA, June 1994.

[Kenn71] Kennedy, Ken. Global Flow Analysis and Register Allocation for Simple Code Structures,
Ph.D. thesis, Courant Inst., New York Univ., New York, NY, Oct. 1971.

[Kenn75] Kennedy, Ken. Node Listing Applied to Data Flow Analysis, in [POPL75], pp. 10-21.

[Kenn81] Kennedy, Ken. A Survey of Data Flow Analysis Techniques, in [MucJ81], pp. 5-54.

[Kenn86] Kennedy, Ken. PTOOL, Tech. Rept., Dept, of Math. Sci., Rice Univ., Houston, TX, 1986.

[KerE93] Kerns, Daniel R. and Susan J. Eggers. Balanced Scheduling: Instruction Scheduling When
Memory Latency Is Uncertain, in [PLDI93], pp. 278-289.

[KheD99] Khedker, Uday P. and Dananjay M. Dhamdhere. Bidirectional Data Flow Analysis: Myths and
Reality, ACM SIGPLAN Notices, Vol. 34, No. 6, June 1999, pp. 47-57. (Added in 2000, 4th
printing; supports corrections made on pages 229, 264, and 407 in that printing.)

[Kild73] Kildall, Gary A. A Unified Approach to Global Program Optimization, in [POPL73], pp.
194-206.

[KnoR92] Knoop, Jens, Oliver Riithing, and Bernhard Steffen. Lazy Code Motion, in [PLDI92], pp.
224-234.

812 B ibliograph y

[KnoR93] Knoop, Jens, Oliver Riithing, and Bernhard Steffen. Lazy Strength Reduction,/ . of Program
ming Languages, Vol. 1, No. 1, 1993, pp. 71-91.

fKnoR94] Knoop, Jens, Oliver Riithing, and Bernhard Steffen. Partial Dead Code Elimination, in
[PLDI94], pp. 147-158.

[KnoZ92] Knobe, Kathleen and F. Kenneth Zadeck. Register Allocation Using Control Trees, Tech. Rept.
No. CS-92-13, Dept, of Comp. Sci., Brown Univ., Providence, RI, Mar. 1992.

[Knut62] Knuth, Donald E. A History of Writing Compilers, Computers and Automation, Dec. 1962,
pp. 8-10, 12, 14, 16, 18.

[Knut71] Knuth, Donald E. An Empirical Study of Fortran Programs, Software—Practice and Experi
ence■, Vol. 1, No. 2, 1971, pp. 105-134.

[Knut73] Knuth, Donald E. The Art o f Computer Programming, Vo/. 3: Sorting and Searching,
Addison-Wesley, Reading, MA, 1973.

[KolW95] Kolte, Pryadarshan and Michael Wolfe. Elimination of Redundant Array Subscript Checks,
in [PLDI95], pp. 270-278.

[Kou77] Kou, Lawrence T. On Live-Dead Analysis for Global Data Flow Problems, JACM, Vol. 24,
No. 3, July 1977, pp. 473-483.

[Kris90] Krishnamurthy, San jay. Static Scheduling o f Multi-Cycle Operations for a Pipelined RISC
Processor; M.S. paper, Dept, of Comp. Sci., Clemson Univ., Clemson, SC, May 1990.

[Krol92] Krol, Ed. The Whole Internet User's Guide and Catalog, O’Reilly & Associates, Sebastopol,
CA, 1992.

[Kuck74] Kuck, David J. Measurements of Parallelism in Ordinary Fortran Programs, Computer; Vol.
7, No. 1, Jan. 1974, pp. 37-46.

[Lam8 8] Lam, Monica S. Software Pipelining: An Efficient Scheduling Technique for v l i w Machines,
in [PLDI8 8], pp. 318-328.

[Lam90] Lam, Monica S. Instruction Scheduling for Superscalar Architectures, in Joseph F. Traub (ed.).
Annual Review of Comp. Sci., Vol. 4, Annual Reviews, Inc., Palo Alto, CA, 1990, pp. 173-
201.

[LamR91] Lam, Monica, Edward E. Rothberg, and Michael E. Wolf. The Cache Performance and
Optimization of Blocked Algorithms, in [ASPL91], pp. 63-74.

[LanJ82] Landwehr, Rudolf, Hans-Stephan Jansohn, and Gerhard Goos. Experience with an Automatic
Code Generator Generator, in [Comp82], pp. 56-66.

[LarH8 6] Larus, James and Paul Hilfinger. Register Allocation in the s p u r Lisp Compiler, in [Comp8 6],
pp. 255-263.

[Laru89] Larus, James R. Restructuring Symbolic Programs for Correct Execution on Multiprocessors,
Tech. Rept. UCB/CSD/89/502, Comp. Sci. Division, Univ. of California, Berkeley, CA, May
1989.

[Laru90] Larus, James R. Abstract Execution: A Technique for Efficiently Tracing Programs, Soft
ware—Practice and Experience, Vol. 20, No. 12, Dec. 1990, pp. 1241-1258.

[LawL87] Lawler, Eugene, Jan Karel Lenstra, Charles Martel, and Barbara Simons. Pipeline Scheduling:
A Survey, Comp. Sci. Research Rept. RJ 5738, IBM Research Division, San Jose, CA, July
1987.

Bibliography 813

[Lee89]

[Lee91]

[LenT79]

[LevC80]

[LoEg95]

[LowM69]

[MahC92]

[MahR94]

[MauF81]

[MayH91]

[McFa89]

[McFa91a]

[McFa91b]

[Mill92]

[MilT90]

[MitM79]

[MorR79]

[MorR81]

[Morr91]

Lee, Peter H. Realistic Compiler Generation, MIT Press, Cambridge, MA, 1989.

Lee, Peter H. (ed.). Topics in Advanced Language Implementation, MIT Press, Cambridge,
MA, 1991.

Lengauer, Thomas and Robert E. Tarjan. A Fast Algorithm for Finding Dominators in a
Flowgraph, ACM TOPLAS, Vol. 1, No. 1, July 1979, pp. 121-141.

Leverett, Bruce W., Roderic G.G. Cattell, Steven O. Hobbs, Joseph M. Newcomer, Andrew
H. Reiner, Bruce R. Schatz, and William A Wulf. An Overview of the Production-Quality
Compiler-Compiler Project, Computer; Vol. 13, No. 8 , Aug. 1980, pp. 38-49.

Lo, Jack L. and Susan Eggers. Improving Balanced Scheduling with Compiler Optimizations
that Increase Instruction-Level Parallelism, in [PLDI95], pp. 151-162.

Lowry, E. and C.W. Medlock. Object Code Optimization, CACM, Vol. 12, No. 1, 1969, pp.
13-22.

Mahlke, Scott A., Pohua P. Chang, William Y. Chen, John C. Gyllenhaal, Wen-mei W.
Hwu, and Tokuzo Kiyohara. Compiler Code Transformations for Superscalar-Based High-
Performance Systems, Proc. o f Supercomputing ’92, Minneapolis, MN, Nov. 1992, pp. 808-
817.

Mahadevan, Uma and Sridhar Ramakrishnan. Instruction Scheduling over Regions: A Frame
work for Scheduling Across Basic Blocks, Proc. o f Compiler Constr. ’94, Edinburgh, Lecture
Notes in Comp. Sci., Vol. 786, Springer-Verlag, Berlin, 1994.

Mauney, John and Charles N. Fischer. ECP—An Error Correcting Parser Generator: User
Guide, Tech. Rept. 450, Comp. Sci. Dept., Univ. of Wisconsin, Madison, WI, Oct. 1981.

Maydan, Dror E., John L. Hennessy, and Monica S. Lam. An Efficient Method for Exact
Dependence Analysis, in [PLDI91], pp. 1-14.

McFarling, Scott. Program Optimization for Instruction Caches, in [ASPL89], pp. 183-191.

McFarling, Scott. Procedure Merging with Instruction Caches, in [PLDI91], pp. 71-79.

McFarling, Scott. Program Analysis and Optimization for Machines with Instruction Cache,
Ph.D. dissertation, Tech. Rept. CSL-TR-91-493, Comp. Systems Lab., Stanford Univ., Stan
ford, CA, Sept. 1991.

Miller, James A. Personal communication, Hewlett-Packard, Cupertino, CA, Apr. 1992.

Milner, Robin, M. Tofte, and R. Harper. The Definition o f Standard ML, MIT Press, Cam
bridge, MA, 1990.

Mitchell, James G., William Maybury, and Richard Sweet. Mesa Language Manual, Version
5.0, Tech. Rept. CSL-79-3, Xerox Palo Alto Research Ctr., Palo Alto, CA, Apr. 1979.

Morel, Etienne and Claude Renvoise. Global Optimization by Suppression of Partial Redun
dancies, CACM, Vol. 22, No. 2, Feb. 1979, pp. 96-103.

Morel, Etienne and Claude Renvoise. Interprocedural Elimination of Partial Redundancies,
in [MucJ81], pp. 160-188.

Morris, W.G. CCG: A Prototype Coagulating Code Generator, in [PLDI91], pp. 45-58.

814 B ibliograph y

[MowL92] Mowry, Todd C., Monica S. Lam, and Anoop Gupta. Design and Evaluation of a Compiler
Algorithm for Prefetching, in [ASPL92], pp. 62-73.

[Mowr94] Mowry, Todd C. Tolerating Latency Through Software-Controlled Prefetching, Ph.D. disser
tation, Dept, of Elec. Engg., Stanford Univ., Stanford, CA, Mar. 1994.

[Much8 8] Muchnick, Steven S. Optimizing Compilers for SPARC, SunTechnology, Vol. 1, No. 3,
summer 1988, pp. 64-77; also appeared in [HalB90], pp. 41-68, and in [Stal90], pp. 160-
173.

[Much91] Muchnick, Steven S. Optimization in the SPARCompilers, Proc. o f the Sun Users’ Group
Conf., Atlanta, GA, June 1991, pp. 81-99; also appeared in Proc. o f Sun USER ’91, Bir
mingham, England, Sept. 1991, pp. 117-136, and in README, Sun Users’ Group, 1991, pp.
1-13 and 20-23.

[MucJ81] Muchnick, Steven S. and Neil D. Jones (eds.). Program Flow Analysis: Theory and Applica
tions, Prentice-Hall, Englewood Cliffs, NJ, 1981.

[Myer81] Myers, E.A. Precise Interprocedural Data Flow Analysis Framework, in [POPL81], pp. 219-
230.

[Nick90] Nickerson, Brian. Graph Coloring Register Allocation for Processors with Multi-Register
Operands, in [PLDI90], pp. 40-52.

[Nico8 6] Nicolau, Alexandru. A Fine-Grain Parallelizing Compiler, Tech. Rept. TR-86-792, Dept, of
Comp. Sci., Cornell Univ., Ithaca, NY, Dec. 1986.

[OBrH90] O’Brien, Kevin, Bill Hay, Joanne Minish, Hartmann Schaffer, Bob Schloss, Arvin Shepherd,
and Matthew Zaleski. Advanced Compiler Technology for the Rise System/6000 Architecture,
in Misra, Mamata (ed.). IBM RISC System/6000 Technology, Publication SA23-2619, IBM
Corp., Austin, TX, 1990, pp. 154-161.

[0Br095] O’Brien, Kevin, Kathryn M. O ’Brien, Martin Hopkins, Arvin Shepherd, and Ron Unrau. XIL
and YIL: The Intermediate Languages of tobey, Proc. o f the ACM SIGPLAN Workshop
on Intermediate Representations, San Francisco, CA, Jan. 1995, published as Microsoft
Tech. Rept. MSR-TR-95-01, Microsoft Corp., Redmond, WA, Jan. 1995, and as SIGPLAN
Notices, Vol. 30, No. 3, Mar. 1995, pp. 71-82.

[PaiS77] Paige, Bob and Jack T. Schwartz. Expression Continuity and the Formal Differentiation of
Algorithms, in [POPL77], pp. 58-71.

[Patt95] Patterson, Jason R.C. Accurate Static Branch Prediction by Value Range Propagation, in
[PLDI95], pp. 67-78.

[Pele8 8] Pelegri-Llopart, Eduardo. Rewrite Systems, Pattern Matching, and Code Generation, Ph.D.
dissertation, Rept. No. UCB/CSD 88/423, Comp. Sci. Division, Univ. of California, Berkeley,
CA, June 1988.

Pelegri-Llopart, Eduardo and Susan L. Graham. Code Generation for Expression Trees: An
Application of burs Theory, in [POPL8 8], pp. 294-308.

Pentium Family User’s Manual, Volume 3: Architecture and Programming Manual, Intel
Corp., Mount Prospect, IL, 1994.

[PelG881

[Pent94]

[PetH90] Pettis, Karl and Robert C. Hansen. Profile Guided Code Positioning, in [PLDI90], pp. 16-27.

Bibliography 815

[Pint93] Pinter, Shlomit S. Register Allocation with Instruction Scheduling: A New Approach, in
[PLDI93], pp. 248-257.

[PLDI88] Proc. of the SIGPLAN *88 Symp. on Programming Language Design and Implementation,
Atlanta, GA, published as SIGPLAN Notices, Vol. 23, No. 7, June 1988.

[PLDI89] Proc. of the SIGPLAN *89 Symp. on Programming Language Design and Implementation,
Portland, OR, published as SIGPLAN Notices, Vol. 24, No. 7, July 1989.

[PLDI90] Proc. of the SIGPLAN *90 Symp. on Programming Language Design and Implementation,
White Plains, NY, published as SIGPLAN Notices, Vol. 25, No. 6, June 1990.

[PLDI91] Proc. of the SIGPLAN *91 Symp. on Programming Language Design and Implementation,
Toronto, Ontario, published as SIGPLAN Notices, Vol. 26, No. 6, June 1991.

[PLDI92] Proc. of the SIGPLAN *92 Symp. on Programming Language Design and Implementation,
San Francisco, CA, published as SIGPLAN Notices, Vol. 27, No. 7, July 1992.

[PLDI93] Proc. of the SIGPLAN *93 Symp. on Programming Language Design and Implementation,
Albuquerque, NM, published as SIGPLAN Notices, Vol. 28, No. 7, July 1993.

[PLDI94] Proc. of the SIGPLAN *94 Conf. on Programming Language Design and Implementation,
Orlando, FL, published as SIGPLAN Notices, Vol. 29, No. 6, June 1994.

[PLDI95] Proc. of the SIGPLAN *95 Conf. on Programming Language Design and Implementation, La
Jolla, CA, published as SIGPLAN Notices, Vol. 30, No. 6, June 1995.

[PLDI96] Proc. of the SIGPLAN *96 Conf. on Programming Language Design and Implementation,
Philadelphia, PA, published as SIGPLAN Notices, Vol. 31, No. 5, May 1996.

[POPL73] Conf. Record of the ACM SIGACT/SIGPLAN Symp. on Principles of Programming Lan
guages, Boston, MA, Oct. 1973.

[POPL75] Conf. Record of the 2nd ACM SIGACT/SIGPLAN Symp. on Principles of Programming
Languages, Palo Alto, CA, Jan. 1975.

[POPL76] Conf. Record of the 3rd ACM SIGACT/SIGPLAN Symp. on Principles of Programming
Languages, Atlanta, GA, Jan. 1976.

[POPL77] Conf. Record of the 4th ACM SIGACT/SIGPLAN Symp. on Principles of Programming
Languages, Los Angeles, CA, Jan. 1977.

[POPL78] Conf. Record of the 5th ACM SIGACT/SIGPLAN Symp. on Principles of Programming
Languages, Tucson, AZ, Jan. 1978.

[POPL79] Conf. Record of the 6th ACM SIGACT/SIGPLAN Symp. on Principles of Programming
Languages, San Antonio, TX, Jan. 1979.

[POPL80] Conf. Record of the 7th ACM SIGACT/SIGPLAN Symp. on Principles of Programming
Languages, Las Vegas, NV, Jan. 1980.

[POPL81] Conf Record of the 8th ACM SIGACT/SIGPLAN Symp. on Principles of Programming
Languages, Williamsburg, VA, Jan. 1981.

[POPL82] Conf. Record of the 9th ACM SIGACT/SIGPLAN Symp. on Principles of Programming
Languages, Albuquerque, NM, Jan. 1982.

816 Bibliography

[POPL84] Conf. Record of the 11th ACM SIGACT/SIGPLAN Symp. on Principles of Programming Languages, Salt Lake City, UT, Jan. 1984.

[POPL86] Conf Record of the 13th ACM SIGACT/SIGPLAN Symp. on Principles of Programming Languages, St. Petersburg Beach, FL, Jan. 1986.

[POPL88] Conf Record of the 15th ACM SIGACT/SIGPLAN Symp. on Principles of Programming
Languages, San Diego, CA, Jan. 1988.

[POPL89] Conf Record of the 16th ACM SIGACT/SIGPLAN Symp. on Principles of Programming Languages, Austin, TX, Jan. 1989.

[POPL90] Conf. Record of the 17th ACM SIGACT/SIGPLAN Symp. on Principles of Programming
Languages, San Francisco, CA, Jan. 1990.

[POPL91] Conf. Record of the 18th ACM SIGACT/SIGPLAN Symp. on Principles of Programming
Languages, Orlando, FL, Jan. 1991.

[POPL92] Conf. Record of the 19th ACM SIGACT/SIGPLAN Symp. on Principles of Programming
Languages, Albuquerque, NM, Jan. 1992.

[POPL94] Conf. Record of the 21st ACM SIGACT/SIGPLAN Symp. on Principles of Programming
Languages, Portland, OR, Jan. 1994.

[POWE90] POWER Processor Architecturey Version 1.52, IBM Corp., Austin, TX, Feb. 1990.

[Powe93] PowerPC Architecture, first edition, IBM Corp., Austin, TX, May 1993.

[ProF94] Proebsting, Todd A. and Christopher W. Fraser. Detecting Pipeline Structural Hazards Quickly,
in [POPL94], pp. 280-286.

[PugW92] Pugh, William and David Wonnacott. Eliminating False Data Dependences Using the Omega
Test, in [PLDI92], pp. 140-151.

[Radi82] Radin, George. The 801 Minicomputer, in [ASPL82], pp. 39-47.

[RaoS95] Rao, Suresh, William A. Savage, and Kevin J. Smith. Personal communication, Intel Corp.,
Santa Clara, CA, Mar. 1995.

[RauG81] Rau, B.R. and C.D. Glaeser. Some Scheduling Techniques and an Easily Schedulable Hor
izontal Architecture for High Performance Scientific Computing, Proc. of the 14th Annual
Microprogramming Workshop, Chatham, MA, published as SIGMicro Newsletter, Vol. 12,
No. 4, Dec. 1981, pp. 183-198.

[ReiL77] Reif, John R. and Harry R. Lewis. Symbolic Evaluation and the Global Value Graph, in
[POPL77], pp. 104-118.

[ReiL86] Reif, John R. and Harry R. Lewis. Efficient Symbolic Analysis of Programs, J. of Comp, and
System Sci., Vol. 32, No. 3, June 1986, pp. 280-313.

[Reyn68] Reynolds, John C. Automatic Computation of Data Set Definitions, Proc. of the IFIP
Congress 1968, Aug. 1968, pp. B69-B73.

[RicG89a] Richardson, Stephen E. and Mahadevan Ganapathi. Interprocedural Optimization: Experi
mental Results, Software—Practice and Experience, Vol. 19, No. 2, Feb. 1989, pp. 149-169.

[RicG89b] Richardson, Stephen E. and Mahadevan Ganapathi. Interprocedural Analysis vs. Procedure
Integration, Information Processing Letters, Vol. 32, Aug. 1989, pp. 137-142.

Bibliography 817

[Rich91] Richardson, Stephen C. Evaluating Interprocedural Code Optimization Techniques, Ph.D.
dissertation, Tech. Rept. CSL-TR-91-460, Comp. Sci. Lab., Stanford Univ., Stanford, CA,
Feb. 1991.

[RogL92] Rogers, Anne and Kai Li. Software Support for Speculative Loads, in [ASPL92], pp. 38-50.

[Rose77] Rosen, Barry K. High-Level Data Flow Analysis, CACM, Vol. 20, No. 10, Oct. 1977, pp.
712-724.

[Rose79] Rosen, Barry K. Data Flow Analysis for Procedural Languages, JACM, Vol. 26, No. 2, Apr.
1977, pp. 322-344.

[Rose81] Rosen, Barry K. Degrees of Availability as an Introduction to the General Theory of Data
Flow Analysis, in [MucJ81], pp. 55-76.

[RutG96] Ruttenberg, John, G.R. Gao, A. Stoutchinin, and W. Lichtenstein. Software Pipelining Show
down: Optimal vs. Heuristic Methods in a Production Compiler, in [PLDI96], pp. 1-11.

[Ryma82] Rymarczyk, J.W. Coding Guidelines for Pipelined Processors, in [ASPL82], pp. 12-19.

[SanO90] Santhanam, Vatsa and Daryl Odnert. Register Allocation Across Procedure and Module
Boundaries, in [PLDI90], pp. 28-39.

[Sava95] Savage, William A. Personal communication, Intel Corp., Santa Clara, CA, Sept. 1995.

[Schl91] Schlansker, Michael. Compilation for v l i w and Superscalar Processors, tutorial notes, Fourth
Inti. Conf. on Architectural Support for Programming Languages and Operating Systems,
Santa Clara, CA, Apr. 1991.

[SchS79] Schwartz, Jacob T. and Micha Sharir. A Design for Optimizations of the Bitvectoring Class,
Comp. Sci. Rept. No. 17, Courant Inst, of Math. Sci., New York Univ., New York, NY,
1979.

[Schw73] Schwartz, Jacob T. On Programming: An Interim Rept. on the SETL Project, Installment II,
Comp. Sci. Dept., Courant Inst, of Math. Sci., New York Univ., New York, NY, 1973.

[SetU70] Sethi, Ravi and Jeffrey D. Ullman. The Generation of Optimal Code for Arithmetic Expres
sions, JACM, Vol. 17, No. 4, Oct. 1970, pp. 715-728.

[Shar80] Sharir, Micha. Structural Analysis: A New Approach to Flow Analysis in Optimizing Compil
ers, Computer Languages, Vol. 5, Nos. 3/4, 1980, pp. 141-153.

[ShaS69] Shapiro, R.M. and H. Saint. The Representation of Algorithms, Tech. Rept. RADC-TR-69-
313, Volume II, Rome Air Development Center, Griffiss Air Force Base, NY, Sept. 1969; also
published as Tech. Rept. CA-7002-1432, Massachusetts Computer Associates, Wakefield,
MA, Feb. 1970.

[ShiP89] Shieh, J.J. and C.A. Papachristou. On Reordering Instruction Streams for Pipelined Proces
sors, Proc. o f the 22nd Annual Inti. Symp. on Microarchitecture, Dublin, Ireland, Aug. 1989,
pp. 199-206.

[Simp96] Simpson, Loren Taylor. Value-Driven Redundancy Elimination, Ph.D. thesis, Dept, of Comp.
Sci., Rice Univ., Houston, TX, Apr. 1996.

[SitC92] Sites, Richard L., Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and Scott G. Robin
son. Binary Translation, Digital Tech.]., Vol. 4, No. 4, special issue, 1992; also appeared in
slightly different form in CACM, Vol. 36, No. 2, Feb. 1993, pp. 69-81.

818 B ibliograph y

[SmoK91] Smotherman, Mark, Sanjay Krishnamurthy, P.S. Aravind, and David Hunnicutt. Efficient
DAG Construction and Heuristic Calculation for Instruction Scheduling, Proc. o f the 24th
Annual Inti. Symp. on Microarchitecture, Albuquerque, NM, Nov. 1991, pp. 93-102.

[SPAR92] The SPARC Architecture Manual, Version 8, Prentice-Hall, Englewood Cliffs, NJ, 1992.

[SPEC89] SPEC newsletter, Vol. 1, No. 1, Systems Performance Evaluation Cooperative, Fremont, CA,
1989.

[SriW93] Srivastava, Amitabh and David W. Wall. A Practical System for Intermodule Code Optimiza
tion at Link-Time,/, of Programming Languages, Vol. 1, No. 1, 1993, pp. 1-18.

[SriW94] Srivastava, Amitabh and David W. Wall. Link-Time Optimization of Address Calculation on
a 64-Bit Architecture, in [PLDI94], pp. 49-60.

[Stal90] Stallings, William. Reduced Instruction Set Computers, second edition, IEEE Comp. Society
Press, Los Alamitos, CA, 1990.

[Stee84] Steele, Guy L., Jr. COMMON LISP: The Language, Digital Press, Burlington, MA, 1984.

[SteH89] Steenkiste, Peter and John Hennessy. A Simple Interprocedural Register Allocation Algorithm
and Its Effectiveness for lisp, ACM TOPLAS, Vol. 11, No. 1 , Jan. 1989, pp. 1-32.

[Stro8 8] Stroustrup, Bjarne. Type-Safe Linkage for C++, Computing Systems, Vol. 6 , No. 4, 1988, pp.
371-404.

[Tarj72] Tarjan, Robert Endre. Depth First Search and Linear Graph Algorithms, SIAM J. o f Comput
ing, Vol. 1, No. 2, 1972, pp. 146-160.

[Tarj74] Tarjan, Robert Endre. Testing Flow Graph Reducibility, J. o f Comp, and System Sci., Vol. 9,
No. 4, Dec. 1974, pp. 355-365.

[Tarj81] Tarjan, Robert Endre. Fast Algorithms for Solving Path Problems, JACM, Vol. 28, No. 3, July
1981, pp. 591-642.

[Tene74a] Tenenbaum, Aaron. Type Determination for Very High Level Languages, Rept. NSO-3,
Comp. Sci. Dept., New York Univ., New York, NY, Oct. 1974.

[Tene74b] Tenenbaum, Aaron. Compile Time Type Determination in SETL, Proc. o f the ACM Annual
Conf., San Diego, CA, Nov. 1974, pp. 95-100.

[Thom92] Thompson, Carol. Personal communication, Hewlett-Packard, Cupertino, CA, May 1992.

[Tiem89] Tiemann, Michael D. The GNU Instruction Scheduler, CS 343 Report, Dept, of Comp. Sci.,
Stanford Univ., Stanford, CA, June 1989; also appeared in an updated form as Cygnus Tech.
Rept. CTR-0, Cygnus Support, Mountain View, CA, 1989.

[Tjia93] Tjiang, Steven W.K. Automatic Generation o f Data-Flow Analyzers: A Tool for Building
Optimizers, Ph.D. dissertation, Dept, of Comp. Sci., Stanford Univ., Stanford, CA, July
1993.

[TjiH92] Tjiang, Steven W.K. and John L. Hennessy. Sharlit—A Tool for Building Optimizers, in
[PLDI92], pp. 82-93.

[TjiW91] Tjiang, Steven W.K., Michael E. Wolf, Monica S. Lam, K.L. Pieper, and John L. Hennessy.
Integrating Scalar Optimization and Parallelization, Proc. o f 4th Workshop on Languages
and Compilers for Parallel Computing, Santa Clara, CA, Aug. 1991, pp. 137-151.

Bibliography 819

[Towl76] Towle, Robert A. Control and Data Dependence for Program Transformations, Ph.D. thesis,
Dept, of Comp. Sci., Univ. of Illinois, Champaign-Urbana, IL, Mar. 1976.

[Ullm73] Ullman, Jeffrey D. Fast Algorithms for the Elimination of Common Subexpressions, Acta
Informatica, Vol. 2, Fasc. 3, July 1973, pp. 191-213.

[Unga87] Ungar, David M. The Design and Evaluation o f a High Performance Smalltalk System, MIT
Press, Cambridge, MA, 1987.

[UngS91] Ungar, David M. and Randall B. Smith, self: The Power of Simplicity, Lisp and Symbolic
Computation, Vol. 4, No. 3, June 1991, pp. 187-205.

[Unic90] Unicode Consortium. The Unicode Standard: Worldwide Character Encoding, Version 1.0,
Addison-Wesley, Reading, MA, 1990.

[UNIX90a] UNIX Software Operation. System V Application Binary Interface, UNIX Press/Prentice-Hall,
Englewood Cliffs, NJ, 1990.

[UNIX90b] UNIX Software Operation. System V Application Binary Interface: Motorola 88000 Proces
sor Supplement, UNIX Press/Prentice-Hall, Englewood Cliffs, NJ, 1990.

[UNIX90c] UNIX Software Operation. System V Application Binary Interface: SPARC Processor Supple
ment, UNIX Press/Prentice-Hall, Englewood Cliffs, NJ, 1990.

[UNIX91] UNIX System Labs. System V Application Binary Interface: Intel i860 Processor Supplement,
UNIX Press/Prentice-Hall, Englewood Cliffs, NJ, 1991.

[UNIX93] UNIX System Labs. System V Application Binary Interface: Intel 386 Architecture Processor
Supplement, UNIX Press/Prentice-Hall, Englewood Cliffs, NJ, 1993.

[Wall86] Wall, David W. Global Register Allocation at Link Time, in [Comp86], pp. 264-275.

[Wall88] Wallace, David R. Dependence Among Multi-Dimensional Array References, Proc. o f the
1988 ACM Inti. Conf. on Supercomputing, St. Malo, France, July 1988, pp. 418-428.

[Wall91] Wall, David W. Predicting Program Behavior from Real or Estimated Profiles, in [PLDI91],
pp. 59-70.

[Wall92] Wallace, David R. Cross-Block Scheduling Using the Extended Dependence Graph, Proc. o f
the 1992 Inti. Conf. on Supercomputing, Washington, DC, July 1992, pp. 72-81.

[WanE93] Wang, Jian and Christine Eisenbeis. Decomposed Software Pipelining, Tech. Rept. No. 1838,
INRIA, Le Chesnay, France, Jan. 1993.

[Warr90] Warren, Henry S. Instruction Scheduling for the IBM Rise System/6000, in [IBMJ90], pp.
85-92.

[WeaG94] Weaver, David L. and Tom Germond. The SPARC Architecture Manual, Version 9, Prentice-
Hall, Englewood Cliffs, NJ, 1994.

[WegZ91] Wegman, Mark N. and F. Kenneth Zadeck. Constant Propagation with Conditional Branches,
ACM TOPLAS, Vol. 13, No. 2, Apr. 1991, pp. 181-210.

[Weic84] Weicker, Reinhold P. Dhrystone: A Synthetic Systems Programming Benchmark, CACM, Vol.
27, No. 10, Oct. 1984, pp. 1013-1030.

[WeiC94] Weise, Daniel, Roger F. Crew, Michael Ernst, and Bjarne Steensgaard. Value Dependence
Graphs: Representation Without Taxation, in [POPL94], pp. 287-296.

820 Bibliography

[Weih80] Weihl, William E. Interprocedural Data Flow Analysis in the Presence of Pointers, Procedure
Variables, and Label Variables, in [POPL80], pp. 83-94.

[Wexe81] Wexelblat, Richard L. History of Programming Languages, Academic Press, New York, NY,
1981.

[WhiS90] Whitfield, Debbie and Mary Lou Soffa. An Approach to Ordering Optimizing Transforma
tions, Proc. o f the Second ACM Symp. on Principles and Practice o f Parallel Programming,
Seattle, WA, published as SIGPLAN Notices, Vol. 25, No. 3, Mar. 1990, pp. 137-146.

[Wism94] Wismiiller, Roland. Debugging Globally Optimized Programs Using Data Flow Analysis, in
[PLDI94], pp. 278-289.

[Wolf89a] Wolfe, Michael R. More Iteration Space Tiling, Tech. Rept. No. CS/E 89-003, Dept, of Comp.
Sci. and Engg., Oregon Graduate Inst., Beaverton, OR, May 1989.

[Wolf89b] Wolfe, Michael R. Optimizing Supercompilers for Supercomputers, MIT Press, Cambridge,
MA, 1989.

[Wolf90] Wolfe, Michael R. Scalar vs. Parallel Optimizations, Tech. Rept. No. CS/E 90-010, Dept, of
Comp. Sci. and Engg., Oregon Graduate Inst., Beaverton, OR, July 1990.

[Wolf92] Wolf, Michael E. Improving Locality and Parallelism in Nested Loops, Ph.D. dissertation,
Tech. Rept. CSL-TR-92-538, Comp. Systems Lab., Stanford Univ., Stanford, CA, Aug. 1992.

[Wolf96] Wolfe, Michael R. High-Performance Compilers for Parallel Computing, Addison-Wesley,
Redwood City, CA, 1996.

[WolH90] Wolfe, Michael R. and Robert Halstead (eds.). Proc. o f a Workshop on Parallelism in the
Presence o f Pointers and Dynamically Allocated Objects, Tech. Note SRC-TN-90-292, Inst,
for Defense Analyses Supercomputing Research Ctr., Bowie, MD, Mar. 1990.

[WolL91] Wolf, Michael E. and Monica S. Lam. A Data Locality Optimizing Algorithm, in [PLDI91],
pp. 30-44.

[WolT90] Wolfe, Michael R. and Chau-Wen Tseng. The Power Test for Data Dependence, Tech. Rept.
No. CS/E 90-015, Dept, of Comp. Sci. and Engg., Oregon Graduate Inst., Beaverton, OR,
Aug. 1990.

[WulJ75] Wulf, William A., Richard K. Johnsson, Charles B. Weinstock, Steven O. Hobbs, and Charles
M. Geschke. The Design o f an Optimizing Compiler; American Elsevier, New York, NY,
1975.

[WulR71] Wulf, William A., David B. Russell, and A. Nico Habermann. bliss: A Language for Systems
Programming, CACM, Vol. 14, No. 12, Dec. 1971, pp. 780-790.

[Zade84] Zadeck, F. Kenneth. Incremental Data Flow Analysis in a Structured Program Editor, in
[Comp84], pp. 132-143.

[ZimC91] Zima, Hans with Barbara Chapman. Supercompilers for Parallel and Vector Machines, ACM
Press/Addison-Wesley, Reading, MA, 1991.

‘Begin at the beginning, the King said, gravely,
‘and go until you come to the end; then stop.’

—Carrol, Lewis, Alice in W onderland, Chap. 11.

Technical Index

Mathematical Formulas
ICAN Procedures

Major ICAN Data Structures

Boldface italic page numbers
indicate definitions of entries, and
roman page numbers indicate
descriptions of entries.

A

A (), 643
ACP, 356, 357
Action(), 142
ActionRedn, 142,142
ActionType, 142
Acyclic_Region_Type(), 207,

208
Add. IV (), 433
AdjLsts, 487 , 487, 496, 507
AdjMtx, 487 , 487, 495-496, 497
adjnds, 487 , 496
Ad ju st .Neighbors () , 505-506,

506
Advance () , 146
AEin{), 387
AEinP() , 392
AEinP{), 390
AEinPSO, 392
AEout(), 387
AEoutP(), 390
Alias, 295
Alias{), 295, 296
ALIAS{), 642
ALIAS (), 648
AllEbbs, 176
A llocate_R egisters(), 488
Alloc.RegC), 59, 61
Alloc_Reg_Anon(), 60
A11_SCC(), 195
Ancestor() ,1 8 9

ANEAin(), 411
anon,303
anon(ty), 303
ANTin(), 410
ANTloc(), 410
ANTout{), 410, 410
any, 304
any(ty), 304
append(), 760
append_block(), 93, 418
append.preheader(), 403
a r g () , 614, 617
area(), 522, 523
ArgReg, 487 , 492
A r ity (),353
arybinasgn, 87
ary re f, 87
aryunasgn, 87
aryvalasgn, 87
Assign_Between(), 431
Assign.RegsC), 488, 506, 507
AvailRegs, 564, 566

B

(̂AyBlk/ei;)) 245
BaseReg, 487 ,509
Bui/ei), 245
Bc () ,2 4 5
B(C,Btk/ek)(
BestSched, 552, 553
Bi, 239
Bile, 239, 245
binasgn, 83
Bind.Local.V arsC), 55, 56-57
B in d_P airs(), in interprocedural

data-flow analysis, 624, 626

Bind.PairsC), in interprocedural
alias analysis, 643, 645

binexp, 85
BinExp, 389, 419
BinExpIntPair, 392
BinExpIntPairSet, 392
binif, 83
bintrap, 83
BnerC), 245
BIV(),451
Block, 92, 356
Block_Position(), 678, 679-680
Bp, 245

)> 621
B readth .F irst (), 181, 400
bset, 400
Bucket, 189
Build_AdjLsts(), 487, 499
Bui Id. Ad j Mtx(), 487, 496, 497
Build.All.Ebbs, 175, 176-177
Build_Binding_Graph(), 623,

625, 645
Build_Call_Graph(), 609-610,

611
Build_Call_Graph_with_PVVs(),

612-613,612,615
Build.DAGC), 273, 274
Build.EbbC), 175, 176
Build.Pair.GraphC), 649, 649,

651
BV", 224, 236

C

call, 83
callasgn, 84
called(),631

821

822 Index of Mathematical Formulas, ican Procedures, and Data Structures

c a llre g , 89
ca llre g 2 , 89
ca llreg 3 , 90
ca llreg asgn , 90
c a l l s e t (), 610, 616,639
callset{), 620
callsites(), 620
Cands, 538
C anonicalize(), 451
castasgn , 83
c e i l (), 55, 57
CharString, 32
C h ild (), 186, 189
C lo s e (), 153, 153
Closure () , 146
C oalesce_N odes(), 674-675, 675
C oalesce_R egs(), 487, 498, 500
C o a le sc e _ S e ts (), 392, 393
co lor, 496
Color_to_Reg(), 506
Commutative(), 380
Compact (), 207
com pact_path(), 573
Comp_Disp(), 507, 511
Component, 247, 248
Compress (), 187
Compute_Delay (), 539
ComputeF_if_then_else(), 248
Compute_GM0D(), 630 , 632
Compute_IM0D(), 623, 623
Compute.IM0DPLUS(), 628
ComputeIn_then(), 248
Compute.RBMOD () , 626, 626-627
Com pute_Spill_Costs(),

487-488, 501,502
condasgn, 83
Conf, 273, 274
C o n f lic t () , 271
const, 84, 90
Const, 81, 81
C onstant() ,3 3 0 ,5 6 0
Const_Eval(), 330
ConstLat, 363, 364
Convert_0pnd(), 494
COPY(), 358
copywt, 501
CopyWt, 487, 501
CPin{), 359, 360
CPout(), 359, 360
Create_Node(), 207
CTEdges, 205, 205
CTNodes, 205, 205

CurTime, 538
C v a l(),6 3 8 ,6 3 9
Cyclic_Region_Type(), 207,

208-209

D

d ,2 7 7
DAG, 274, 552
Dag, 552, 553
Dead_Code_Elim(), 594
D ecr.Loop.C t() , 553
DEF()

in interprocedural data-flow
analysis, 609, 619

in live variables analysis, 445
D efin es()

in register renaming, 565
in sparse conditional constant

propagation, 364
defsave, 484
DefsLiveExit () , 564, 566
DefUses () , 564-565, 566
defwt, 501
DefWt, 487, 501
Delay (), 538, 539
DELAYin(), 411
DELAYout(), 411
delete_block(), 95, 95, 581
Delete_Empty_Blocks(), 594
delete_inst(), 94, 94, 450, 498
Delete_Node(), 572
Delete_Node_Applic(), 572
Depth, 60
depth, 483
depth (), 503
D epth_First_Search(), 178,

179
Depth_First_Search_Dom, 187
Depth_First_Search_PP(), 180,

180-181
Depth_Sym_Tab(), 54, 54, 59
Derives (), 158
Dest_Sym_Tab, 47, 47
DF+(), 254, 254
DF(), 254, 255
DFlocah 254
Dfn, 185
Dfn, 186, 630
DFP, 256
DF.Plus () , 254, 256
DF.Set (), 256

DFS.Postorder () , 207, 207
D F up (), 2 5 4
D F (), 253-254, 2 5 4
DF(), 254
Discard_Symbol(), 142
disp , 496
Disp, 4 8 7 , 507
DMOD, 619
D M O D (), 622
Dom.Comp, 1 8 2 , 182-183
Dom_Exits(), 403
Dom.Front(), 255
Domin(), 1 8 2
Dominate(), 418
Domin_Fast(), 185, 1 8 6 - 1 8 7
Dom.Uses(), 403
Double_DAG(), 553, 555
D R E F {), 620
D V {) , 2 7 8

E

EARLin{), 411, 411
EA RLout{), 411, 411
EbbRoots, 175, 176-177
ECands, 538
Edge.Count()

in intraprocedural code
partitioning, 678, 680

in sparse conditional constant
propagation, 364, 365,
366

Edge.Set (), 364, 367
edges() , 678
ELabel()> 351
ELabelO, 352, 352, 354
Elim_Chain_Loops(), 145, 153,

153-154
Elim_Unreach_Code(), 581,

581
e lse , 87
e lta sgn , 83
Emit_Instrs(), 142, 144, 151
Encl_Sym_Tab, 54, 54, 59
endif, 87
entry, 171
entry+, 303, 305, 307, 308,

309-313
Envt() , 646
Epi, 552
EpsLast, 147, 147

Index of Mathematical Formulas, ican Procedures, and Data Structures 823

ETime, 538, 540, 542
ETypeO, 180, 180
E v a l()

in interprocedural constant
propagation, 638

in dominator computation, 186,
188, 189, 190

EVAL()
in global common-subexpression

elimination, 385 ,3 8 5 -3 8 6
in very busy expressions

analysis, 417
EVALP(), 390
E v a l.R e lE x p r() , 451
E xecFlagC), 364, 365
ExecTimeC), 538, 539, 553, 558
e x i t , 171
e x i t - , 303
E x its(), 245
E x p () ,3 6 4
ExpKind, 85
Exp_Kind(), 85, 418
extal(), 304
ExtFormals{), 643
E x tF o rm als(), 646, 646, 648
ExtVocab, 142

F

F iA,Bik/ek)()> 239-240, 240
F a l l .Through () , 585
Fb() ,2 3 1
F n /e i), 239
FC() ,2 4 0
F(C,Bik/ek)()> 240
fields(), 304
F in a l_ V a lu e () , 452
F in d _ IV s() , 430-431, 430
Find.Opcode(), 62
F in d .S o u rc e s() , 388
Find_Symreg() , 494
Find_Sym_Tab() , 62
First, 147
f i r s t , 760
Fjteri)? 240
Fix_Syn t_B locks() , 155-157,

156-157
Flatten() , 675, 676
FlowFcn, 247, 248
FlowWL, 364, 365
Follow() , 147

Followl () , 147
Follow.Edge, 353, 354
Formal_Aliases() , 650-651, 653
Form als{), 620
FormalsC) , 644
Fp(), 240
Free_Reg() , 60, 60
F u se _ B lo c k s() , 584-585 , 584

G

g c d (), 281-282
G E N () , 221
G e n e ra lize () , 157, 157
G en erate() , 143
G en_Inst() , 59
G en.LdSt() , 63
G en_Spill_Code() , 488, 507,

509, 510-511
Gen_Tables() , 144, 144
G et_Epilogue() , 553
G et_Prologue() , 553
G et_Sym _A ttr() , 48 48, 59
Get.SymbolC) , 142
G lobal_C SE (), 388, 389
G lobal_C SE _Pos() , 392-393 , 392
Global_Value_Number() , 351,

352-353, 353, 355
globals, 304
GloSymtab, 59, 60
GM0D() , 630
G M O D (), 620, 622
GMOD.Search() , 631
goto , 83, 89
gotoaddr, 89

H
Hash, 764
hash(), 762
Hash() ,3 4 4 , 345
HashSeq, 344, 345
Has.Left(), 85
Heuristics() , 539
HIRExpKind, 88
HIR_Exp_Kind(), 86, 88
HIR_Has_Left(), 86, 88
HIRInst, 81, 85, 87
HIRKind, 88
HIROpdKind, 88
Hoist_Exps() ,4 1 9

I

I C la s s () , 544
ICP, 224-225 , 224
id {), 233, 236
idom {), 182
Idom () , 184, 189
IDom(), 255
Idom_Comp() , 183-184, 184
I f . I n s t () , 593
/m, 198
IM O D (), 620, 623
IM O D + (), 620, 622, 628, 628
IMODPLUSC), 628, 630
in (), 231, 2 3 1 ,2 3 2 ,2 3 4 , 237, 238,

239, 240, 241-242, 243, 250
indasgn , 83
in d e lta sg n , 83
Init, 231, 234
In itD isp , 55, 487
I n i t i a l i z e () , for global value

numbering, 353, 354
I n i t i a l i z e () , for sparse

conditional constant
propagation, 364, 366

in_param() , 614, 617
in s e r t _ a f t e r () , 93
in s e r t_ b e fo r e () , 93
in s e r t .b lo c k () , 94, 94
I n s e r t _ E x i t s () , 453
in s e r t .p r e h e a d e r () , 403
In se rt_ S y m () , 48, 48
In s t , array of intermediate-code

instructions, 84, 552, 552
I n s t () , in instruction scheduling,

539
In s t () , in interprocedural control-

and data-flow analysis, 612,
616, 621

In s t I n v a r () , 398
In s tru c tio n , 82
In st .R V O , 271, 272
I n s t s () , 558, 558
InterCode, 142
I n t e r fe r e () , 496
In tp r_ C o n st_ P ro p (), 638-639
In t_to_R eg() , 492, 494
InvarO rder, 398
In v ert () , 453
In v e r t_ N o n lo c a l_ A lia se s (),

646-647, 648

8 2 4 Index of Mathematical Formulas, ica n Procedures, and Data Structures

IROper, 81
IS O L in () ,4 1 3 , 413
IS O L o u t() ,4 1 3 , 413
Item, 142
Item Set, 144 , 145
IV _ P a tte r n () , 431
IV record , 430 , 431
I Vs, 430 , 431

j
J O , 637 , 637
J su p p o r tC) , 637 , 637

K

K I L L ()
in copy propagation, 358
in global common-subexpression

elimination, 385, 386
in very busy expressions

analysis, 4 1 7
K il l{), 635, 636
K 1 L L P (), 390

L

L , 2 2 3 -2 2 4 , 223, 224
la b e l , 83, 89
L a b e l ()

in basic-block scheduling, 540
in dom inator com putation, 186,

189
LabeledE dge, 611
L a st , 147
l a s t () , 760
L a tC e lK) , 364, 365
L A T E in (), 412 , 412
L a te n c y () , 271 , 271 , 272 , 539
L a t _ E v a l () ,3 6 4
LBlock, 92, 92, 5 5 8 , 558
Idcost, 484
LdOp, 60
LdStType, 60
L e a f, 539
Left, 147
l e f t () , 673
Left_C hild(), 147
L e f t _ F i r s t () , 147
le f t m o s t () , 673
L evel () , 628, 629, 630

Lf , 235, 235
L in k O , 1SS, 189
LIRExpKind, 90
LIR_Exp_Kind() , 86-87 , 90
LIR_H as_Lef t () , 86-87 , 90, 91
L IR In st, 81
LIRKind, 90
LIROpdKind, 90
LIROperand, 81
l i s t e x p , 85
l i s t r e c d , 4 8 7 ,4 9 6
L iv e _ A t() , 4 9 6
L ive_on _E xit () , 4 51-452
L L () ,1 9 6
LLend() , 196
L M O D (), 620
loadmem, 89
L o ca l_C op y _P ro p () , 3 5 7 -3 5 8
L o c a l_ C S E () , 380-3 8 1 , 380
Locate_Sym () , 48, 48, 59
Lookahead() , 143
Loop_C onst() , 430
Loop_C t_In st () , 553
Low Link() , 195, 196, 630
LV in (), 446
L V out(), 446

M

Make_Webs () , 48 6 -4 8 7 , 4 9 0 -4 9 1 ,
490, 492

M a r k _ A lia s_ P a ir s () , 650, 652
M ark_Block() , 399 , 400
M ark_Ivar () , 3 9 8 -3 9 9 , 398
m atch() , 649
Match_Exp() , 344
M axCycles, 271, 272
maxhash, 345
m a x i () , 673
M axStateN o ,144
MCands, 538
M EC_Entries() , 211
Member () , 674
m em p(), 303
MFP, 227
MGrammar, 144
m ig ra te () , 573
M in_Color() , 506
M inim ize_Im proper() , 210
M in S ta ll , 552, 553
M IRInst, 81

MIRKind, 85
MIR_to_SymLIR (), 486, 492, 493
MOD(), 619,619
Modify_Code(), 488, 506, 508
modsp()> 305
M 0D _w ith_A liases() , 651, 654
MOP, 227
More_Syms(), 48, 48
Move_Cond() , 572
Move_Cond_Applic() , 572
Move_Invar() , 403, 404
Move_0per() , 572
Move_0per_Applic() , 572
Move_Window() , 553
Mul_IV(), 432
mvcost, 484

N

Nat_Loop() , 191, 192
nblocks, 92, 92, 356
NC_Domin() , 211
Ndf s() , 186, 189
nested() , 620
netsave, 484
new_label() , 560
New_Sym_Tab() , 4 7 , 47
new_tmp(), 3 4 6 ,4 5 3 ,5 6 0
Next (), 142
next (), 760
NextDfn, 195, 630
Next_Sym(), 48, 48
nil, 304
nil, 2 7 , 35
ninsts, 92, 92, 356
NLabelO, 351, 352
noexp, 85
N o n lo c a l_ A lia s e s () , 643-644,

6 4 5 ,6 4 6 , 648
N o n lo ca ls, 630, 648
N o n locals(), 620
N o n lo c a ls () , 644
N onterm inal, 142, 147
N o_P ath () , 581
No_Reach_Defs() , 431
n p a ra m s() , 614, 616, 623, 634
n re g s , 4 8 7 , 492, 496
N to B O , 351, 352
num insts{), 620
n u m in s t s () ,6 1 0
nwebs, 4 8 7 , 492, 496

Index of Mathematical Formulas, ican Procedures, and Data Structures 825

O
OpdKind, 85
opdrecd, 487 ,492
Operand, 81
OPT(), 413
Order, 181
out(), 231 , 231, 234 , 234, 245,

246, 247
out_param(), 614, 617
O utside_In(), 650
ovr, 308
oi/r(), 308
O vr(), 654, 655, 656
o^rp(), 304

P

pair_m atch(), 649
par am, 614
param (), 617, 634
Parent{), 147
Parent () , 186, 189
P a r s (),638-639
p assed ()

in interprocedural alias analysis,
643

in interprocedural side-effect
analysis, 623

Path(), 227
P a th (), 210
P(Bik/ek, Bii/ei), 239-240 , 245
PC lassC), 544
pdom, 182
Perc_Schedule_l () , 572, 572
Perform _Bin(), 330
Perform_Un(), 330
P ipelin e_Schedule(), 557-558,

558
Post, ISO, 205
PostOrdC), 53S-539
Post_0rder()

in computing dominance
frontiers, 254

in instruction scheduling, 539
Pp, 240
Pre, ISO, 205
PreCtr, 205
P redO , 92, 92, 189
Pred(), 175
preturns () , 612, 617
proc_const(), 614, 616

P r o c e s s_ A fte r () , 178
P ro c e ss_ B e fo re () , 178
P r o c e s s _ C a l l () , 612, 614-615 ,

618
P r o c e s s_ I n s t ()

in building call graph with
procedure-value variables,
612, 613-614

in global value numbering,
345-346

P ro ce ss_ S u cc_ A fte r() , 178
P ro c e ss_ S u c c _ B e fo re () , 178
ProcName, 92, 92
P r o c _ P o s it io n () , 673, 674
ProcSeq, 673, 674
p r o c _ v a r () , 614, 616
P ro l, 552
Prop_M arks(), 650, 652-653
PRSV (), 220, 220
Prune(), 154
Prune_Graph(), 488, 505, 505
P,(A, £/), 245
Ptr(), 30S, 654, 655, 656
ptrP(), 304
PVBinds, 612, 615
PVCalls, 612, 615
PVVals, 612, 615
PVVs, 612, 615

R

R O , 637, 637, 641
RANTin(), 473, 474
RANTout(), 473, 474
RAVin(), 473, 474
RAVout(), 473, 474
RBMOD(), 624, 624
RBM0D (), 626
RCHin(), 219, 221, 222, 223
RCHout, 221,221
Reach() , 154, 418
Reach_Defs_In(), 400
Reach_Defs_0ut() , 400
ReachUnder, 205
R e a l (), 503
R eal_R eg(), 487 , 506
receive , 83
R E D N {), 413
Reduce () , 207, 209
re/X), 304
REF(), 619, 619
refpi), 304

reg b in , 89
r e g b in i f , 89
re g b in tra p , 89
R eg_C h ar() , 59
regcond, 89
r e g e l t , 89
Region_No() , 247
RegionType, 205
R e g is te r , SI, 82
Register_Renam e() , 565-566,

566
Regs, 564, 565, 566
RegsLiveEntryC) , 564, 566
R egsL iveExitC) , 564, 566
RegsU sedC) , 564,566
R e g _ to _ In t() , 498
Reg_to_Sym() , 60, 60, 61
RegType, 87
Reg - Type ()>
regun, 89
regu n if, 89
reguntrap, 89
regval, 89
r e g v a l if , 89
regv a ltrap , 89
R e m a te r ia liz e (), 503
Remove () , in basic-block value

numbering, 344, 347
Remove () , in procedure

positioning, 674, 676
Remove_IVs_LFTR(), 450-453
Renumber() ,3 8 0
R eplace()

in Graham-Glanville code
generator generation,
154

in structural control-flow
analysis, 210, 210

Replace_Copy() , 358
rep la c e _ o p e ra n d s() , 565
r e p l a c e . r e s u l t () , 565
R eplace_U ses() , 450
R e sS e t() , 271
ResVec, 272
RetReg, 487 ,492
re tu rn , 84, 90
r e t v a l , 84, 90
re v e r se () , 673
Right, 147
r ig h t () , 673
R ig h t_ F ir s t () , 147
r ig h tm o st () , 673

826 Index of Mathematical Formulas, ican Procedures, and Data Structures

RM O D (), 620, 626
rmvadj, 496
RootOps, 147
Roots, 273, 540
Round_Abs_Up(), 55, 57
RSTR{), 474
Rsupport (), 637
Rule, 142
RU SE(), 473

S

Sam e(), 674
SAVE(), 474
Sched, 538, 552, 553, 558
SchedulableC), 552
Schedule() , 538-539,

540-541
Sdno, 186, 189
sdom , 182
sequence, 84, 90
S e t_ L e v e ls (), 629, 630
Set_Sym _A ttr(), 48, 48
Sh allow er (), 644
Sh ort_C on st(), 59
S iz e () , 186, 189
S ize L im it, 558
Sparse_C on d_C on st() , 365
sp c o s t , 496, 501
S P _ S ch e d u le () , 553
SRdone, 436, 437
SSASuccC), 364, 365
SSAWL, 364, 365
S t a l l , 552, 553
sta r{), 303
S t a t e () , 558
S ta t ic L in k O ff s e t , 59, 60
stcost, 484
stm t{), 303
StOp, 60
stormem, 89
S tra ig h te n () , 584, 584-585
S t r a t i f y () , 628, 629-630
s t r b i n i f , 87
Stren gth_R educe () , 436-437,

437-438
Strong_Components() , 194, 195
StructNodes, 205, 205
StructO f, 205, 205

Stru ctT ype, 205, 205
S tru c tu ra l_ A n a ly s is (), 205,

206-207
S tru ctu res, 205, 205
s t r u n if , 87
s t r v a l i f , 87
S u b s t (), 158
Su ccO , 92, 92, 189,5 3 9
Succ{), 175
Su ccessors () , 145, 145
Symbol, 47, 81, 487
Symreg, 487
SymTab, 47
Sym _to_Reg(), 59, 59, 61
Sym _to_R eg_Force(), 59, 59
SymType, 60

T

T a il_ R e c u r_ E lim () , 464
Term inal, 142
Tioop, 698-699
Top_Sort () , 646
Tpref9 673, 699
tpref, 698-699
t r a n () ,8 7
TRANSloc(), 408, 410
tuse, 698-699
type, 84, 90
t y p e (), 60

U

UdDu, 251, 487, 490, 594
UdDuChain, 251, 487, 490, 594
Uexpy 387
U lnst, 561
unasgn, 83
unexp, 85
u n if, 83
UniformC), 145, 146, 147
Unify () , 572
Unify_Applic(), 572
U n ro ll() , 558, 559-560,

561
untrap, 83
USE()

in live variables analysis,
445

in interprocedural data-flow
analysis, 619, 619

Use(), 635, 636
U se s (), 565
usesave, 484
usesp(), 305
usewt, 501
UseWt, 487, 501

V

v a la sg n , 83
v a l i f , 83
v a ltr a p , 83
ValType, 363
Value, 48
Value_Number(),

345, 345
Var, 81, 81
Vars(), 646
Vars_Used(), 593
VBEin(), 417, 417
VBEout{), 417, 417
V i s i t () , 180
V i s i t _ I n s t (), 364, 367
V is it_ P h i(), 364, 367
Vocab, 142, 145
VocabSeq, 142

W

webrecord, 487, 490
weight () , 673, 674
widtb(), 523
Window, 552, 553
Window_Schedule(), 552,

552-553
W o r k l i s t _ I t e r a te () , 232,

232

Y

yabe (“ Yet another back end”),
709-710

Z

Z, 225

Subject Index

Symbols

Ox, begins hexadecimal number, in
hir , mir , and lir , 74, 76

+ (addition operator), in ican, 27,
29

+ (addition operator), in hir , mir ,
and lir , 74

| (alternation operator), in xbnf
notation, 19, 20

8a , antidependence operator, 268
± (arbitrary distance), in direction

vectors, 278
* (arbitrary distance), in direction

vectors, 278
?, arbitrary relational operator,

449, 456
[...] (array constant delimiters), in

ican, 24, 27, 30
<- (assignment operator), in hir ,

m ir , and lir , 73, 74, 79, 80
:= (assignment operator), in ican,

24, 36, 37
B (back-edge label), in depth-first

presentation of flowgraph,
178

B (binding graph), in
interprocedural analysis,
623-627, 643-646

°/«r (carriage return character), in
ican, 29

'... ' (character delimiters), in ican,
2 8 ,2 9

"..." (character string delimiters),
in ican, 32

I | (comment delimiter), in hir ,
mir , lir, 76

I I (comment delimiter), in ican,
21

< -(...) (conditional assignment
operator), in h ir , m ir , and
lir , 74, 75

<$c, control-dependence operator,
267-268

C (cross-edge label), in depth-first
presentation of flowgraph,
178

D, ends double-precision floating
point number in h ir , m ir ,
and lir , 74

=> (defined to be operator), in
machine grammars, 140

— ► (defined to be operator), in
xbnf notation, 19

(...), dependence vector delimiters,
277, 278

(derives operator), in machine
grammars, 147

(...), direction vector delimiters,
277-278

(...), distance vector delimiters, 278
/ (division operator), in h ir , m ir ,

and lir , 74
/ (division operator), in ican, 27,

29
/ , does not divide operator, 281

edge in directed graph,
175

[] (empty sequence value), in ican,
24, 27, 32

0 (empty set value), in ican, 24,
27,31

€ (empty string), in grammars, 19,
140

{...} (enumerated type delimiters),
in ican, 23, 26, 29

= (equal to operator), in h ir , m ir ,
and lir , 74

= (equal to operator), in ican, 27,
28, 29, 30

3 (existential quantifier), in ican,
27,28

E (exponent delimiter), in h ir , m ir ,
and lir , 74

E (exponent delimiter), in ican, 28,
29

t (exponentiation operator), in
ican, 27, 29

* . (field indirection operator), in
hir , m ir , and lir , 74

. (field selection operator), in h ir ,
m ir , and lir , 74, 79

. (field selection operator), in ican,
27, 34

<$f, flow-dependence operator,
268

F (forward-edge label), in
depth-first presentation of
flowgraph, 178

o, function composition, 235
—> (function type constructor), in

ican, 23, 26, 28, 34
> (greater than operator), in h ir ,

m ir , and lir , 74, 75
> (greater than operator), in ican,

27, 29
>= (greater than or equal to

operator), in h ir , m ir , and
lir , 74, 75

^ (greater than or equal to
operator), in ican, 27, 29

827

828 Subject Index

(...) (grouping operator), in xbnf
notation, 19

00 (infinite value), in ican, 24, 28,
29

5‘, input-dependence operator, 268
* (Kleene closure operator, unary

postfix), applied to functions,
235

: (label separator), in hir, mir,
and lir, 74, 75, 79, 80

: (label separator), in ican, 37
_L, lattice bottom value, 223
-l (lattice bottom value), in ican,

225,364
□, lattice greater than operator,

225
5 , lattice greater than or equal to

operator, 225
u, lattice join operator, 223
C, lattice less than operator, 225
c (lattice less than operator), in

ican, 639
c , lattice less than or equal to

operator, 225
n, lattice meet operator, 223
n (lattice meet operator), in ican,

232, 367, 639
T, lattice top value, 223
t (lattice top value), in ican, 225,

232, 364
< (less than operator), in hir, mir,

and lir, 74
< (less than operator), in ican, 27,

29
<= (less than or equal to operator),

in hir, mir, and lir, 74
^ (less than or equal to operator),

in ican, 27, 29
-<, lexicographically less than

operator, 275
lexicographically less than or

equal to operator, 276
t (load operator, unary), in

machine grammars, 139
& (logical and operator), in ican,

27, 28
! (logical not operator, unary), in

hir, mir, and lir, 74, 75
! (logical not operator, unary), in

ican, 27, 28
V (logical or operator), in ican, 27,

28

€ (member of set operator), in
ican, 27, 28, 31, 34

7, (modulo operator), in ican, 27,
29

* (multiplication operator), in hir,
mir, and lir, 74, 75

* (multiplication operator), in
ican, 27, 29

- (negation operator, unary), in
hir, mir, and lir, 74, 75

- (negation operator, unary), in
ican, 27, 29

> (negative distance), in direction
vectors, 278

- (negative distance), in direction
vectors, 278

+ (non-empty closure operator,
unary postfix), applied to
functions, 235

!= (not equal to operator), in hir,
mir, and lir, 74, 75

* (not equal to operator), in ican,
27, 28, 29, 30

£ (not member of set operator), in
ican, 27, 31

+ (one or more copies operator,
unary postfix), in xbnf
notation, 19, 2 0

[...] (optional operator), in xbnf
notation, 19, 2 0

8°, output-dependence operator,
268

n (pair binding graph), in
interprocedural alias analysis,
643, 649-653

%fr/, pa-risc floating-point register
/, 754

7,fr/L, pa-risc floating-point
register /, left part, 754

%fr/R, pa-risc floating-point
register /, right part, 754

7,17, pa-risc integer register /, 754
7*7o (percent character), in ican, 29
^-function, static single assignment

form, 252, 253
* (pointer indirection operator,

unary), in hir, mir, and lir,
74, 75, 79

* (position indicator), in LR(1)
items, 144

< (positive distance), in direction
vectors, 278

+ (positive distance), in direction
vectors, 278

<, precedes-in-execution-order
operator, 267, 275

7o" (quotation mark character), in
ican, 29

<...> (record constant delimiters),
in ican, 27, 33

{ ...} (record type constructor), in
ican, 23, 26, 33

♦ (select from set operator, unary),
in ican, 24, 27, 31

tx3 (separated list operator), in xbnf
notation, 19, 2 0

© (sequence concatenation
operator), in ican, 24, 27, 32

[...] (sequence constant delimiters),
in ican, 24, 27, 32

© (sequence member deletion
operator), in ican, 24, 27, 32

i (sequence member selection
operator), in ican, 27, 32

{ ...} (set constant delimiters), in
ican, 27, 31

n (set intersection operator), in
ican, 27, 31

u (set union operator), in ican, 27,
31

7o' (single quotation mark
character), in ican, 29

I... I (size operator), in ican, 24,
27, 36

7«f /, sparc floating-point register /,
748

7«g/, sparc integer general register
/, 748

7oi/, sparc integer in register /, 748
7*1 /, sparc integer local register /,

748
7oO/, sparc integer out register /,

748
7.17, sparc integer register i, 748
<-sp (speculative load operator),

extension to lir, 547, 548
; (statement separator), in ican,

2 1 ,37
<- (store operator), in machine

grammars, 139
• • (subscript range operator), in

ican, 26, 30
- (subtraction operator), in hir,

mir, and lir, 74, 75

Subject Index 829

- (subtraction operator), in ic a n ,
27, 29

<...> (tuple constant delimiters), in
ICAN, 27

@ (tuple element selection operator),
in ic a n , 24, 27, 33

x (tuple type constructor), in ic a n ,
23, 26, 28, 33

= (type definition operator), in
ic a n , 25, 26, 35

u (union type constructor), in ic a n ,
23, 26, 28, 34

V (universal quantifier), in ic a n ,
27, 28

<$wl (write-live dependence),
571

= (zero distance), in direction
vectors, 278

* (zero or m ore copies operator,
unary postfix), in x b n f
notation, 19, 20

A

ABI. See Application Binary
Interface (ABI) standards

abstract flowgraphs, 198
abstract nodes, 198
abstract syntax tree, 70-71
accumulator-variable expansion,

562-564
Action/Next tables, Graham-

Glanville code generator,
149-150, 158

acyclic control structures
backward structural data-flow

analysis, 245, 246
forward structural data-flow

analysis, 239-240
structural control-flow analysis,

202-204, 207-208
acyclic test, 284
Ada

call by value-result in, 117
enumerated value

representation, 107
scoping issues, 52
unnecessary bounds-checking

elimination for, 454-457
addition operator (+)

in h ir , m ir , and l ir , 74
in ic a n , 27, 29

addressing expressions,
algebraic simplification
and reassociation, 334-341

addressing method, symbol-table
variables, 54-55

adjacency-list representation for
interference graphs, 487,
496-497, 498, 499, 530

examples, 498, 514, 516, 517,
520

adjacency-matrix representation
for interference graphs, 487,
495-496, 497, 530

examples, 496, 513-516, 519
affix-grammar-based code

generator generators,
159-160

aggregation of global references,
663

importance of, 664
order of optimizations, 665-666

Aho, Alfred V., 160, 165, 351
algebraic simplifications and

reassociation, 333-343
of addressing expressions,

334-341
algebraic simplifications,

defined, 333
for binary operators, 333
for bit-field types, 333
for Booleans, 333
canonicalization, 335-336
of floating-point expressions,

342-343
order of optimizations, 333,

372
overview, 371
reassociation, defined, 333
for relational operators,

333-334
strength reductions, 334
tree transformations, 337-341
for unary operators, 333
using commutativity and

associativity, 334
ALGOL 60

call by name in, 118
call by value in, 117
labels as arguments, 118-119

ALGOL 68
call by reference in, 118
call by value in, 117

algorithms. See also specific types
of analyses and optimizations

binding graph construction,
625, 643, 645

call graph nesting levels,
629-630

call-graph construction,
609-611

call-graph construction with
procedure-valued variables,
612-618

code hoisting, 418-419
combining alias information

with alias-free version, 651,
654

computing aliases for nonlocal
variables, 643-646, 647

computing formal-parameter
alias information, 650-651,
653

constant folding, 330
dead-code elimination, 592-593,

596
dependence DAG construction,

273-274
depth-first search for dominator

computation, 187
dominator computation using

Dom_Comp, 182
dominator computation using

Domin_Fast, 186-187
dynamic programming

algorithms, 163-165
global common-subexpression

elimination, 388-390,
391-394

GM OD (), 630-631
Graham-Glanville code

generation algorithm,
142-143

greedy or maximal munch,
141

IMOD+ (), 628
instruction scheduling, 540-541
interprocedural constant

propagation, 637-639
intraprocedural code

positioning, 678-681
inverting nonlocal alias function,

646-647, 648
label evaluation for dominator

computation, 188

830 Subject Index

algorithms (cont.)
linking for dominator

computation, 188
local common-subexpression

elimination, 380-381
local copy propagation,

356-358
loop-in variant code m otion,

397-400, 403-404
m arking param eter pairs in pair

binding graph , 650, 652-653
m o s t pipelining algorithm , 567
natural loop , 192
pair binding graph construction ,

649-650
partitioning for g lobal value

num bering, 351-355
path-com pression for dom inator

com putation , 187
percolation scheduling, 572
procedure sorting, 673-676
RBMOD() on binding graph ,

626
sparse conditional constant

propagation, 364-366
strength reduction, 436-438
strongly connected components,

195
structural control-flow analysis,

205-206
unreachable-code elimination,

580-581
unroll-and-compact software

pipelining, 557-558
window scheduling, 552-553
worklist for iterative data-flow

analysis, 232-233
alias analysis, 293-317. See also

interprocedural alias analysis
alias gatherer, 203-207, 315
alias propagator, 307-314, 315
aliases in C, 300-301, 305-306
aliases in Fortran 77, 298-299
aliases in Fortran 90, 301-302,

305
aliases in Pascal, 299-300, 304,

305
Alpha compilers, 729
cases, 295-296
described, 293
flow-insensitive may

information, 295

flow-insensitive must
information, 295

flow-sensitive may information,
295-296

flow-sensitive must information,
296

flow-sensitive vs. flow-insensitive
information, 294-295, 315

granularity of information, 297,
315

importance of, 293-294,
314-315

interprocedural, 641-656
may vs. must information, 294,

315
sources of aliases, 296-297

alias gatherer, 203-207
aliases in C, 305-307
described, 315
examples of aliasing concepts,

303
nontermination, 304
program points, 303
sources of aliases, 296-297

alias propagator, 307-314
for C code, 309-314
described, 296, 315
examples of aliasing concepts,

303
Allen, Francis E., 449, 459
a l l o c a (), pointers and, 113
Alpern, Bowen, 348, 355
Alpha architecture, 726
Alpha compilers, 726-733

alias analysis, 729
assembly code examples,

730-733
assembly language, 750-752
CIL code, 727-728
code generator, 730
data prefetching, 698
data-flow analysis, 729
development, 726-727
EIL code, 727, 728, 730
global optimizations, 729
inlining, 729
instruction prefetching, 672
languages supported, 727
loop inversion, 729
mixed model of optimization in,

9
optimization levels, 728-729

order of optimizations, 705
peephole optimizations, 729,

730
register allocation, 483, 485

alternation operator (|), in x b n f
notation, 19, 20

ancestor, 185
anticipatable registers, in shrink

wrapping, 473
anticipatable values, 410-411
antidependence

definition, 268
operator (5a), 268

Application Binary Interface (ABI)
standards, 105, 134

arbitrary distance, in direction
vectors

± , 278
* , 278

arbitrary relational operator (?),
449, 456

architectures
Alpha, 726
branch architectures, 533
Intel 386 family, 734-735
loop unrolling and, 560-561,

562
pipeline architectures, 531,

532-533
pow er and PowerPC, 716-717
spa r c , 707-708

arguments. See also parameter
passing (run-time);
parameters

defined, 117
described, 111

array constant delimiters ([...]), in
ic a n , 24, 27, 30

array . . .o f, (array type
constructor), in ic a n ,
23

array types (ic a n)
binary operators, 30
constants, 30, 33
overview, 30

arrays
colum n-m ajor order, 107
in copy propagation , 356
data-flow analysis, 258-259
function representation, 764
h ir representation, 68-69
last-w rite trees, 259

lir representation, 68-69
m ir representation, 68-69
row-major order, 107
run-time representation,

107-108
scalar replacement of array

elements, 682-687
separable references, 282
sparse set representation,

762-763
storage binding, 58
unnecessary bounds-checking

elimination, 454
weakly separable references,

282, 283
a sc ii , DEC VAX support, 106
assembly code examples

Alpha compiler, 730-733
Pentiums, 741-744
pow er compiler, 723-725
sparc compilers, 713-716

assembly languages, 747-755
Alpha, 750-752
Intel 386 family, 752-753
pa-r is c , 753-755
pow er and PowerPC,

749-750
relocatable binary form vs.,

138
spa r c , 747-749

assignment operator
in h ir , m ir , and l ir , 73, 74,

79, 80
:=, in ic a n , 24, 36, 37

assignment statements (ic a n),
overview, 36-38

assignments
h ir , 79
l ir , 80
m ir , 75

associativity, algebraic
simplifications using,
334

attribute-grammar-based code
generator generators,
159-160

attributes of symbols in symbol
tables, 45-47

list of, 46
Auslander, Marc, 804
automatic generation of code

generators, 137-167.

Subject Index

See also Graham-Glanville
code-generator generator

Graham-Glanville code
generator generator, 139-158

issues in generating code,
137-138

overview, 6, 137-139
semantics-directed parsing,

159- 160
software resources, 769-770
syntax-directed technique,

139-158
tree pattern matching and

dynamic programming,
160- 165

automatic inlining. See procedure
integration

automatic storage class, 44
automating data-flow analyzer

construction, 259-261
automating instruction-scheduler

generation, 543
available expressions

analysis, 229
global common-subexpression

elimination, 385-387, 390
local common-subexpression

elimination, 379
available registers, in shrink

wrapping, 473

B

Babbage, Charles, 459
back edges

in depth-first presentation, 178
label (B), in depth-first

presentation of flowgraph,
178

in natural loops, 191
Backus-Naur Form, Extended

(x b n f), 19-20
backward data-flow analysis

iterative, 229, 235
live variables analysis, 445-447
structural data-flow analysis,

244-247
balanced binary trees, 48, 761, 763
balanced scheduling, 545
Ball, Thomas, 598
Banerjee, Utpal, 289, 738
basic blocks. See also basic-block

scheduling; cross-block
scheduling

in copy propagation, 356
correspondence between bit-

vector positions, definitions,
and basic blocks, 219, 220

data-flow analysis and, 218
dependence DAGs, 269-274
extended, 175-177, 361,565
identifying, 173-174
intraprocedural code

positioning, 677-681
local common-subexpression

elimination, 382-384
local copy propagation for

extended basic blocks, 361
placement in instruction cache,

676-677
predecessor, 175, 484
reverse extended, 175
successor, 175, 484
value numbering applied to,

344-348
basic induction variables, 426,

427
basic-block scheduling. See also

instruction scheduling
balanced scheduling, 545
combining with branch

scheduling, 573
described, 531
filling stall cycles, 535
list scheduling, 535, 537-543
loop unrolling and, 532
order of optimizations,

574-575
performance and, 573
register allocation and, 545
register renaming and, 532
trace scheduling, 569-570
variable expansion and, 532

basis, of a class of induction
variables, 428

Bell, Ron, 670, 671
Bernstein, David, 521, 548
bidirectional data-flow analysis,

229
bin-packing, register allocation

and, 484-485, 730
binary operators

algebraic simplifications, 333
m ir , 75

831

832 Subject Index

binary operators (ic a n)
array types, 30
boolean types, 28
character types, 29
enumerated types, 30
integer types, 29
real types, 29
record types, 34
sequence types, 32
set types, 31
tuple types, 33
union types, 34

binding graph
flow-insensitive interprocedural

alias analysis, 643, 645
flow-insensitive side-effect

analysis, 623-627
pair binding graph, 649-650

bit-field types, algebraic
simplifications, 333

bit vectors
correspondence between bit-

vector positions, definitions,
and basic blocks, 219, 220

defined, 218-219
lattice of, 224, 226
linked-list representation vs.,

757-759
sequence representation, 763
set operations, 759-760
set representation, 759-760

b l is s compilers
for Alpha, 727
reducible flowgraphs and, 196
register allocation, 483, 484,

528
block and procedure placement in

instruction caches, 676-677
block schema, 203
blocks, basic. See basic blocks
boolean ica n type

binary operators, 28
Boolean-valued expressions, 28
overview, 28
symbol-table entries, 46

Booleans
algebraic simplifications, 333
run-time support, 107

boosting, 548
bottom of lattices, 223
bottom-up rewriting systems

(b u r s), 165

bounds checking, 454. See also
unnecessary bounds-checking
elimination

braces. See curly braces
brackets. See square brackets
Bradlee, David G., 526
branch node, 175
branch optimizations, 589-590

cases, 590
described, 580
detecting branches to branch

instructions, 589
order of optimizations, 589, 604

branch prediction, 597-599
described, 580, 597
dynamic methods, 597-598
heuristics, 598-599
importance of, 579, 603
instruction prefetching and, 673
loop and nonloop branches,

598-599
order of optimizations, 604
perfect static predictor, 598
static methods, 598

branch scheduling, 533-535
branch architectures, 533
combining with basic-block

scheduling, 573
described, 533
filling delay slots, 534-535
filling stall cycles, 535
flowchart, 536
nullification, 534-535
order of optimizations, 574-575
performance and, 573

breadth-first order, 181
breadth-first search, 181
Briggs, Preston, 355, 414, 485,

495, 523, 525, 762
BURG, 769
BURS, 165
byte, usage in this book, 16-17

C

c
alias propagator, 309-314
aliases in, 300-301, 305-307,

641
basic-block boundaries, 174
call by reference in, 118
call by value in, 117

local variable declarations, 58
pointer aliasing, 294
pointers, 258
tail-recursion elimination in,

461,462
well-behaved loops, 425

C++
call by reference in, 118
call by value in, 117
name mangling by cfront

preprocessor, 10
scoping issues, 52

caches. See also data-cache
optimization; instruction-
cache optimization

combined or unified cache, 670
data-cache impact, 670-671
data-cache optimization,

687-700
effectiveness, 670
instruction-cache impact, 672
instruction-cache optimization,

672-682
stride values, 670
translation-lookaside buffer

(TLB), 670
c a l l

l ir , 80
MIR, 76

call-by-name parameter passing,
118

call-by-reference parameter
passing, 117-118

call-by-result parameter passing,
117

call by value
interprocedural alias analysis

an d ,654-656
interprocedural optimization,

656, 658
parameter passing, 117

call-by-value-result parameter
passing, 117

call graphs. See also interprocedural
control-flow analysis

interprocedural control-flow
analysis, 609-618

interprocedural data-flow
analysis, 628-631

procedure sorting, 673-674
Callahan, David, 525, 530, 634,

637, 694

Subject Index

callee-saved registers, 120
caller-saved registers, 120
canonical form for loops, 689
canonical loop test, 275
canonicalization, 335-336
capitalization, x b n f notation, 19
Carr, Steve, 694
carriage return character (#/0r), in

ic a n , 29
case statem ents (ic a n)

form, 39
internal delimiters, 25

case studies, 705-745
Alpha compiler, 726-733
example programs for,

705-707
IBM XL compilers, 716-725
Intel reference compilers for 386

family, 734-744
sparc compilers, 707-716

case/switch schema, 203
CDGs. See control-dependence

graphs (CDGs)
chain loops, eliminating in

Graham-Glanville code
generator, 152-154

Chaitin, Gregory, 485, 494, 498
Chandra, Ashok, 804
character, ican type

binary operators, 29
delimiters ('. . . ') , 28, 29
escape sequences, 29
overview, 29
symbol-table entries, 46

character string delimiters ("..."),
in ic a n , 32

character strings, run-time
representation, 108-109

characters, run-time representation,
106, 108-109

Chow, Frederick, 473, 524, 662
CIL code, 727-728
circular scheduling, 565
ciscs

aggregation of global references,
663

character representation
supported, 106

instruction decomposing, 602
pipelining, 531
register assignment, 482
register usage, 110

class of induction variables,
428

clique, 525
clique separators, 525-526
cloning, procedure, 607-608, 657
closed scopes, 52-54
Cmelik, Robert, 770, 771
coalescing registers. See register

coalescing
Cocke, John, 449, 485, 804
code generation. See also automatic

generation of code generators
Alpha compiler, 730
assembly language vs.

relocatable binary form,
138

described, 3
Graham-Glanville code

generator generator, 140-144
issues, 137-138

code hoisting, 417-420
control-flow analysis and, 175
example, 418, 420
implementation, 418-419
order of optimizations, 421
overview, 377, 417, 420
very busy expressions, 417

code positioning in cache.
See instruction-cache
optimization

code scheduling. See instruction
scheduling

code sharing. See shared objects
code-generator generators. See

automatic generation of code
generators

column-major order for arrays,
107

combined or unified cache, 670
comment delimiter (| |)

in HIR, MIR, l ir , 76
in ic a n , 21

comments
ic a n , 21
MIR, 76

COMMON statement (Fortran 77),
aliases and, 298-299

common storage class (Fortran),
44

common subexpressions
defined, 378
if simplifications, 586

833

common-subexpression
elimination, 378-396

combining with constant
propagation, 394

combining with copy
propagation, 394-395

forward substitution, 395
global, 378, 385-395
local, 378, 379-385, 395
order of optimizations, 421
overview, 377, 378-379, 420
reassociation with, 385,

415-416
register use issues, 396
repeating, 394-395
value numbering vs., 343

commutativity, algebraic
simplifications using,
334

compensation code, in trace
scheduling, 569

compilation process
high-level intermediate

languages in, 69-70
phases, 2-3

compilation, separate. See separate
compilation

compile-time interprocedural
register allocation, 662

compiler structure, 1-3
optimizing compilers, 7-11
placement of optimizations,

11-14
com piler suites, 9
com piler-specific types (ic a n),

overview, 24, 35
com pilers, defined, 1-2
com position operation (o), in

lattices, 235
compound statements, in ic a n , 25
computation nodes, 571
concatenation operation, x b n f

notation, 19-20
condition codes, dependency

computation and, 269
conditional assignment operator

(<-(...)), in h ir , m ir , and
l ir , 74, 75

conditional moves
described, 580, 591
order of optimizations, 604
overview, 591-592

834 Subject Index

congruence of variables, 348-351
co-NP-complete problems, 634,

637
conservative optimizations,

319-320
constant folding, 329-331

algorithm, 330
for floating-point values,

330-331
increasing effectiveness, 331
order of optimizations, 331,

372
overview, 329-330, 371

constant propagation. See also
sparse conditional constant
propagation

combining with common-
subexpression elimination,
394

induction-variable optimizations
and, 426

interprocedural, 637-641, 656,
658

overview, 362-363
constant-expression evaluation. See

constant folding
constant-propagation analysis,

230,261-262
interprocedural, 631-647, 656,

665-666
constants

global constant-propagation
analysis, 230

hir, mir, and lir integer
constants, 76

for jump and return-jump
functions, 640

interprocedural constant-
propagation analysis,
631-641,656, 665-666

constants (ican)
array types, 30, 33
function types, 34
record types, 33
sequence types, 32, 33
set types, 31
syntax of generic simple types,

28
tuple types, 33

constrained Diophantine equations,
280

constraint matrix test, 284

constructed types (ican), 28
array types, 30, 33
function types, 34
record types, 33
sequence types, 32, 33
set types, 31
tuple types, 33

control dependence
defined, 267-268
dependence graphs and,

268-269
operator (<$c), 267-268

control trees, 198, 199
control-tree based data-flow

analysis, 235-236
control-dependence graphs

(CDGs), 284-286
control-dependent nodes of PDGs,

284,286
control-flow analysis, 169-216.

See also flowgraphs and
interprocedural control-flow
analysis

Alpha compilers, 726
basic-block identification,

173- 174
branch node, 175
breadth-first search, 181
depth-first search, 178-179, 180
dominance tree, 171-172
dominator-based approaches,

173
dominators, 171-172, 181-191
flowgraph construction,

174- 177
Intel compilers, 738
interprocedural, 609-618
interval analysis and control

trees, 197-202
interval-based approaches, 173
join node, 175
natural loops, 191-193
postorder traversal, 180, 181
power and PowerPC compilers,

721
predecessors of a node, 175
preorder traversal, 179-181
reducibility, 196-197
simple example, 169-172
sparc compilers, 710
strongly connected components,

193-196

structural analysis, 202-214
successors of a node, 175
usefulness of, 169-170

control-flow and low-level
optimizations, 579-605

branch optimizations, 580,
589-590

branch prediction, 580,
597-599, 603

conditional moves, 580,
591- 592

dead-code elimination, 580,
592- 597, 602-603

described, 322, 579
if simplifications, 580, 585-586
loop inversion, 580, 587-588
loop simplifications, 580,

586-587
machine idioms and instruction

combining, 580, 599-602
postpass or peephole

optimizations, 579, 603-604
straightening, 579, 583-585
tail merging or cross jumping,

580,590-591
unreachable-code elimination,

579, 580-582
unswitching, 580, 588-589

control-flow path, defined, 218
control-tree-based data-flow

analysis, 236-251
Cooper, Keith D., 355, 414, 443,

469, 620, 637, 642, 664
copy propagation, 356-362

combining with common-
subexpression elimination,
394-395

described, 356
global, 358-362
local, 356-358, 361
order of optimizations, 372
overview, 356, 371
register coalescing, 487,

497-501
copy-propagation analysis, 230
Coutant, Deborah, 309
Cray Fortran extensions, 299, 305,

708
critical edges, 407, 408, 474
cross-block scheduling, 546-547

described, 531
order of optimizations, 574-575

performance and, 573
cross edge, in depth-first

presentation of flowgraph
defined, 178
label (C), 178

cross jumping. See tail merging
cyclic control structures

backward structural data-flow
analysis, 245-246

forward structural data-flow
analysis, 240

structural control-flow analysis,
202-204, 207-208

D

D-cache optimization. See
data-cache optimization

DAGs. See Directed Acyclic Graphs
(DAGs)

data dependence, 268-269
data prefetching, 688, 698-700

order of optimizations, 702-703
data structure representation,

757-765
functions, 764-765
linked-list vs. bit-vector,

757-759
sequences, 763
sets, 759-763
trees and DAGs, 763-764

data structures in structural
control-flow analysis, 205

data types. See also type definitions
(ican)

arrays (ican), 30
compiler-specific types (ican),

24, 35
constructed types (ican), 28
enumerated types (ican), 29-30
floating-point numbers, 81
functions (ican), 34-35
generic simple types (ican), 23,

28-29
integers, 81
n il value for, 24, 35
records (ican), 33-34
registers, 82
run-time representation,

106-109
sequences (ican), 32-33
sets (ican), 31-32

Subject Index

size operator (I I), 36
for symbol-table attributes, 46
syntax of ican definitions,

25-26
tuples (ican), 33
unions (ican), 34
variables, 81

data-cache optimization, 687-700.
See also memory-hierarchy
optimizations

data prefetching, 688, 698-700
data-cache impact, 670-671
interprocedural arrangement of

data, 689
locality and tiling, 695-698
loop transformations, 689-695
matrix multiplication and, 671
optimizer structure and, 10-11
order of optimizations, 701, 702
overview, 687-689, 701
scalar vs. memory-oriented

optimizations, 700
data-flow analysis, 217-266.

See also interprocedural
data-flow analysis

Alpha compiler, 729
approaches to solving problems,

230-231
arrays, structures and pointers,

258-259
automating data-flow analyzer

construction, 259-261
available expressions analysis,

229
backward, 229, 244-247
bidirectional, 229
conservatism in, 217
constant-propagation analysis,

230, 261-262
control-flow path, 218
control-tree based, 235-236
copy-propagation analysis, 230
du-chains, 251
factorial computation example,

261-262
fixed points, 226-227
flow functions, 226-227
for global copy propagation,

358-360
forward, 229, 236-244
in induction-variable

optimizations, 428

835

independent attributes, 229
Intel compilers, 738
interprocedural, 619-637
interprocedural data-flow

information and, 658
interval analysis, 249-250
iterative analysis, 231-235
lattices, 223-226
lattices of flow functions,

235-236
live variables analysis, 229
overview, 217-218
partial-redundancy analysis,

230
power and PowerPC compilers,

722
program verification, connection

to, 261-262
purpose, 217
reaching definitions analysis,

218-223,229
slotwise analysis, 250-251
sparc compilers, 710
SSA form, 252-258
structural analysis, 236-249
taxonomy of problems and

solution methods, 228-231
for type determination and

dependence analysis,
262-263

ud-chains, 251
upwards exposed uses analysis,

229-230
webs, 251-252

dead instructions, 592
dead variables, 445, 592-593
dead-code elimination, 592-597

algorithm, 592-593, 596
described, 580, 592
determining dead code, 592-593
ican code, 593-594
importance of, 602-603
order of optimizations, 327,

603-604
repetition of, 13-14, 579, 603
unreachable-code elimination

vs., 580
debugging, intermediate-code

output, 69
DEC GEM compilers. See Alpha

compilers
DEC VAX, ascii support, 106

836 Subject Index

declarations (ican). See also type
definitions (ican)

procedure declarations, 23, 24,
27

syntax, 26-27
variable declarations, 23, 26-27

dedicated registers, 120
defined to be operator

=>, in machine grammars, 140
— >, in xbnf notation, 19

degree, in register allocation by
graph coloring, 494

degree < R rule, 488, 503-506
delay slots, filling, 532, 534-535
delayed expressions in partial-

redundancy analysis,
411-412

delete-node transformation,
571-572

delimiters
between statements (ican), 21
of compound statements (ican),

25
Delta test, 284
dependence, defined, 267
dependence analysis, 267-291

Alpha compilers, 729
basic-block dependence DAGs,

269-274
data-flow analysis for, 262-263
dependence relations, 267-269
dependence testing, 279-284
dependences between

dynamically allocated
objects, 286-288

dependences in loops, 274-279
in high-level intermediate

languages, 71
Intel compilers, 738
power and PowerPC compilers,

721
program-dependence graphs

(PDGs), 284-286
sparc compilers, 711

dependence DAGs, 269-274
algorithm, 273-274
constructing, 271-274
edges in, 269
for lir code, 270-271
list scheduling, 535, 537-543
nodes in, 269
resource vectors, 271

structural hazards, 271
for window scheduling,

551-552, 554, 555
dependence graphs

described, 268-269
program-dependence graphs

(PDGs), 284-286
dependence relations, 267-269

antidependence (<$a), 268
control dependence (<$c),

267-268
data dependence, 268
flow or true dependence (5f),

268
input dependence (<$'), 268
loop-carried, 278
loop-independent, 278
notation, 267-268, 276
output dependence (5°), 268
write-live dependence (<$wl), 571

dependence testing, 279-284
constrained Diophantine

equations, 280
GCD (greatest common divisor),

281-283
integer programming, 280
other tests, 283-284
separable array references, 282
weakly separable array

references, 282
dependence vector

defined, 278
delimiters ((...)), 277, 278
distance vector, set of, 278

dependent induction variables,
426-427, 429

depth-first number, 178
depth-first presentation, 178
depth-first search, 178-179,180

computing dominators, 187
interprocedural data-flow

analysis, 632
depth-first spanning tree, 178

computing, 180
in structural control-flow

analysis, 204
tree edges, 178

derives operator (^) , in machine
grammars, 147

Deutsch, Alain, 133, 287, 290
Dhamdhere, Dhananjay M., 250,

407

Directed Acyclic Graphs (DAGs),
100-101

basic-block dependence DAGs,
269-274

representation, 764, 765
direction vector

defined, 277-278
delimiters ((...)), 277-278

distance vector
defined, 277
delimiters ((...)), 278
lexicographically positive,

690-691
distance vector set, 278
distributive lattices, 224, 236
division operator (/)

in hir, mir, and lir, 74
in ican, 27, 29

does not divide operator (/) , 281
dominance frontiers, 253-256

computing for flowgraphs,
254-256

iterated, 254-256
dominance tree

global value numbering for, 355
identifying loops, 171-172

dominators, 181-191
algorithms, 182, 186-187
computing using Dom_Comp(),

182- 184
computing using Domin_Fast,

185-191
disadvantages of, 173
immediate dominators,

183- 184, 189-191
label evaluation computation,

188
linking computation, 188
overview, 181-182
path-compression computation,

187
postdominators, 182
semidominators, 185
simple example, 171-172
strict dominators, 182

double-precision floating-point
number, ends with D, in hir,
mir, and lir, 74

double-precision matrix
multiplication, 671

du-chains, 251, 486. See also webs
determining dead code, 593

in SSA form, 252
dynamic branch-prediction

methods, 597-598
dynamic extent, 45
dynamic languages, run-time

support, 131-133
dynamic link. See also shared

objects
described, 110-111, 114
global offset table (GOT), 129,

130
procedure linkage table (PLT),

130, 131
semantics of, 127-128
transferring control between

shared objects, 129-130
transferring control within

shared objects, 128-129
dynamic linker, run-time, 127-128
dynamic programming, 160-165

algorithms, 163-165
described, 160
optimality principle, 160
pattern-matching process,

160-164
tree-matching automaton, 163,

164
tree-rewriting rules, 160-162
uniform-register-machine

assumption, 163-165
dynamic scoping, 45
dynamically allocated objects,

dependences between,
286-288

dynamically allocated storage, alias
gatherer and, 302

E

earliestness of expressions in
partial-redundancy analysis,
411

early optimizations, 329-375
algebraic simplifications and

reassociation, 333-343
constant folding, 329-331
constant-expression evaluation,

329-331
copy propagation, 356-362
described, 321
scalar replacement of aggregates,

331-333

Subject Index

sparse conditional constant
propagation, 362-371

value numbering, 343-355
ebcdic, IBM System/370 support,

106
Ebcioglu, Kemal, 548
edge in directed graph (...->...),

175
edge splitting, of critical edges,

407, 474, 509
effective height, of a lattice, 226
efficiency. See also performance

one-pass compilers and, 3, 6
run-time support and, 4-6

Eggers, Susan f., 526, 545
EIL code, 727, 728
elimination methods

control-tree based data-flow
analysis, 235-236

interval control-flow analysis,
173, 197-202

empty sequences, in ican
defined, 24
value ([]), 24, 27, 32

empty sets, in ican
defined, 24
value (0), 24, 27,31

empty string (e), in grammars, 19,
140

enum, enumerated type constructor,
in ican, 23

enumerated type delimiters
({ . . . }) , in ican, 23, 26, 29

enumerated types, run-time
representation, 107

enumerated types (ican)
binary operators, 30
overview, 29-30
symbol-table entries, 46

epilogue of procedures, 120
shrink wrapping and, 472, 473

equal to operator (=)
in hir, mir, and lir, 74
in ican, 27, 28, 29, 30

EQUIVALENCE statement (Fortran
77), aliases and, 298-299

escape sequences for character
values, 29

essential value or instruction, 592
examples in this book, target

machines, 16
exception handling, in

837

interprocedural side-effect
analysis, 637

existential quantifier (3), in ican,
27 ,28

exit blocks of a loop, 403
exponent delimiter (E)

in hir, mir, and lir, 74
in ican, 28, 29

exponentiation operator (t), in
ican, 27, 29

expressions
algebraic simplification and

reassociation of addressing
expressions, 334-341

algebraic simplification of
floating-point expressions,
342-343

available expressions analysis,
229

common-subexpression
elimination, 378-396

delayed, 411-412
earliestness, 411
globally anticipatable values,

410-411
HIR, 79
isolated, 413
latestness, 412-413
lir, 80
locally anticipatable values,

410
mir, 84-85
very busy expressions, 417

expressions (ican)
Boolean-valued, 28
n i l value in, 35
overview, 23, 28
syntax, 27

Extended Backus-Naur Form
(xbn f), 19-20

syntax of hir instructions,
78-79

syntax of lir instructions, 79-81
syntax of mir instructions,

73-75
syntax of mir programs and

program units, 74
extended basic blocks, 175-177

local copy propagation for, 361
register renaming on, 565

extended formal parameters, 643
extended GCD test, 283

838 Subject Index

extent of variables, 44
dynamic extent, 45

extern storage class, 44

F

factorial computation, data-flow
analysis example, 261-262

Farnum, Charles, 342
field indirection operator (* .) , in

hir, mir, and lir, 74
field selection operator (.)

in hir, mir, and lir, 74, 79
in ican, 27, 34

file storage class, 44
finite differences, method of,

435
Fischer, Charles N., 159, 160
fixed points, 226-227

maximum (MFP), 227
floating-point expressions,

algebraic simplification,
342-343

floating-point registers, ican
representation, 82

floating-point values
constant folding for, 330-331
data-cache optimization and,

688-689
in ican, 81
in hir, lir, and mir, 76
parameter-passing in registers,

121
run-time representation,

106-107
flow dependence

defined, 268
in dependence graphs, 268
operator (<$f), 268

flow functions
alias propagator, 308
backward structural data-flow

analysis, 244
fixed point, 226
forward structural data-flow

analysis, 237-239
lattices of monotone, 235-236
overview, 226-227

flow sensitivity
alias information, 294-296,

315
flow-insensitive interprocedural

alias analysis, 642-654

flow-insensitive interprocedural
side-effect analysis, 619-633

flow-sensitive interprocedural
alias analysis, 642

flow-sensitive side-effect
analysis, 634-636

global optimization and,
323

interprocedural optimization
and, 608-609, 664

optimizations, 323
flow-insensitive interprocedural

alias analysis, 642-654
binding graph construction,

643, 645
combining alias information

with alias-free version, 651,
654

computing formal-parameter
aliases, 650-651, 653

example program, 643, 644
extended formal parameter set,

643
inverting nonlocal alias function,

646-647, 648
marking algorithm, 650,

652-653
nonlocal aliases, 643-644,

646-648
pair binding graph construction,

649-650
steps in computing, 643

flow-insensitive side-effect analysis,
619-633

binding graph construction,
623-627

call graph construction,
628-631

depth-first search, 632
strongly connected components,

631-632
flow insensitivity. See flow

sensitivity
flow-sensitive interprocedural alias

analysis, 642
flow-sensitive side-effect analysis,

634-636
flowgraphs. See also control-flow

analysis
abstract, 198
constant propagation and,

363
construction, 174-177

dominance frontier
computation, 254, 255

dominator tree for, 257
extended basic blocks, 175-177
intraprocedural code

positioning, 681
iterated dominance frontier

computation, 254, 256
predecessor basic blocks, 175
reducibility, 196-197
for register allocation by graph

coloring, 512, 513, 518, 521,
522

reverse extended basic blocks,
175

successor basic blocks, 175
translating to SSA form,

256-257, 349-350
fonts, xbnf notation, 19
for statements

hir, 78-79
ican, 39
iterators in ican, 39-40

Fortran
aliased variables and, 641
aliases in Fortran 77,

298-299
aliases in Fortran 90, 301-302,

305
arrays, column-major order, 107
call by reference in, 118
call by value-result in, 117
common storage class, 44
Cray extensions for Fortran 77,

299, 305, 708
enumerated value

representation, 107
Fortran FI compiler, 484, 528
labels as arguments, 118-119
lexical and syntactic analysis in,

3
preprocessor for, 10
reducibility in Fortran 77,

196-197
forward data-flow analysis

defined, 218
iterative, 231-234
iterative forward bit-vector,

218-223
structural, 236-244

forward edges, in depth-first
presentation of flowgraph

defined, 178

Subject Index

label (F), 178
forward substitution, 396
Fourier-Motzkin test, 284
frame pointer (fp), 112-114

a l lo c a () and, 113
described, 110, 112
stack pointer vs., 112-113
tail-call elimination and, 462

frames. See stack frames
Fraser, Christopher, 273, 768,

769
Free Software Foundation, 768
Freiburghouse, Richard A., 483,

528
function composition (o), 235
function types, in ican

constants, 34
constructor (—>), 23, 26, 28, 34
overview, 34-35

functions, representation,
764-765

fundamental induction variables,
426, 427

future trends in compiler design,
744

G

Ganapathi, Mahadevan, 159, 160,
608, 664

Gao, G. R., 817
GCD (greatest common divisor)

dependence test, 281-283
GEM compilers. See Alpha

compilers
generating code. See automatic

generation of code generators;
code generation

generation scavenging, 133
generic simple constants (ican),

syntax, 28
generic simple types (ican)

list of, 23, 28
overview, 28-29

Geschke, Charles M., 820
global common-subexpression

elimination, 385-395
algorithms, 388-390, 391-394
available expressions, 385-387,

390
combining with local form, 394
control-flow analysis and, 175
dealing with individual

expression occurrences,
390-394

local vs., 378
repeating, 394-395
using AEin() data-flow

function, 388-390
global copy propagation, 358-362

data-flow analysis for, 358-360
data-flow equations, 359-360
local copy propagation and, 361
performing, 360-361
some copy assignments not

detected, 362
global data structures in structural

control-flow analysis, 205
global offset table (GOT), 129,

130
global offset table pointer (gp)

described, 111
used, 129, 663

global storage classes, 44
global symbol-table structure,

49-54
closed scopes, 52-54
stack-plus-hashing model,

52-54
symbol-table stacks, 49, 51
tree of local symbol tables,

49, 50
global value numbering, 348-355

congruence of variables,
348-351

extending to dominator trees,
355

generalizations to approach, 355
local value numbering and, 344
partitioning algorithm, 351-355
translating flowgraphs into SSA

form, 349-350
value graphs, 349-351

globally anticipatable values,
410-411

GNU compilers, 768
Goldberg, David, 331
Goldin, Dina Q., 803
Goldstine, Herman H., 459
Golumbic, Martin C., 548, 803
Goodman, James R., 740
GOT. See global offset table (GOT)
goto statements

ican form, 38
labels as arguments, 118
mir, 75-76

Graham, Susan L., vii-ix, 52,
139-158

Graham-Glanville code-generator
generator, 139-158

Action/Next table issues, 158
algorithm, 142-143
chain loop elimination, 152-154
code generator, 140-144
code-generation algorithm,

142-143
code-generator generator,

144-151
components, 139
example for lir instructions,

139- 140, 141
machine-description rules,

140- 142
overview, 139-140
Polish-prefix input to code

generator, 139-158, 764
syntactic block elimination,

154-158
granularity of aliasing information,

297,315
graph coloring. See register

allocation by graph coloring
greater than operator (>)

in hir, mir, and lir, 74, 75
in ican, 27, 29

greater than or equal to operator
>=, in hir, mir, and lir, 74, 75

in ican, 27, 29
greatest common divisor (GCD)

dependence test, 281-283
greedy algorithms, 141, 544
greedy schedule, unconstrained,

555-556
Gross, Thomas, 542, 543
group I optimizations, 323-324
group II optimizations, 324
group III optimizations,

324-325
group IV optimizations, 325
grouping operator ({...)), in xbnf

notation, 19
Groves, Randy, 807
Gupta, Anoop, 699
Gupta, Rajiv, 525, 689

H

Hall, Mary W., 469, 664, 806
Hanson, David, 768, 769

839

840 Subject Index

hashing
function representation, 764,

765
local common-subexpression

elimination, 384-385
local symbol-table management,

48-49
set representation, 761-762
stack-plus-hashing model,

52-54
height of a lattice, 226
Hendren, Laurie J., 262, 287, 290
Hennessy, John, 259, 260, 524,

542,543, 662
Henry, Robert, 158, 526, 769
heuristics for register spilling. See

register allocation by graph
coloring

Hewlett-Packard pa-risc compiler.
See pa-risc compiler

hexadecimal notation, 17
hexadecimal number, begins with

Ox, in hir, mir, and lir, 74,
76

hierarchical reduction, 568-569
order of optimizations, 574-575

high-level data-flow analysis, 202
high-level intermediate languages,

69-71. See also hir
abstract syntax tree, 70-71
in compilation process, 69-70
dependence analysis in, 71
order of optimizations, 325-326
in preprocessors, 69-70

High-level Intermediate
Representation. See hir

Hilfinger, Paul, 525
hir, 78-79. See also intermediate

code
canonical form for loops, 274
definition of, 78-79
described, 4
differences from mir, 78-79
ican representation, 81-82,

85-86
instructions, 78-79
loop code, 5
operators in IROper, 82

Hobbs, Steven O., 820
Hood, Robert T., 637
Hopcroft, John, 351
Hopkins, Martin, 494

HP pa-risc compiler. See pa-risc
compiler

Hummel, Joseph, 287

I

I-cache optimization. See
instruction-cache
optimization

IBM 801 Rise system, 485, 718
IBM PL/1 compiler, 528
IBM System/370 compiler, 106,

484, 528, 531,575
IBM XL compilers. See power and

PowerPC compilers
iburg, 769-770
ican. See Informal Compiler

Algorithm Notation (ican)
ICP lattices. See integer constant-

propagation (ICP) lattices
identifiers, mir, 76
identity function, (id()), 233
if simplifications, 585-586

common subexpressions, 586
constant-valued conditions,

585-586
described, 580, 585
for empty arms, 585

if statements
code representations for

structural data-flow analysis,
247-248

flow functions for structural
data-flow analysis, 237-238,
244-245

hir, 78
ican, 38-39
mir, 75-76

IL-1 code (Intel compilers), 736,
737

IL-2 code (Intel compilers),
736-738

immediate dominators, 183-184,
189-191

implicit resources, dependency
computation and, 269

improper intervals or regions, 196,
203, 240-241

in-line expansion, 470-472
advantages, 470-471
mechanisms required, 471-472
order of optimizations, 477-478

summary, 476
independent-attributive data-flow

analysis, 229
index vectors, lexicographic

ordering of, 275
induction variables

basic or fundamental, 426, 427
basis, 428
class of, 428
dependent, 426-427, 429
identifying, 426-435
induction-variable expansion,

562-563
overview, 425-426
removal of, 447-453
replacing (linear-function test

replacement), 447, 448-453
strength reduction, 435-443,

444
induction-variable optimizations,

425- 453
addressing modes and, 426
constant propagation and,

426
data-flow analysis in, 428
identifying induction variables,

426- 435
linear-function test replacement,

447, 448-453
live variables analysis, 443-446
order of optimizations, 458
removal of induction variables,

447-453
strength reduction, 435-443,

444
summary, 458

infinite loop. See nonterminating
computation

infinite value («>), in ican, 24, 28,
29

Informal Compiler Algorithm
Notation (ican), 19-42

comments in, 21
constraints of constructed types,

24
constructors, 23
data types, 27-36
expressions, 23, 27, 28
Extended Backus-Naur Form

(xbnf), 19-20
generic simple constants, 28
generic simple types, 23, 28-29

hir representation in, 81-82,
85- 86

intermediate-code operators, 82
keywords, reserved in, 40
lexical conventions, 21-22
lir representation in, 81-82,

86- 92
mir representation in, 81-85
naming of data structures and

routines, 92-95
overview, 23-25
procedure declarations, 23, 24,

26- 27
program syntax, 25
statements, 36-40
syntax conventions, 21
type definitions, 23, 24, 25-26,

27- 36
variable declarations, 23, 26-27

inlining. See in-line expansion
inlining, automatic. See procedure

integration
input dependence

defined, 268
operator (<$*), 268

inside-out order, 609
instruction buffer, 672
instruction-cache optimization,

672-682
combining intra- and

interprocedural methods, 682
instruction prefetching, 672-673
instruction-cache impact, 672
intraprocedural code

positioning, 677-681
order of optimizations, 702-703
overview, 701
procedure and block placement,

676-677
procedure sorting, 673-676
procedure splitting, 681-682

instruction combining. See machine
idioms and instruction
combining

instruction decomposing, 602
instruction prefetching

branch prediction and, 673
hardware prefetching, 672
order of optimizations, 702-703
software prefetching, 672-673

instruction scheduling, 531-577
algorithm, 540-541

Subject Index 841

automating instruction-
scheduler generation,
543

balanced scheduling, 545
basic-block scheduling, 531
branch scheduling, 533-535,

536
combining with register

allocation, 526
cross-block scheduling, 531,

546-547
DEC GEM compilers, 729,

730
described, 322
Intel 386 family compilers, 739,

740
list scheduling, 535, 537-543
loop unrolling, 532
order of optimizations, 532,

574-575
overview, 531-532
percolation scheduling, 532,

571-573
power and PowerPC compilers,

723
register allocation and, 545
register renaming, 532
repetition of, 14
software pipelining, 531, 532,

548-569
sparc compilers, 713
speculative loading and

boosting, 547-548
speculative scheduling, 548
for superscalar implementations,

543-545
trace scheduling, 532, 569-570
variable expansion, 532

instruction-scheduler generation,
automating, 543

integer constant-propagation (ICP)
lattices, 224-225, 228

in teger ican type
binary operators, 29
overview, 29

integer programming, 280
integer registers

ican representation, 82
parameter-passing in, 121-123

integers
ican representation, 81
run-time representation, 106

Intel reference compilers for 386
family, 735-744

assembly language, 752-753
code generator (Proton), 735,

738-739
code reselection, 740
data-dependence testing, 738
data-flow analysis, 738
f xch instruction, 740
global optimizer, 738
IL-1 code, 736, 737
IL-2 code, 736-738
instruction combining, 739-740
instruction scheduling, 740
instruction selection, 739-740
Intel 386 family architecture,

734-735
interprocedural optimizer,

736-737
languages supported, 735
low-level optimizations,

740-741
memory optimizer, 738
Pentium assembly code

examples, 741-744
position-independent code, 741
Proton intermediate language

(PIL), 738-739
register allocation, 740
sparse conditional constant

propagation, 738
structure, 735-736

interference graphs, 494-497
adjacency-list representation,

487, 496-497, 498, 499
adjacency-matrix representation,

487, 495-496, 497
degree < R rule, 503-506
described, 481, 485
examples, 486, 503, 513-516,

519-522
overview, 494-495
pruning, 488, 503-506
reducing register pressure, 506
register pressure, 506
spilling symbolic registers, 488,

506-511
interferences, defined, 481
interlocks, 532-533
intermediate code. See also hir;

lir; mir; SSA form
algorithms operating on, 4

842 Subject Index

intermediate code (cont.)
code-generation approach and,

138
debugging output, 69
Directed Acyclic Graphs

(DAGs), 100-101
external representation issues,

69
high-level intermediate

languages, 69-71
hir, 78-79, 85-86
ican naming of data structures

and routines, 92-95
ican representation of mir, hir,

and lir, 81-92
lir, 79-81, 86-92
low-level intermediate

languages, 71-72
medium-level intermediate

languages, 71
mir, 73-78, 82-85
multi-level intermediate

languages, 72-73
new intermediate code design vs.

existing one, 67-69
optimization and, 67-68
Polish-prefix notation, 101
program-dependence graphs

(PDGs), 284-286
quadruples, 96
translating between forms,

68-69
trees, 97-100
triples, 96-97
variety in design, 4

Internet software resources, 767
interprocedural alias analysis,

641-656
example, 642
flow-insensitive, 642-654
flow-sensitive, 642
for languages with call by value

and pointers, 654-656
overview, 641-642

interprocedural analysis and
optimization, 607-668

aggregation of global references,
663

alias analysis, 641-656
constant propagation,

637-641
control-flow analysis, 609-618

data-flow analysis, 619-637
flow insensitivity and, 608-609
flow sensitivity and, 608-609
in-line expansion, 470-472
may and must information and,

608-609
optimizations, 656-659
order of optimizations, 665-666
overview, 607-609
parameter-passing and, 608
performance and, 608
procedure cloning, 607-608,

657
procedure integration, 465-470
“ programming in the large”

issues, 663-664
register allocation, 659-662
separate compilation and, 608
tail-call elimination, 461-465

interprocedural constant
propagation, 637-641,
665-666

algorithm, 637-639
choices for jump and return-

jump functions, 640-641
importance of, 664
jump functions, 637
order of optimizations,

665-666
procedure cloning and, 641
return-jump functions, 637
site-independent form, 637
site-specific form, 637
support of a function, 637

interprocedural constants, for jump
and return-jump functions,
640

interprocedural control-flow
analysis, 609-618

ican code for call graph
construction, 609-611

inside-out order, 609
invocation order, 609
outside-in order, 609
with procedure-valued variables,

612-618
reverse invocation order, 609
separate compilation and, 611
types of actions for procedure

valued variables, 615-616
interprocedural data-cache usage,

689

interprocedural data-flow analysis,
619-637

binding graph construction,
623-627

call graph construction,
628-631

depth-first search, 632
flow-insensitive side-effect

analysis, 619-633
flow-sensitive side-effect

analysis, 634-636
other issues in computing side

effects, 637
overview, 619
program summary graph,

634-636
program supergraph, 634
strongly connected components,

631-632
interprocedural register allocation,

659-662
annotations, 660-661
compile-time, 662
importance of, 664
issues requiring special handling,

661-662
link-time, 659-662
order of optimizations, 665-666

interval control-flow analysis,
197-202. See also structural
control-flow analysis

advantages, 173
basic steps, 200-202
control trees, 198, 199
minimal vs. maximal intervals,

199, 200
overview, 173
structural analysis compared to,

202
interval data-flow analysis,

249-250
in power and PowerPC

compilers, 722
reaching definitions example,

249-250
structural analysis compared to,

249
intraprocedural code positioning,

677-681
algorithm, 678-681
order of optimizations, 678
overview, 677-678

Subject Index 843

procedure splitting and, 681
intraprocedural optimizations, 607
invocation order, 609
Irlam, Gordon, 768
irreducibility

approaches to, 197
prevalence of, 196-197
See also improper intervals

isolated expressions, 413
iterated dominance frontiers,

254-256
iteration space, 275
iteration-space traversal, 275, 276,

277
iterative, defined, 218
iterative data-flow analysis,

231-235
for backward problems, 235
iterative forward bit-vector

problem, 218-223
worklist algorithm, 232-233

iterative forward bit-vector
problem, 218-223

iterators, for statements (ican),
39-40

J
Java, run-time support, 131-133
Johnson, Steven C., 165
Johnsson, Richard K., 820
join node, 175
join operation, for lattices, 223,

225
Jones, Neil D., 225, 262, 287, 290,

306
Joy, William N., 52
jump functions, 637-641

K

Kam, J. B., 227
Kennedy, Ken, 449, 620, 637, 642,

664,694
Keppel, David, 771
Kerns, Daniel R., 545
keywords (ican)

list of, 40
reserved words, 25, 40

Kildall, Gary A., 227, 259
killing definitions, 220
Kim, Ki-Chang, 807

Kleene closure, unary postfix
operator (*), applied to
functions, defined, 235, 248

Knobe, Kathleen, 525, 530
Knoop, Jens, 407, 443, 597
Koblenz, Brian, 525, 530
Krawczyk, Hugo, 803
Kuck, David J., 637

L

labels, passing as arguments,
118-119

label separator (:)
in hir, mir, and lir, 74, 75, 79,

80
in ican, 37

label variables, in interprocedural
side-effect analysis, 637

Lam, Monica, 289, 568, 690, 698,
699, 738, 769

Larus, James, 525, 598, 767
last-write trees, 259
latestness of expressions, in

partial-redundancy analysis,
412-413

lattices
of bit vectors (BV"), 224, 226
bottom value (_L), 223
bottom value (J-), in ican, 225,

364
distributive, 224
greater than operator (□), 225
greater than or equal to operator P) , 225
height, 226
integer constant-propagation

(ICP) lattice, 224-225, 228
join operator (u), 223
less than operator (E), 225
less than operator (c), in ican,

639
less than or equal to operator

P) , 2 2 5
meet operator (n), 223, 225
meet operator (n), in ican, 232,

367, 639
monotone, 226
overview, 223-226
partial order on, 225
product of lattices, 224
product operator (x), 224

strongly distributive, 236
top value (T), 223
top value (t), in ican, 225, 232,

364
lattices of monotone flow

functions, 235-236
composition operator (o), 225
effective height, 226
fixed points, 226-227
identity function (id), 235
Kleene closure operator, unary

postfix (*), 235, 248
nonempty closure operator,

unary postfix (+), 235
lazy code motion, 407
lcc , 768
leaf routine, defined, 472
leaf-routine optimization, 472-

473. See also shrink
wrapping

applicability, 472-473
order of optimizations, 477-478
overview, A ll

Lee, Peter H., 131, 132
Lengauer, Thomas, 185, 738
less than operator (<)

in hir, mir, and lir, 74
in ican, 27, 29

less than or equal to operator (<=)
in hir, mir, and lir, 74
in ican, 27, 29

Lewis, Harry R., 348, 729
lexical analysis

combining with syntactic
analysis, 3

described, 2
for Fortran, 3

lexicographically less than operator
(<h 275

lexicographically less than or equal
to operator (;<), 276

lexicographically positive distance
vector, 690-691

Li, Kai, 548
libraries

interprocedural issues, 664
shared, 127-131

Lichtenstein, W., 817
lifetimes of variables, 44
linear-function test replacement,

447, 448-453
described, 447

844 Subject Index

linear-function test replace
ment (cont.)

ican code, 450-453
procedure, 448-450

link-time interprocedural register
allocation, 659-662

linked-list representation
bit-vector representation vs.,

757-759
of sequences, 763
of sets, 760

Linpack
procedure integration and,

465-466
propagating information, 657

lir, 79-81. See also Graham-
Glanville code-generator
generator; intermediate code

array representation, 68-69
assignments, 80
definition of, 79-81
dependence DAGs, 270
described, 4
differences from mir, 79-81,

492-494
Graham-Glanville code

generator generator, 139,
140

ican representation, 81-82,
86-92

instructions as ican tuples,
91-92

loop code, 5
memory addresses, 91
operators in IROper, 82
tail-call optimization, 463

LISP
compile-time interprocedural

register allocation, 662
dynamic scoping, 45
register allocator, 525
run-time support, 131-133

list scheduling, 535, 537-543
algorithm, 540-541
approach to, 540
basic-block boundaries, 537
delay function computation,

538, 539
dependence DAG, 537-543
heuristics, 542
ican code, 538-541
NP-hard problem, 537

performance and, 437
literal constants, as jump and

return-jump functions, 640
live range, in register allocation by

priority-based graph coloring,
524-526

live variables
defined, 443, 445
in interference graphs, 494
live range, 524
in register renaming, 564

live variables analysis, 229,
443-446

backward data-flow analysis,
445-447

live vs. dead variables, 443, 445
Lo, Jack L., 545
load operator, unary (t), in

machine grammars, 139
loads, generating in symbol tables,

59-63
local common-subexpression

elimination, 379-385
algorithm, 380-381
available expressions, 379
binary case, 379-382
combining with global, 394
example, 382-384
fast implementation, 384-385
global vs., 378
overview, 379
repeating, 394-395

local copy propagation, 356-358
algorithm, 356-358
generalizing for extended basic

blocks, 361
global copy propagation and,

361
local methods of register allocation,

483-485
local stack frames. See stack frames
local symbol-table management,

47-49
balanced binary tree, 48
hashing, 48-49

local transparency, 408-410
locally anticipatable values, 410
logical and operator (&), in ican,

27, 28
logical not operator, unary (!)

in hir, mir, and lir, 74, 75
in ican, 27, 28

logical or operator (V), in ican, 27,
28

loop dependence tests, 279-284
loop distribution, 694
loop fusion, 684, 693-694
loop header, 191
loop interchange, 684, 691
loop invariants, removal of

induction variables and, 449
loop inversion, 587-588

in DEC GEM compilers for
Alpha, 729

described, 580, 587
determining that a loop is

entered, 587-588
nested loops, 587-588

loop optimizations, 425-460
induction-variable

optimizations, 425-453
order of optimizations, 458-459
overview, 322, 425, 457-459
transformations for data-cache

optimization, 689-695
unnecessary bounds-checking

elimination, 454-457
loop peeling, 374, 684
loop permutation, 691
loop reversal, 692
loop simplifications, 580, 586-587
loop skewing, 692-693
loop tiling, 694-695

data-cache organization and,
697

locality and, 695-698
loops not fully tilable in, 696,

697
tile loop, 694
tile size and, 697-698

loop transformations for data-
cache optimization, 689-695

lexicographically positive
distance vector, 690-691

locality and loop tiling, 695-698
loop distribution, 694
loop fusion, 693-694
loop interchange, 691
loop permutation, 691
loop reversal, 692
loop skewing, 692-693
loop tiling, 694-698
overview, 689-691
types, 690

Subject Index

unimodular transformations,
690-693

loop unrolling, 559-562
architectural characteristics and,

560- 561, 562
combining with window

scheduling, 553, 555
described, 532, 573
ican code, 561
instruction-level parallelism

increase, 562
loop characteristics and,

561- 562
order of optimizations, 573,

574-575
overview, 559
register renaming and, 561
rolled loop, 559
trace scheduling and, 569
unrolling factor, 559

loop-carried dependence, 278
loop-independent dependence, 278
loop-invariant code motion,

397-407
algorithm, 397-400, 403-404
examples, 400-403, 404-406
identifying loop-invariant

computations, 397-398
order of optimizations, 421
overview, 377, 397, 420
preventing errors in, 401-403
reassociation with, 415-416
reductions, 406-407

loops. See also dominators; for
statements; if statements;
while statements

canonical form, 689
canonical loop test, 275
control-flow analysis, 191-196
dependences in, 274-279
dominance tree for, 171-172
doubly nested, 275-276
flow functions for structural

analysis, 237-239
headers, 191
iteration space, 275
iteration-space traversal, 275,

276, 277
kinds of optimizations, 6-7
natural loops, 191-193
nesting depth and register

allocation, 483, 484

strongly connected components,
193-196

well-behaved, in C, 425
low-level intermediate languages,

71-72. See also l i r

order of optimizations,
326-327, 328

Low-level Intermediate
Representation. See l i r

low-level model of optimization,
7-9

low-level optimizations. See
control-flow and low-level
optimizations

M

machine idioms, defined, 599
machine idioms and instruction

combining, 599-602
described, 580
examples, 599-602
instruction combining, 599
Intel 386 family compilers,

739-740
machine idioms, 599
order of optimizations, 604

machine-level DAGs, 542-543
machine simulators, 767-768
Mansour, Yishay, 803
Markstein, Peter, 494
matrix multiplication, 671
maximal clique separators,

525-526
maximal intervals, 198-199
maximal munch algorithms, 141
maximal strongly connected

components, 194
maximum fixed point (MFP), 227
may information

alias analysis, 294, 295-296,
315

global optimization and, 323
interprocedural optimization

and, 608, 664
optimization, 323

McFarling, Scott, 682
McKinley, K. S., 806
medium-level intermediate

languages, 71, 72. See also
M IR

DEC CIL, 727-728

Intel IL-1, 736-737
order of optimizations, 325-327
register allocation, 482-483
Sun IR, 709-711

Medium-level Intermediate
Representation. See mir

meet operation
for lattices, 223, 225
meet-over-all paths (MOP)

solution, 227
meet-over-all paths (MOP)

solution, 227
Mellor-Crummey, J. M., 806
member of set operator (e), in

ican, 27, 28, 31, 34
memory addresses, lir , 91
memory hierarchy optimizations,

669-704
combined or unified cache,

670
data-cache impact, 670-671
data-cache optimization,

687-700
effectiveness of caches, 670
instruction-cache impact, 672
instruction-cache optimization,

672-682
order of optimizations, 701-703
scalar replacement of array

elements, 682-687
scalar vs. memory-oriented

optimizations, 700
translation-lookaside buffer

(TLB), 670
memory speed, disparity with

processor speeds, 669
Mesa, alias determination,

642-643
MFP. See maximum fixed point

(MFP)
minimal intervals, 199, 200
mips compilers

branch architecture and, 533
mips machine simulator,

767-768
mixed model of optimization in,

9
most pipelining algorithm,

567
procedure integration and,

469-470
type checking, 132

845

846 Subject Index

mir, 73-78. See also intermediate
code

alternative pa-risc code
sequences, 72

array representation, 68-69
assignments, 75
changes to define hir, 78-79
changes to define lir, 79-81,

492-494
comments, 76
definition of, 78-79
described, 4
examples, 76-78
expressions, 84-85
forward substitution in, 396
goto instruction, 75-76
ican representation of, 81-85
identifiers, 76
instructions, 75-76
instructions as ican tuples,

82-84
integer constants, 76
loop code, 5
operators, 75
operators in IROper, 82
receives, 75
xbnf syntax of instructions,

73-75
xbnf syntax of programs and

program units, 74
mixed model of optimization,

7-10
M L, run-time support, 131-133
Modula-2

enumerated value
representation, 107

reducible flowgraphs and, 196
scoping issues, 52

module storage class, 44
modulo operator (%), in ican, 27,

29
monotone flow functions, 226
MOP solution. See meet-over-all

paths (MOP) solution
Morel, Etienne, 407, 422
most pipelining algorithm, 567
move conditional, 571-572
move operation, 571-572
Mowry, Todd C., 699
Muchnick, Steven S., 225, 262,

264, 265, 287, 290, 306,
316, 373, 542, 575, 576

multi-level intermediate languages,
72-73

multiplication operator (*)
in hir, mir, and lir, 74, 75
in ican, 27, 29

must information
alias analysis, 294, 295-296,

315
global optimization and,

323
interprocedural optimization

and, 608, 664
optimization, 323

Myers, E. A., 634

N

Nahshon, Itai, 803
name mangling, 10
name scoping, 663
names, in register allocation by

graph coloring. See webs
naming conventions, ican data

structures and routines,
92-95

N aN (not a number), in ansi/ieee
floating point, 342

natural loops, 191-193
algorithm, 192
preheaders, 193

natural loop schema, 203
negation operator, unary (-)

in hir, mir, and lir, 74,
75

in ican, 27, 29
negative distance, in direction

vectors
> ,2 7 8
- ,2 7 8

nested regions, 198
Nickerson, Brian, 523
Nicolau, Alexandru, 287, 571, 573
n i l value (ican), overview, 24, 35
node splitting, 197
non-empty closure operator,

unary postfix (+), applied to
functions, 235

nonterminating computation. See
infinite loop

wop, in delay slots, 535
normalized form for loops,

689

notation. See also Informal
Compiler Algorithm Notation
(ican)

for numbers in this book, 17
not equal to operator

!=, in hir, mir, and lir, 74, 75
* , in ican, 27, 28, 29, 30

not member of set operator (**), in
ican, 27, 31

NP-hard and N P-complete
problems, 537, 544, 573,
602, 637, 689

nullification. See branch scheduling
number notations, 17

O

Odnert, Daryl, 662
“ off-by-one” errors, 454
Omega test, 284
one or more copies operator, unary

postfix (+), in xbnf notation,
19, 20

one-pass compilers
described, 3
efficiency of, 3, 6

opcodes
Alpha, 751-752
Intel 386 family architecture,

753
pa-risc, 754-755
power and PowerPC, 750
sparc, 748-749

operating-system interface, 3
operators

assignment statements (ican),
3 6 ,3 8

ican, 27-36
hir, 82
lir, 82
mir, 75, 82
sets, 759
size operator (ican), 36
xbnf notation, 19-20

optimality principle, 160
optimization. See also specific types

o f optimization
criteria for, 320
group I, 323-324
group II, 324
group III, 324-325
group IV, 325

importance of, 6-7, 320-321,
323-325

intermediate code and, 67-68
as misnomer, 319
order of optimizations,

325-328
performance and, 319, 320, 321
safe or conservative, 319-320

optimizing compilers
aggressive, placement of

optimizations in, 11-14
low-level model, 7-9
mixed model, 7-10
placement of optimizations,

11-14
structure of, 7-11

optional operator (|...|), in x b n f
notation, 19, 20

order of optimizations
control-flow and low-level

optimizations, 603-604
early optimizations, 372-373
instruction scheduling, 532,

574-575
interprocedural optimizations,

665-666
loop optimizations, 458-459
memory hierarchy

optimizations, 701-703
overview, 11-14, 325-328
percolation scheduling, 532, 574
postpass or peephole

optimizations, 603
procedure optimizations,

477-478
redundancy elimination, 327,

421-422
register allocation, 481,

482-483, 527-528
trace scheduling, 532, 574

output dependence
defined, 268

output-dependence operator (5°),
268

outside-in order, 609

P

PA-RISC
branch architecture, 533
floating-point register i (°/0f r /'),

754

Subject Index

floating-point register /, left part
(°/.f r/L), 754

floating-point register right
part (#/,fr/R), 754

integer register i (#/«r/), 754
PA-Risc com pilers

alternative sequences for m ir ,
72

assembly language, 753-755
branch architecture and, 533
low-level model of optimization

in, 9
machine idiom s and instruction

com bining, 599, 600-602
s l l ic in, 68
type checking, 132
u c o d e in, 68

packed records, 108
pair binding graph , 649-650

m arking algorithm , 650,
652-653

ParaFrase programming
environment, 637

parallel computation graphs
(PSGs), 571-573

parameter-passing
in C, aliases and, 301
in Fortran 77, aliases and,

298-299
in-line expansion and,

471-472
interprocedural optimization

and, 608
jump and return-jump functions,

641
in Pascal, aliases and, 299-300
procedure integration and,

468-469
parameter-passing (run-time),

116-119
call by name, 118
call by reference, 117-118
call by result, 117
call by value, 117
call by value-result, 117
in flat register file, 121-123
invoking procedures, 119-126
labels, 118-119
mechanisms, 116-117
procedure-valued variables, 126
with register windows, 123-126
on run-time stack, 123

847

parameters. See also arguments;
parameter-passing (run-time)

defined, 117
ParaScope programming

environment, 637
parsing. See syntactic analysis
partial redundancy, defined, 407
partial-redundancy analysis, 230
partial-redundancy elimination,

407-415
advantages of modern

formulation, 378, 421
critical edges, 407, 408
delayed expressions, 411-412
earliestness, 411
future trends, 744
globally anticipatable values,

410-411
implementing, 414
isolated expressions, 413
latestness, 412-413
lazy code motion, 407
local transparency, 408-410
locally anticipatable values,

410
order of optimizations, 421
overview, 377, 407, 420
reassociation with, 415-416
value numbering vs., 343

partitioning algorithm for global
value numbering, 351-355

Pascal
alias determination, 642-643
aliases in, 299-300, 304, 305
basic-block boundaries, 174
character string representation,

108-109
enumerated value

representation, 107
loop unrolling, 559
pointers, 258
scoping and symbol-table

structure, 49, 50
unnecessary bounds-checking

elimination for, 454-457
pass-through parameter, for jump

and return-jump functions,
641

path expressions, 260
path strings, 163
PCGs. See parallel computation

graphs (PCGs)

848 Subject Index

PDGs. See program-dependence
graphs (PDGs)

PDP-11 b l is s compiler. See b l is s
compiler

peephole optimizations
Alpha compilers, 729, 730
branch prediction, 580,

597-599
described, 579, 597, 603-604
Intel compilers, 739
machine idioms and instruction

combining, 580, 599-602
order of optimizations, 603
po w er and PowerPC compilers,

723
sparc compilers, 713

Pelegri-Llopart, Eduardo, 165
Pentium. See Intel 386 family

architecture
PentiumPro. See Intel 386 family

architecture
branch architecture, 533

percent character (7,#/0), in ic a n , 29
percolation scheduling, 571-573

algorithm, 572
computation nodes, 571
described, 532
meta-transformations, 573
order of optimizations, 532, 574
transformations, 571-573
write-live dependence and, 571

perfect static predictor, 598
performance. See also efficiency

algebraic simplifications and,
334-335

instruction scheduling and, 573
interprocedural optimization

and, 608
list scheduling and, 437
as optimization criterion, 320
optimizations and, 319, 320,

321
procedure integration and, 468,

469-470
processor speeds vs. memory

speeds, 669
register allocation by graph

coloring and, 481
trace scheduling and, 570

period, of a recurrence, 683
0-function, static single assignment

form, 252, 253

Pinter, Ron Y., 803
Pinter, Shlomit S., 526
pipeline architectures, 531,

532-533
interlocks, 532-533

pipelining. See software pipelining
PL.8 compiler, 485, 718
PL/I, character string

representation, 108-109
placement of optimizations. See

order of optimizations
PLT. See procedure linkage table

(PLT)
pointer indirection operator, unary

(*) , in h ir , m ir , and l ir , 74,
75, 79

pointers
in C, aliases and, 294, 300-301
data-flow analysis, 258
described, 110-111
in Fortran 77 Cray extensions,

aliases and, 299
in Fortran 90, aliases and, 301
interprocedural alias analysis

and, 654-656
in interprocedural side-effect

analysis, 637
in Pascal, aliases and, 299, 300
to procedure descriptors, 126
run-time representation, 108

Polish-prefix notation
in Graham-Glanville code

generator generator, 142
overview, 101
semantics-directed parsing,

159-160
polymorphic languages, run-time

support, 131-133
polynomial functions, for jump and

return-jump functions, 641
portability, low-level vs. mixed

optimization, 8-9
postdominance

defined, 182
tree, 284-285

position-independent code, 128,
713,741

position indicator (•), in LR(1)
items, 144

positive distance, in direction
vectors

< ,2 7 8

+ , 278
postdominators, 182
postorder traversal, 180, 181
postpass optimizations. See

peephole optimizations
po w er and PowerPC compilers,

716-725
alias information, 721
assembly code examples,

723-725
assembly language, 749-750
branch architecture and, 533
computation table (CT), 719
control-flow analysis, 721
data-flow analysis, 722
data prefetching, 698
development, 718
instruction scheduler, 723
languages supported, 718
low-level model of optimization

in, 9
machine idioms and instruction

combining, 599, 601-602
optimizer transformations, 722
order of optimizations, 705
peephole optimizations, 723
pow er architecture, 716-717
PowerPC architecture, 717
procedure descriptor table, 719
procedure list, 719
register allocators, 523, 723
register coalescing, 723
scavenging, in register

allocation, 723
structure, 718-719
symbolic register table, 719
t o b e y common back end,

719-723
“ wand waving,” 722
XIL code, 719-721
YIL code, 721

power test, 284
precedes-in-execution-order

operator (<), 267, 275
predecessor basic blocks, 175

register allocation and, 484
prefetching

data prefetching, 688, 698-700
instruction prefetching, 672-673

prefix unary operators (ic a n). See
unary operators (ic a n)

preheaders of natural loops, 193

Subject Index 849

preorder traversal, 179-181
structural control-flow analysis,

207
preprocessors

described, 10
high-level intermediate

languages in, 69-70
preserving definitions, 220
priority-based graph coloring,

524-525. See also register
allocation by graph coloring

procedure and block placement in
instruction cache, 676-677

procedure-call side effects. See side
effects of procedure calls

procedure-call statements (ican),
form, 38

procedure cloning, 607-608, 657
order of optimizations, 665

procedure declarations (ican)
overview, 23, 24
syntax, 26-27

procedure descriptors, 126
procedure integration, 465-470

breadth of, 466-468
effects of, 469-470
implementation, 468-469
order of optimizations, 477
performance and, 468
summary, 476

procedure linkage table (PLT), 130,
131

procedure optimizations, 461-479
described, 322, 461
in-line expansion, 470-472
leaf-routine optimization,

472-473
order of optimizations, 477-478
overview, 476-477
procedure integration

(automatic inlining),
465-470

shrink wrapping, 472, 473-476
tail-call and tail-recursion

elimination, 461-465
procedure parameters, in

interprocedural side-effect
analysis, 637

procedure sorting, 673-676
algorithm, 673-676
overview, 673
procedure splitting and, 681

procedure specialization. See
procedure cloning

procedure splitting, 681-682
procedure-valued variables, 126

interprocedural control-flow
analysis, 612-618

procedures, 119-126. See also
parameter-passing (run-time)

call, 119
epilogue, 120
extended formal parameters,

643
Fortran 90, aliases and, 301-302
Pascal, aliases and, 300
phases in run-time execution,

119-120
prologue, 119-120
static link, 114
value graphs, 349-351

product of lattices, 224
production, x b n f notation, 19-20
Production-Quality Compiler

Compiler (PQCC), 730
Proebsting, Todd, 273, 769
profiling tools, 770-771
program management,

interprocedural issues,
663-664

program points
alias-propagator flow functions,

308
defined, 295, 303
functions mapping, 304

program summary graph, 634-636
program supergraph, 634
program syntax (ic a n), 25
program verification, data-flow

analysis for, 261-262
program-dependence graphs

(PDGs), 284-286
constructing CDGs for, 284-286
control-dependent nodes, 284,

286
in instruction scheduling, 723
region nodes, 284, 285

“ programming in the large” issues,
663-664

Prolog, run-time support, 131-133
prologue of procedures, 119-120

shrink wrapping and, 472, 473
proper ancestor, 185
proper interval, 204

pruned SSA form, 258
pruning interference graphs, 488,

503-506
pseudo-operations, sp a r c , 749
PSP ACE-hard, 612

Q
QPT, 770
QPT.STATS, 770
quadruples

infix form, 96
translation from trees,

99-100
translation to trees, 98-99
translation to triples, 97
trees vs., 98
triples vs., 96

quotation mark character (#/«"), in
ic a n , 29

R

R-coloring. See also register
allocation by graph coloring

defined, 485
degree < R rule, 503-506

Rainish, Victor, 548
range checking, 454. See also

unnecessary bounds-checking
elimination

reaching-definitions analysis,
218-223

basic blocks and, 218
correspondence between bit-

vector positions, definitions,
and basic blocks, 219, 220

described, 229
forward structural data-flow

analysis, 242-244
interval data-flow analysis,

249-250
iterative forw ard bit-vector

problem , 218-223
killing definitions, 2 2 0
preserving definitions, 2 2 0
undecidability in, 219

reading flow am ong chapters in
this book , 14-16

r e a l ica n type
binary operators, 29
overview, 29

850 Subject Index

reassociation. See also algebraic
simplifications and
reassociation

with common-subexpression
elimination, 385, 415-416

with loop-invariant code
motion, 415-416

with partial-redundancy
elimination, 415-416

redundancy elimination and,
415-416

receives, mir instruction type, 75
recompilation, interprocedural

issues, 664
record , (record type constructor),

in ican , 23
records

data-flow analysis, 258, 259
packed and unpacked, 108
run-time representation, 108

records, in ican

binary operators, in ican , 34
constant delimiters (<...>), 27,

33
constants, 33
overview, 33-34
type constructor (record

23, 26, 33
recursion

in C, aliases and, 301
in Fortran 90, aliases and,

301
inlining and, 468
in interprocedural side-effect

analysis, 637
in Pascal, aliases and, 300
tail-recursion elimination,

320-321
reducibility of flowgraphs,

196-197
reductions, loop-invariant code

motion, 406-407
redundancy elimination, 377-423

code hoisting, 417-420
common-subexpression

elimination, 378-396
described, 322
loop-invariant code motion,

397-407
order of optimizations, 327,

421-422
overview, 377-378
partial-redundancy analysis, 230

partial-redundancy elimination,
407-415

reassociation, 415-416
region, 175
region nodes of PDGs, 284, 285
register allocation, 481-530, 659-

662. See also interprocedural
register allocation; register
allocation by graph coloring

candidates for allocation,
483-484

combining with scheduling, 526
DEC compilers, 730
described, 322, 482
by graph coloring, 485-524
importance of, 481
instruction scheduling and, 545
Intel 386 family compilers, 740
interprocedural, 659-662
local methods, 483-485
order of optimizations, 481,

482-483, 527-528
other approaches, 525-526
overview, 481-483
power and PowerPC compilers,

723
priority-based graph coloring,

524-525
scalar replacement of array

elements, 682-687
sparc compilers, 713
spur lisp compiler, 525

register allocation by graph
coloring, 485-524

adjacency lists, 487, 496-497,
4 9 8 ,4 9 9 , 530

adjacency matrixes, 487,
495-496, 497, 530

basic steps, 485
candidates for allocation,

489-494
degree, 494
degree < R rule, 503-506
edge splitting, 509
examples, 485-486, 510-521
heuristics used in register

spilling, 501, 522-523
interference graph, 485, 486,

487, 488, 494-497, 503-506
interferences, 481
machine independence, 524
NP-completeness, 482
order of optimizations, 527-528

other issues, 521-524
overview, 481-482, 485-486
performance and, 481
priority-based graph coloring,

524-525
register assignment, 488, 506,

508
register coalescing, 487,

497-500
register pairs, 523, 529
register pressure, 407, 506
rematerialization, 488, 501,

509, 523-524, 529, 530
spill costs computation,

487-488, 501-503
spilling symbolic registers, 488,

506-511
top-level structure, 486-489
two-address instructions, 499,

529
webs, 486, 489-494

register allocation by priority-based
graph coloring, 524-525

register assignment
overview, 482
register allocation by graph

coloring, 488, 506, 508
register coalescing, 487, 497-500

functions performed by, 499
ican code for, 498-500
overview, 487, 497-498
power and PowerPC compilers,

723
register pairs, in register allocation

by graph coloring, 499, 523,
529

register pipelining. See scalar
replacement of array elements

register pressure, 407, 506
register renaming, 564-567

in branch scheduling, 534
described, 532, 573
determining register sets,

564-565
in extended basic blocks, 565
ican code, 565, 566
loop unrolling and, 561
order of optimizations, 574-575

register windows, parameter
passing with, 123-126

registers
Alpha integer register names,

751

anticipatable, 473
common-subexpression

elimination and, 396
contention for, 110-111
DEC Alpha register names, 751
dividing into classes, 120
flat register file, parameter

passing in, 121-123
IBM pow er and PowerPC

register names, 749-750
ican representation, 82
importance of, 109-110
Intel 386 family register names,

752
issues and objectives, 110
managing for procedures,

120- 123
pa-r isc register names, 754
partial-redundancy elimination

and, 407
register windows, parameter

passing with, 123-126
run-time usage, 109-111,

121- 126
shrink wrapping and, 473-474
sparc register names, 748

Reif, John R., 348, 729
related topics not covered in this

book, 16
relational operators, algebraic

simplifications, 333-334
rematerialization, in register

allocation by graph coloring,
488, 501,509, 523-524, 529,
530

removal of induction variables,
447-453

ican code, 450-453
loop invariants and, 449
overview, 447-448
procedure, 448-450
situations where advisable,

447
Renvoise, Claude, 407, 422
repeat statements

ic a n , 40
loop inversion, 587-588

reserved w ords (ic a n), 25, 40
resource vectors, 271
results. See return values
r e tu rn , m ir , 76
r e tu r n - , 655
return statem ents (ic a n), form, 38

Subject Index

return values
call by result parameter-passing

(run-time), 117
described, 111

return-jump functions, 637-641
reverse extended basic blocks

definition, 175
in instruction scheduling, 598

Richardson, Stephen E., 608, 664
R ises

aggregation of global references,
663

branch architectures, 533
constant propagation and,

362-363
data prefetching, 698
instruction prefetching, 672
machine idioms and instruction

combining, 599-602
pipelining, 531
register allocation, 483
register assignment, 482
register usage, 110

Rodeh, M., 548
Rogers, Anne, 548
rolled loop, 559
Rosen, Barry K., 202, 250
Rosenberg, Scott, 768
Rothberg, Edward E., 738
Roubine, Olivier, 52
routines, ica n naming, 92-95
row-major order for arrays,

107
run-time stack

overview, 114-116
parameters passed on, 123

run-time support, 105-136
Application Binary Interface

(ABI) standards, 105, 134
importance of, 4-6
local stack frames, 111-114
parameter-passing disciplines,

116-119
procedure prologues, epilogues,

calls, and returns, 119-126
register usage, 109-111
run-time stack, 114-116
shared objects, 127-131
symbolic and polymorphic

language support, 131-133
Riithing, Oliver, 407, 443, 597
Ruttenberg, John, 567
Rymarczyk, J. W., 531, 575

S

safe optimizations, 319-320
safe positions, in instruction

scheduling, 543
Santhanam, Vatsa, 662
sa x p y (), Unpack procedure,

465-466, 657
scalar optimizations

future trends, 744
memory-oriented optimizations

vs., 700
scalar replacement of aggregates,

331-333
main procedure, 331, 332,

333
order of optimizations, 372
overview, 371
simple example, 331-332

scalar replacement of array
elements, 682-687

examples, 682-683
loop fusion, 684
loop interchange, 684
for loop nests with no

conditionals, 683-684
loops with ifs, 684, 685
for nested loops, 684, 686-687
order of optimizations, 702-703
overview, 701

SCCs. See strongly connected
components

scheduling. See instruction
scheduling

Scheme, run-time support,
131-133

Schiffman, Alan M., 133
scope

closed scopes, 52-54
defined, 43
dynamic scoping, 45
global symbol-table

management and, 49-54
name scoping, 663
types of storage classes, 44
visibility of variables, 43-44

scratch registers, 120
search-variable expansion,

562-563
select from set operator, unary (♦),

in ic a n , 24, 27, 31
s e l f , run-time support, 131-133
semantic checking, described, 2

851

852 Subject Index

semantics-directed parsing,
159-160

semidominators, 185
separable array references, 282
separate compilation

interprocedural analysis and
optimization and, 608

interprocedural control-flow
analysis and, 611

separated list operator (x) , in xbnf
notation, 19, 20

separators, in ican, 21
sequence instruction, mir, 76
sequence of, (sequence type

constructor), in ican, 23
sequence of optimizations. See

order of optimizations
sequence types, in ican

binary operators, overview,
32

concatenation operator (©), 24,
27, 32

constants, 32, 33
constant delimiters ([...]), 24,

27, 32
member deletion operator (©),

24, 27, 32
member selection operator (i),

27, 32
overview, 32-33

sequences, representation, 763
se t of (set type constructor), in

ican, 23
sets

operators, 759
representation, 759-763
run-time representation, 109

set types, in ican
binary operators, 31
constant delimiters ({...}), 27,

31
constants, 31
intersection operator (n), 27,

31
overview, 31-32
selection (♦), unary operator,

31-32
union operator (u), 27, 31

sg e fa (), Linpack procedure,
465-466, 467, 657

Shade, 771
shared compiler components, 9-10
shared libraries. See shared objects

shared objects, 127-131
accessing external variables,

128, 129
advantages, 127
global offset table (GOT), 129,

130
performance impact, 128
position-independent code, 128
procedure linkage table (PLT),

130, 131
semantics of linking, 127-128
table of contents example, 128
transferring control between,

129-130
transferring control within,

128-129
Sharir, Micha, 205, 210
Sharlit, 259-261
shrink wrapping, 473-476. See

also leaf-routine optimization
example, 474-476
implementation, 473-474
order of optimizations, 477-478
overview, 472, 473, A ll

side effects of procedure calls
flow-insensitive side-effect

analysis, 619-633
flow-sensitive side effect

analysis, 634-636
other issues in computing, 637

Silberman, Gabriel, 807
simple loop residue test, 284
Simpson, Taylor, 355, 414, 443
single quotation mark character

(°/0'), in ican, 29
single-valued, 34
site-independent interprocedural

constant propagation, 637
site-specific interprocedural

constant propagation, 637
SIV tests, 283
size operator (I... |), in ican, 24,

27 ,36
sllic , integer multiply and divide

operands in, 73
slotwise data-flow analysis,

250-251
Smalltalk, run-time support,

131-133
Smotherman, Mark, 542
snobol, run-time support,

131-133
Soffa, Mary Lou, 525, 530, 700

software pipelining, 548-569
circular scheduling, 565
described, 532
disambiguating memory

references, 551
hierarchical reduction, 568-569
loop unrolling, 532, 559-562
for loops containing

conditionals, 568-569
most pipelining algorithm, 567
order of optimizations, 574-575
other approaches, 565-568
overview, 548-551, 573
performance and, 573
pipeline architectures, 531,

532-533
register pipelining (scalar

replacement of array
elements), 682-687

register renaming, 532, 564-567
testing loop iterations, 551
unroll-and-compact, 555-558
variable expansion, 532,

562-564
window scheduling, 551-555

software resources, 767-771
code-generator generators,

769-770
compilers, 768-769
machine simulators, 767-768
profiling tools, 770-771
the Internet, 767

sorting, local variables in stack
frame, 56-58

sources of aliases, 296-297
Spa, 768
space, as optimization criterion,

320
SPARC

architecture, 591, 707-708
floating-point register i (#/,f/),

748
integer general register i (#/0g/),

748
integer in register i (°/,i/), 748
integer local register i (%lz), 748
integer out register i (%o/), 748
integer register i (#/,r/'), 748
machine simulator, 768

sparc compilers, 707-716
asm+ code, 711-712
assembly code examples,

713-716

Subject Index

assembly language, 747-749
branch architecture and, 533
code generator phases, 712-713
conditional moves, 591
data prefetching, 698
dependence analysis, 711
development, 707
global optimizer, 710-711
instruction prefetching, 672
languages supported, 708
levels of optimization supported,

710
mixed model of optimization in,

9
optimizer transformations, 711
position-independent code, 713
procedure linkage table (PLT),

131
register windows for successive

procedures, 125
stack frame layout with register

windows, 126
Sun IR, 71 ,72, 709-710
type checking, 132
yabe back end, 709-710

sparse conditional constant
propagation, 362-371. See
also constant propagation

algorithm, 364-366
code for, 364-367
constant propagation, 362-363
examples, 366-371
order of optimizations, 372
overview, 371-372
repetition of, 13
symbolic program execution,

363-364
transforming the flowgraph into

SSA form, 363
value numbering vs., 343

sparse set representation, 762-763
speculative load, extension to lir

defined, 547
operator (< - sp) , 547, 548

sp e c 92 benchm arks, 567
speculative loading, 547-548
speculative scheduling, 548

perform ance and, 573
safe and unsafe, 548, 730
unspeculation, 548

speed. See perform ance
spill costs com putation , 487-488,

501-503

heuristics. See register allocation
by graph coloring

spilling symbolic registers, 488,
506-511

s p im , 767-768
SpixTools, 770-771
splitting critical edges. See edge

splitting
spu r l is p compiler, register

allocator, 525
Srivastava, Amitabh, 658, 664
SSA form, 252-258. See also

intermediate code
described, 4
dominance frontiers, 253-254
du-chains in, 252
future trends, 744
loop code, 4, 5
in partial-redundancy

elimination, 415
in po w er and PowerPC

compilers, 721
pruned, 258
standard translation example,

253
strength reduction on, 443
translating into, 252-258,

349-350
in value numbering, 349-355

stack frames. See also parameter
passing (run-time)

dynamic link, 114
local symbol tables, 49, 51,

52-54, 56-58
local variables in, 56-58
overview, 111-112
run-time support, 111-114
stack-plus-hashing model,

52-54
static link, 114-116
structures for procedure calling,

122, 124, 126
tail-call elimination and,

462-463
stack of local symbol tables, 49, 51

local variables in, 56-58
stack-plus-hashing model,

52-54
stack pointer (sp), 112-114

a l l o c a () a n d ,113
described, 110, 112
frame pointer vs., 112-113
tail-call elimination and, 462

stack, run-time. See run-time stack
stack storage class, 44
stall cycles, filling, 534-535
standards

ANSI/IEEE-754 1985, 106, 331
Application Binary Interface

(ABI), 105, 134
constant folding and, 331
Unicode, 106

statement separator (;), in ic a n ,
2 1 ,37

statements (ic a n), 36-40
assignment statements, 36-38
case statements, 25, 39
described, 24-25
for statements, 39-40
goto statements, 38
if statements, 38-39
keywords in, 25, 40
overview, 36
procedure call statements, 38
repeat statements, 40
return statements, 38
syntax, 37
while statements, 39

static branch-prediction methods,
598

static link, 114-116
described, 111, 114
in procedure descriptors, 126
procedure sorting, 672-673
setting, 114-115
up-level addressing, 115-116

static single-assignment form. See
SSA form

static storage classes, 44
s t a t i c variables (C), 44

procedure integration and, 469
static-semantic validity, described,

2
Steele, Guy L., 525, 530
Steenkiste, Peter, 662
Steffen, Bernhard, 407, 443, 597
storage binding, 54-58

addressing method, 54-55
described, 54
large local data structures, 58
symbolic registers, 55-56
variable categories, 54

storage classes of symbol tables,
43-45

automatic or class, 44
file or module, 44

853

854 Subject Index

storage classes of symbol
tables (cont.)

global, 44-45
lifetime of variables, 44
scope, 43
static, 44
visibility of variables, 43-44

store operator (<-), in machine
grammars, 139

stores, generating in symbol tables,
59-63

Stoutchinin, A., 817
straightening, 583-585

described, 579, 583
ica n code, 584-585
overview, 583-584

strength reduction, 435-443
algorithm, 436-438
m ir example, 437-443, 444
overview, 435-436
on SSA form, 443

strict dominance, 182
stride, 670
strongly connected components,

193-196
algorithm, 194-195
interprocedural data-flow

analysis, 631-632
maximal, 194
natural loops, 191-193

strongly distributive, 236
structural control-flow analysis,

202-214
acyclic and cyclic control

structures, 202-204,
207-208

advantages, 173
algorithm, 205-206
data structures, 205, 208-209,

211-212
example, 210-214
global data structures, 205
interval analysis compared to,

202
preorder traversal, 207
region-reduction routine, 207,

209-210
smallest improper region

determination, 210, 211
structural data-flow analysis,

236-249
backward problems, 244-247
described, 236

flow functions for if-th en ,
237- 238

flow functions for if- th e n -
e lse , 238

flow functions for while,
238- 239

forward problems, 236-244
interval analysis compared to,

249
reaching-definitions analysis,

242-244
representing equations, 247-249

structural hazards, 271
structure of compilers, 1-3

optimizing compilers, 7-11
placement of optimizations,

11-14
subscript range operator (• •), in

ic a n , 26, 30
subsumption. See register

coalescing
subtraction operator (-)

in h ir , m ir , and l ir , 74, 75
in ic a n , 27, 29

successor basic b locks, 175
register allocation and, 484

s u if , 769
Sun compilers. See spar c compilers
Sun IR, 71 ,72 , 709-710
supergraph, 634
superscalar implementations

percolation scheduling for, 574
scheduling for, 543-545
software pipelining and, 548
trace scheduling for, 574

superscript operators, in x b n f
notation, 19-20

support of a function, 637
symbol names, procedure

integration and, 469
symbol tables, 43-65

compiler structure diagrams
and, 3

generating loads and stores,
59-63

global sym bol-table structure,
49-54

local symbol-table management,
47-49

run-time and, 114
storage binding, 54-58
storage classes, 43-45
symbol attributes, 45-47

symbol-table entries, 45-47
variety in design, 4

symbol-table entries, 45-47
typical fields, 46

symbolic execution
for jump and return-jump

functions, 641
for sparse conditional constant

propagation , 372
sym bolic languages, run-time

support, 131-133
sym bolic registers. See also webs

ican representation, 82
spilling, 488, 506-511
storage binding, 55-56

syntactic analysis. See also parsing
com bining with lexical analysis,

3
described, 2
in Fortran, 3

syntactic blocks, eliminating
in Graham-Glanville
code-generator generator,
154-158

syntax
abstract syntax tree, 70-71
x b n f syntax o f changes to m ir

to m ake h ir , 79
x b n f syntax o f changes to m ir

to m ake l ir , 80
x b n f syntax o f m ir instructions,

74
x b n f syntax of m ir programs

and program units, 74
syntax (ic a n)

conventions, 21
declarations, 26-27
expressions, 27
generic simple constants, 28
statements, 37
type definitions, 25-26
whole programs, 25

syntax-directed code generators.
See Graham-Glanville
code-generator generator

T

tail call, defined, 461
tail merging

described, 580
order of optimizations, 604
overview, 590-591

tail-call optimization, 461-465
addressing modes and, 465
effect of, 461-463
identifying tail calls, 463
implementation, 463-465
order of optimizations, 477
overview, 476
stack frames and, 462-463

tail-recursion elimination, 461-463
effect of, 461
implementation, 463
importance of, 320-321
order of optimizations, 477
overview, 476

tail-recursive call, defined, 461
target-machine code, examples in

this book, 16
Tarjan, Robert E., 185, 631, 738
temporaries, described, 111
Tenenbaum, Aaron, 287
terminals, in x b n f notation, 19
thunk, 118
tiling. See loop tiling
Tjiang, Steven S. K., 160, 259, 260,

265
TLB. See translation-lookaside

buffer (TLB)
t o b e y , back end of pow er and

PowerPC compilers, 719-723
tokens, in ic a n , 22
top, of lattices, 223. See also

lattices
Torczon, Linda, 469, 495, 637,

664, 762
Towle, Robert A., 289
trace, defined, 569
trace scheduling, 569-570

compensation code, 569
described, 532, 569
example, 569-570
order of optimizations, 532,

574
performance and, 570

translation-lookaside buffer (TLB)
described, 670
misses and stride values, 670

tree edges, 178
tree-pattern-matching code

generation. See dynamic
programming

tree transformations, for
simplification of addressing
expressions, 337-341

Subject Index 855

trees
balanced binary trees, 48, 761,

763
intermediate code form, 97-100
Polish prefix form, 101
quadruples vs., 98
representation, 763-764
translation from quadruples,

98- 99
translation to quadruples,

99- 100
trends in compiler design, 744
triples

interm ediate code form , 96-97
quadruples vs., 96
translation to quadruples, 97

true dependence. See flow
dependence

tuple types, in ican
binary operators, 33
constant delim iters (<...>), 27
constants, 33
element selection operator (@),

24, 27, 33
type constructor (x), 23, 26, 28,

33
tuples, in ica n

h ir instructions, representation
as, 87

lir instructions, representation
as, 91-92

m ir instructions, representation
as, 82-84

twig, 160-165
tw o-address instructions in register

allocation by graph co loring,
499, 529

type definitions (ic a n)
arrays, 30
compiler-specific types, 24, 35
constructed types, 28
described, 23, 28
enumerated types, 29-30
floating-point numbers, 81
functions, 34-35
generic simple types, 23, 28-29
integers, 81
n il value, 24, 35
operator (=), 25, 26, 35
records, 33-34
sequences, 32-33
sets, 31-32
size operator, 36

syntax, 25-26
tuples, 33
unions, 34

type determination, data-flow
analysis for, 262-263

U

u c o d e , design issues using, 67-68
ud-chains, 251

determining dead code, 593
Ullman, Jeffrey D., 227, 351
unary operators

algebraic simplifications, 333
m ir , 75

unary operators (ic a n)
negation, 28
set types, 24, 31

unconstrained greedy schedule,
555-556

Unicode, run-time support, 106
unification. See code hoisting
unified or combined cache, 670
uniform register machine, 163
unify transformation, 571-572
unimodular loop transformations,

690-693
loop interchange, 691
loop permutation, 691
loop reversal, 692
loop skewing, 692-693
overview, 690-691

unimodular matrixes, 690-693
unions, in interprocedural

side-effect analysis, 637
union types (C), aliases and,

300
union types, in ica n

binary operators, 34
overview, 34
type constructor (u), 23, 26, 28,

34
universal quantifier (V), in ic a n ,

27, 28
unnecessary bounds-checking

elimination, 454-457
implementation, 455-457
importance of, 454-455
languages requiring, 454
order of optimizations, 458
overview, 458-459

unpacked records, 108
unreachable code, defined, 580

856 Subject Index

unreachable-code elimination,
580- 582

algorithm, 580-581
dead-code elimination vs., 580
described, 579, 580
ica n code, 581
m ir procedure example,

581- 582
repetitions of, 579

unroll-and-compact software
pipelining, 555-558

algorithm to find repeating
pattern, 557-558

overview, 555-557
unconstrained greedy schedule,

555-556
unrolling. See loop unrolling
unrolling factor, 559
unspeculation. See speculative

scheduling
unswitching, 580, 588-589
up-level addressing, 115-116
upwards-exposed uses

analysis, 229-230
in instruction scheduling, 542

user environment, described, 3

V

value graphs of procedures,
349-351

value numbering, 343-355
applied to basic blocks, 344-348
applied to extended basic blocks,

344
described, 343
global, 348-355
optimizations with similar

effects, 343
order of optimizations, 372
overview, 371, 372
very aggression version in

IBM po w er and PowerPC
compilers, 722

variable declarations (ic a n)
described, 81
overview, 23
syntax, 26-27

variable expansion, 562-564
accumulator variables, 562-564
algorithms, 563
described, 532, 573

induction variables, 562-563
order of optimizations, 574-575
search variables, 562-563

variables
addressing method in symbol

tables, 54-55
congruence of, 348-351
dead, 445, 592-592
induction variables, 425-426
induction-variable

optimizations, 425-453
lifetimes of variables, 44
live and dead, 443, 445
live variables analysis, 229,

443-446
local variables in stack frame,

56-58
procedure-valued,

interprocedural control-flow
analysis with, 612-618

procedure-valued variables, 126
register use by, 111
in shared objects, 128
storage-binding categories, 54
up-level addressing, 115-116
visibility of symbol-table

variables, 43-44
VAX compiler, a sc ii support, 106
very busy expressions, 417
Vick, Christopher, 443
v liw (very long instruction word

systems), 548, 562, 566, 570,
574, 575, 576

visibility, of variables, 43-44
v o la t i le storage class, 45

W

Wall, David W., 658, 659-662, 664
“ wand waving” , in po w er and

PowerPC compilers, 722
Warren, S. K., 806
WARTS, 770
weakly separable array references,

282, 283
webs. See also symbolic registers

data-flow analysis, 251-252
defined, 486
example, 489
interferences among, 490
priority-based graph coloring,

524-525

register allocation by graph
coloring, 486, 489-494

spill costs computation,
487-488, 501-503

Wegman, Mark N., 348, 355, 363
Weihl, William E., 612, 637
Weicker, Reinhold P., 121
Weinstock, Charles B., 820
well-behaved loops in C, 425
well-structured flowgraph, 196
while statements

flow functions for structural
analysis, 238-239

ica n form, 39
loop inversion, 587-588

whitespace, in ic a n , 21
Whitfield, Debbie, 700
window scheduling, 551-555

algorithm, 552-553
combining with loop unrolling,

553, 555
overview, 551-552

Wolf, Michael E., 289, 690, 698,
738

Wolfe, Michael R., 694, 700
word, usage in this book, 16-17
worklist algorithm for iterative

data-flow analysis, 232-233
write-live dependence, 571
Wulf, William, 730

X

x b n f . See Extended Backus-Naur
Form (x b n f)

XIL code, 719-721
XL compilers. See pow er and

PowerPC compilers

Y

YIL code, 721

Z

Zadeck, F. Kenneth, 250, 348, 355,
363, 525, 530

zero distance (=), in direction
vectors, 278

zero or m ore copies operator, unary
postfix (*), in x b n f notation,
19, 20

Ziv, Isaac, 807

